### SUPPLEMENTARY MATERIALS

# Metal- and oxidant-free electrochemically promoted oxidative

# coupling of amines

## **Table of contents**

1. General information

- 2. General electrocatalysis procedure for oxidation of amines to imines
- 3. The Gas chromatogram and MS spectrum of products
- 4. Control experiments

#### 1. General information:

All reagents and materials (purchased from Aladdin) were used as received, solvents of analytical grade were used for the reaction without further purification.

**Characterization and instruments.** The GC analyses were performed on Shimadzu GC-2014C with an FID detector equipped with a Cap Hp-5 Sil capillary column. The GC mass spectra (GC-MS) were recorded on Agilent 7890B-7000D. The instrument for electrolysis is ElectraSyn 2.0 (made in America), the Carbon plate (53 mm \* 8 mm \* 1.5 mm) and the Platinum plate (54 mm \* 8 mm \* 1.8 mm) was purchased from Aika (Guangzhou) instrument equipment Co., LTD.

#### General electrocatalysis procedure for oxidation of amines to imines



Under 5 V constant voltage conditions, a dried ElectraSyn 2.0 vial equipped with a stir bar was loaded with benzylamine (0.25 mmol), TBEA (7 mg,) in CH<sub>3</sub>CN (3.0 mL) was stirred at 25 °C. The tube was equipped with carbon plate (53 mm \* 8 mm \* 1.5 mm) as the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant voltage of 5 V under room temperature for 10 h. After the reaction was completed, the resulting mixture was finally analyzed by GC-MS and GC.

Furthermore, a radical scavenger 4 equiv. 2,2,6,6-tetramethylpiperidinooxy (TEMPO) was added to the electrolysis of benzylamine under the standard conditions. After electrolysis, the reaction mixture samples were analyzed by GC-MS. The intermediate was detected by GC-MS analysis (Figure S2). GC-MS results showed that benzaldehyde might be involved in the electrochemical conversion.



Figure S1. Set-up of experiments (the photographs come from our laboratory).



Figure S2. GC-MS analysis of the intermediate benzaldehyde

## 2. The GC analysis and MS spectrum of products



Figure S3. (a) The GC analysis of product (Table 2, entry 1); (b) The MS spectrum of product (Table 2, entry 1).



Figure S4. (a) The GC analysis of product (Table 2, entry 2); (b) The MS spectrum of product (Table 2, entry 2).



Figure S5. (a) The GC analysis of product (Table 2, entry 3); (b) The MS spectrum of product (Table 2, entry 3).



Figure S6. (a) The GC analysis of product (Table 2, entry 4); (b) The MS spectrum of product (Table 2, entry 4).



Figure S7. (a) The GC analysis of product (Table 2, entry 5); (b) The MS spectrum of product (Table 2, entry 5).



Figure S8. (a) The GC analysis of product (Table 2, entry 6); (b) The MS spectrum of product (Table 2, entry 6).



Figure S9. (a) The GC analysis of product (Table 2, entry 7); (b) The MS spectrum of product (Table 2, entry 7).



Figure S10. (a) The GC analysis of product (Table 2, entry 8); (b) The MS spectrum of product (Table 2, entry 8).



Figure S11. (a) The GC analysis of product (Table 2, entry 9); (b) The MS spectrum of product (Table 2, entry 9).



Figure S12. (a) The GC analysis of product (Table 2, entry 10); (b) The MS spectrum of product (Table 2, entry 10).



Figure S13. (a) The GC analysis of product (Table 2, entry 11); (b) The MS spectrum of product (Table 2, entry 11).



Figure S14. (a) The GC analysis of product (Table 2, entry 12); (b) The MS spectrum of product (Table 2, entry 12).



Figure S15. (a) The GC analysis of product (Table 2, entry 13); (b) The MS spectrum of product (Table 2, entry 13).



Figure S16. (a) The GC analysis of product (Table 2, entry 14); (b) The MS spectrum of product (Table 2, entry 14).



Figure S17. (a) The GC analysis of product (Table 2, entry 14); (b) The MS spectrum of product (Table 2, entry 17).



Figure S18. (a) The GC analysis of product (Table 3, entry 1); (b) The MS spectrum of product (Table 3, entry 1).



Figure S19. (a) The GC analysis of product (Table 3, entry 2); (b) The MS spectrum of product (Table 3, entry 2).



Figure S20. (a) The GC analysis of product (Table 3, entry 3); (b) The MS spectrum of product (Table 3, entry 3).



Figure S21. (a) The GC analysis of product (Table 3, entry 4); (b) The MS spectrum of product (Table 3, entry 4).



Figure S22. (a) The GC analysis of product (Table 3, entry 5); (b) The MS spectrum of product (Table 3, entry 5).



Figure S23. (a) The GC analysis of product (Table 3, entry6); (b) The MS spectrum of product (Table 3, entry 6).

#### 4. Control experiments



Figure S24. Set-up of control experiments.

Under 5 V constant voltage conditions, a dried ElectraSyn 2.0 vial equipped with a stir bar was loaded with benzylamine (0.25 mmol), TBEA (7 mg,) in CH<sub>3</sub>CN (3.0 mL) was stirred at 25 °C. The tube was equipped with carbon plate (53 mm \* 8 mm \* 1.5 mm) as the anode and cathode. Remove the air from the reaction vial and fill it with nitrogen to keep it in nitrogen atmosphere. The reaction mixture was stirred and electrolyzed at a constant voltage of 5 V under room temperature for 10 h. After the reaction was completed, the resulting mixture was finally analyzed by GC-MS and GC. The target product 1b was formed in 93% gas chromatography (GC) yield.



Figure S25. The GC analysis of product (control experiments).