Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Ligand-Enabled and Magnesium-Activated Hydrogenation with Earth-Abundant Cobalt Catalysts

Bo Han,*a Miaomiao Zhang,a Hongmei Jiao,a Haojie Ma,a Jijiang Wanga and Yuqi Zhang*a

Supporting Information

Table of Contents

1. Materials and Methods	S1
2. General Procedure for Cobalt-Catalyzed Hydrogenation of PAHs	S1
3. General Procedure for Cobalt-catalyzed hydrogenation of olefins	S7
4. Preparation of diketimine-Co complex.	S11
5. Gram-Scale Hydrogenation of 1a and 3m	S11
6. Reaction Profile for Hydrogenation of Anthracene	S12
7. Experiments of XPS for Analysis of Active Metal Species	S13
8. X-Ray Crystal Structure of 31	
9. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S15

1. Materials and Methods

General. All reactions dealing with air or moisture-sensitive compounds were carried out in a flame-dried, sealed Schlenk reaction tube under an atmosphere of nitrogen. Analytical thin-layer chromatography was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator (Merck). Flash silica gel column chromatography was performed on silica gel 60N (spherical and neutral, 140–325 mesh) as described by Still.¹NMR spectra were measured on a Bruker AV-400 spectrometer and reported in parts per million. ¹H NMR spectra were recorded at 400 MHz in CDCl₃ were referenced internally to tetramethylsilane as a standard, and ¹³C NMR spectra were recorded at 100 MHz and referenced to the solvent resonance. Analytical gas chromatography (GC) was carried out on a Thermo Trace 1300 gas chromatograph, equipped with a flame ionization detector. Mass spectra (GC-MS) were taken at Thermo Trace 1300 gas chromatograph mass spectrometer. High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (Thermo Scientific, USA) equipped with ESI ionization source. Melting points were determined with a Hanon MP-300. X-ray photoelectron spectroscopy (XPS) data were collected with a Thermo Fisher ESCALAB Xi⁺ spectrometer equipped with monochromatic Al K α radiation. The analyzer was in the constant analyzer energy (CAE) mode at a pass energy of 20 eV for all the valence-band XPS measurements. The binding energies were measured with an accuracy of 0.1 eV. The binding energy scales were calibrated using the C1s peak at 284.8 eV from carbon contamination.

Materials. Unless otherwise noted, materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, Adamas-beta., and other commercial suppliers and used as received. Solvents were dried over sodium (for THF) by refluxing for overnight and freshly distilled prior to use. Co(acac)₂ (99.9%), CoCl₂ (99.9%), CoBr₂ (99.9%), NiCl₂(>98%) and FeBr₂ (>98%) were purchased from Aldrich Inc. and used as received. Ligands of diketimine, Me-diketimine were prepared according to the related literature procedures²⁻⁴.

2. General Procedure for Cobalt-Catalyzed Hydrogenation of PAHs

In a Schlenk tube were placed Mg turnings (10 mg, 0.4 mmol) and $CoBr_2$ (5 mg, 0.02mmol). The solids were heated using a heat gun at around 300 °C under vacuum for 5 min. After cooling down under a nitrogen atmosphere, PAH (0.2 mmol), diketimine (8 mg, 0.02 mmol) and THF (2.0ml) were added. The resulting mixture was heated at 80 °C for 2 hours, during which the color of the mixture turned dark. Then the resulting mixture was quickly moved to a high-pressure autoclave. The reaction mixture was stirred under an atmosphere of H_2 (8 Mpa) at 60 °C for 50 h. After quenching with saturated NH₄Cl/H₂O (4 mL), the crude product was extracted with EtOAc (3 × 4 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under vacuum. After removal of the volatiles under vacuum, the crude product was purified by column chromatography to afford the desired hydrogenation compound .

1,2,3,4,5,6,7,8-Octahydroanthracene (3a)⁵

The general procedure was applied to anthracene (36 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a white solid (31 mg, 84% yield). Melting point: 77–78 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.82 (s, 2H), 2.73 (s, 8H), 1.82–1.76 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 134.4, 129.6, 29.1, 23.6; IR (neat): 2991, 2902, 2828, 1491, 1407, 970, 902, 849, 802 cm⁻¹; HRMS (EI): calcd for C₁₄H₁₈ [M]⁺ 186.1409 found186.1407.

9-Methyl-1,2,3,4,5,6,7,8-octahydroanthracene (3b)⁵

The general procedure was applied to 9-methylanthracene (38 mg, 0.2 mmol) under an atmosphere of H_2 (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (Petroleum

ether) to afford the title compound as a white solid (32 mg, 81% yield). Melting point: 50-52 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 6.79$ (s, 1H), 2.80 (t, J = 6.1 Hz, 4H), 2.72 (t, J = 6.3 Hz, 4H), 2.16 (s, 3H), 1.94–1.77 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.9$, 134.3, 132.8, 127.6, 30.2, 27.4, 24.0, 23.1, 14.3; IR (neat): 2986, 2923, 2833, 1418, 975, 849, 807, 702 cm⁻¹. HRMS (EI): calcd for C₁₅H₂₀ [M]⁺ 200.1565 found 200.1564.

9-Phenyl-1,2,3,4,5,6,7,8-octahydroanthracene (3c)⁶

The general procedure was applied to 9-phenylanthracene (51 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (42 mg, 80% yield). Melting point: 81–82 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (t, *J* = 7.4 Hz, 2H), 7.36–7.30 (m, 1H), 7.13 (d, *J* = 5.1, 2H), 6.89 (s, 1H), 2.79 (t, *J* = 6.2 Hz, 4H), 2.27 (t, *J* = 6.3 Hz, 4H), 1.77–1.62 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 141.7, 141.1, 134.3, 132.4, 129.1, 128.5, 126.4, 29.7, 28.2, 23.6, 23.1; IR (neat): 2933, 2823, 1433, 902, 734, 697 cm⁻¹. HRMS (EI): calcd for C₂₀H₂₂ [M⁺] 262.1722, found 262.1719.

9-(4-Methylphenyl)-1,2,3,4,5,6,7,8-octahydroanthracene (3d)⁶

The general procedure was applied to 9-(4-methylphenyl)anthracene (54 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (45 mg, 81% yield). Melting point: 80–81 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.23 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.87 (s, 1H), 2.78 (t, *J* = 6.2 Hz, 4H), 2.40 (s, 3H), 2.28 (t, *J* = 6.3 Hz, 4H), 1.77–1.63 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 141.6, 138.0, 135.9, 134.3, 132.6, 129.2, 129.0, 128.9, 29.7, 28.2, 23.6, 23.1, 21.3; IR (neat): 3344, 2907, 2849, 1528, 1428, 1097, 870, 813, 770 cm⁻¹. HRMS (EI): calcd for C₂₁H₂₄ [M⁺] 276.1878, found 276.1879.

9-(4-Methoxyphenyl)-1,2,3,4,5,6,7,8-octahydroanthracene (3e)⁶

The general procedure was applied to 9-(4-methoxyphenyl)anthracene (57 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/50) to afford the title compound as a white solid (46 mg, 79% yield). Melting point: 88–89 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.03 (d, *J* = 8.7 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.88 (s, 1H), 3.85 (s, 3H), 2.78 (t, *J* = 6.1 Hz, 4H), 2.28 (t, *J* = 6.2 Hz, 4H), 1.75–1.60 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 158.1, 141.3, 134.3, 133.2, 132.9, 130.1, 129.0, 113.9, 55.2, 29.7, 28.3, 23.7, 23.1. IR (neat): 2933, 2823, 1433, 902, 734, 697 cm⁻¹. HRMS (EI): calcd for C₂₁H₂₄O [M⁺] 292.1827, found 292.1824.

9-([1,1'-Biphenyl]-4-yl)-1,2,3,4,5,6,7,8-octahydroanthracene (3f)⁶

The general procedure was applied to 9-([1,1'-biphenyl]-4-yl)anthracene (66 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (CH₂Cl₂/PE = 1/50) to afford the title compound as a white solid (53 mg, 78% yield). Melting point: 101–102 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.70–7.62 (m, 4H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 8.2 Hz, 2H), 6.90 (s, 1H), 2.80 (t, *J* = 6.1 Hz, 4H), 2.33 (t, *J* = 6.2 Hz, 4H), 1.80–1.66 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 141.3, 140.9, 140.1, 139.2, 134.3, 132.5, 129.5, 129.2, 128.7, 127.1, 127.0, 29.7, 28.3, 23.6, 23.1; IR (neat): 2923, 2849, 1475,1454, 1244, 1102, 997, 770, 765, 681 cm⁻¹. HRMS (EI): calcd for C₂₆H₂₆[M⁺] 338.2035, found 338.2035.

9-(4-Fluorophenyl)-1,2,3,4,5,6,7,8-octahydroanthracene (3g)⁶

The general procedure was applied to 9-(4-fluorophenyl)anthracene (54 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a white solid (46 mg, 82% yield). Melting point: 157–158 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.13–7.04 (m, 4H), 6.88 (s, 1H), 2.78 (t, *J* = 6.1 Hz, 4H), 2.24 (t, *J* = 6.2 Hz, 4H), 1.74–1.64 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.6 (d, *J* = 243.0 Hz), 140.6, 136.8 (d, *J* = 3.0 Hz), 134.4, 132.6, 130.6 (d, *J* = 7.0 Hz), 129.3, 115.4 (d, *J* = 21.0 Hz), 29.7, 28.2, 23.6, 23.0; ¹⁹F NMR (377 MHz, CDCl₃): δ = –116.6; IR (neat): 2933, 2823, 1433, 902, 734, 697 cm⁻¹. HRMS (EI): calcd for C₂₀H₂₁F [M⁺] 280.1627, found 280.1625.

9-(4-Chlorophenyl)-1,2,3,4,5,6,7,8-octahydroanthracene(3h)⁶

The general procedure was applied to 9-(4-chlorophenyl)anthracene (58 mg, 0.2 mmol) using Mg (3.5 equiv) under an atmosphere of H₂ (8.0 Mpa) at 60 °C for 60 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (27 mg, 46% yield). Melting point: 170–171 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.38 (d, *J* = 8.3 Hz, 2H), 7.05 (d, *J* = 8.3 Hz, 2H), 6.88 (s, 1H), 2.77 (t, *J* = 6.1 Hz, 4H), 2.23 (t, *J* = 6.2 Hz, 4H), 1.76–1.61 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ = 140.4, 139.5, 134.4, 132.4, 132.4, 130.5, 129.4, 128.7, 29.7, 28.2, 23.5, 22.9; IR (neat): 2938, 2839, 1445, 922, 744, 711 cm⁻¹. HRMS (EI): calcd for C₂₀H₂₁CI [M⁺] 296.1332, found 296.1330.

9-(3,5-Difluorophenyl)-1,2,3,4,5,6,7,8-octahydroanthracene (3i)⁶

The general procedure was applied to 9-(3,5-difluorophenyl)anthracene (58 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (43 mg, 72% yield). Melting point: 121–123 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.90 (s, 1H), 6.78 (tt, *J* = 9.1, 2.3 Hz, 1H), 6.71–6.62 (m, 2H), 2.78 (t, *J* = 6.1 Hz, 4H), 2.28 (t, *J* = 6.1 Hz, 4H), 1.78–1.64 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.2 (d, *J* = 246.0 Hz), 144.7 (d, *J* = 9.0 Hz), 139.5, 134.6, 132.0, 129.7, 112.2 (d, *J* = 24.0 Hz, 11.0 Hz), 102.0 (t, *J* = 25.0 Hz), 29.6, 27.9, 23.5, 22.9; ¹⁹F NMR (377 MHz, CDCl₃): δ = -110.1; IR (neat): 3054, 2907, 2854, 1597, 1418, 1328, 1102, 970, 839, 697 cm⁻¹. HRMS (EI): calcd for C₂₀H₂₀F₂ [M⁺] 298.1533, found 298.1535.

9,10-Dimethyl-1,2,3,4,5,6,7,8-octahydroanthracene (3j)⁶

The general procedure was applied to 9,10-dimethylanthracene (41 mg, 0.2mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (36 mg, 84% yield). Melting point: 151–152 °C; ¹H NMR (400 MHz, CDCl₃): δ = 2.67 (s, 8H), 2.10 (s, 6H), 1.81–1.75 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 132.7, 132.2, 28.1, 23.3, 14.2; IR (neat): 2907, 2839, 2812, 1449, 1412, 1255, 965, 875, 823 cm⁻¹. HRMS (EI): calcd for C₁₆H₂₂ [M]⁺ 214.1722 found 214.1723.

9,10-Diphenyl-1,2,3,4,5,6,7,8-octahydroanthracene (3k)⁶

The general procedure was applied to 9,10-diphenylanthracene (66 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 60 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (54 mg, 80% yield). Melting point: >300 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.44 (t, 4H), 7.34 (t, 2H), 7.24–7.17 (m, 4H), 2.33 (s, 8H), 1.60 (s, 8H); ¹³C NMR (100MHz, CDCl₃): δ = 141.7, 141.3, 132.7, 129.6, 128.8, 126.7, 29.2, 23.5; IR (neat): 3054, 2918, 2839, 1581, 1444, 1023, 792, 739, 681 cm⁻¹. HRMS (EI): calcd for C₂₆H₂₆[M⁺] 338.2035 found 338.2036.

9,10-Di-(4-Methylphenyl)-1,2,3,4,5,6,7,8-octahydroanthracene(3l)⁶

The general procedure was applied to 9,10-di(4-methylphenyl)anthracene (72 mg, 0.2 mmol) under an atmosphere of H₂ (8.0 Mpa) at 60 °C for 60 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (56 mg, 76% yield). Melting point: >300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.24 (d, *J* = 7.7 Hz, 4H), 7.08 (d, *J* = 7.8 Hz, 4H), 2.41 (s, 6H), 2.33 (s, 8H), 1.59 (s, 8H); ¹³C NMR (100 MHz, CDCl₃) δ = 140.8, 138.3, 135.9, 132.5, 129.2, 129.1, 29.0, 23.2, 21.3; IR (neat): 3044, 2931, 2822, 1580, 1434, 1016, 787, 753, 677 cm⁻¹. HRMS (EI): calcd for C₂₈H₃₀ [M⁺] 366.2348, found 366.2346.

1,2,3,4,5,6,7,8-Octahydrophenanthrene (3m)7

The general procedure was applied to phenanthrene (36 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 60 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as colorless oil (20 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): δ = 6.88 (s, 2H), 2.76 (t, *J* = 6.2 Hz, 4H), 2.58 (t, *J* = 6.4 Hz, 4H), 1.86–1.74(m, 8H). ¹³C NMR (100 MHz, CDCl₃): δ = 135.3, 134.3, 126.4, 30.1, 26.3, 23.5, 22.9; IR (neat): 2912, 2849, 1244, 1060, 997 cm⁻¹. HRMS (EI): calcd for C₁₄H₁₈ [M]⁺ 186.1409, found 186.1411.

4,5,9,10-Tetrahydropyrene (3n)⁸

The general procedure was applied to pyrene (40 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 60 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (31 mg, 76% yield). Melting point: 138–139 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.16–7.06 (m, 6H), 2.89 (s, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 135.4, 130.6, 127.1, 125.9, 28.3; IR (neat): 3060, 2918, 2823, 1907, 1444, 1149, 776, 739, 628 cm⁻¹; HRMS (EI): calcd for C₁₆H₁₄ [M⁺] 206.1096, found 206.1094.

1,2,3,4,8,9,10,11-Octahydrotetraphene (30)⁶

The general procedure was applied to tetraphene (46 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 60 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (35 mg, 74% yield). Melting point: 51–52 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (s, 1H), 7.48 (d, *J* = 6.1 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 1H), 3.07 (t, *J* = 6.2 Hz, 2H), 2.99–2.95 (m, 4H), 2.88 (t, *J* = 6.0 Hz, 2H), 1.99–1.82 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 135.9, 134.8, 133.2, 131.1, 130.7,

130.6, 127.4, 127.3, 124.8, 121.9, 30.4, 30.2, 29.5, 25.7, 23.6, 23.5, 23.3, 23.1; IR (neat): 2918, 2844, 1591, 1497, 1423, 1239, 923, 855, 792 cm⁻¹. HRMS (EI): calcd for C₁₈H₂₀ [M⁺] 236.1565, found 236.1568.

1,2,3,4,6,8,9,10,11,13-Decahydropentacene (3p)⁶

The general procedure was applied to pentacene (56 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (24 mg, 41% yield). Melting point: 174–175 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.98 (s, 4H), 3.81 (s, 4H), 2.74 (s, 8H), 1.80–1.77 (m, 8H); ¹³C NMR (101 MHz, CDCl₃): δ = 134.7, 134.2, 128.0, 35.4, 29.2, 23.6; IR (neat): 2986, 2902, 2839, 1497, 1349, 1244, 1249, 928, 818 cm⁻¹. HRMS (EI): calcd for C₂₂H₂₄ [M⁺] 288.1878, found 288.1880.

1,1',2,2',3,3',4,4',5,5',6,6',7,7',8,8'-Hexadecahydro-9,9'-bianthracene (3q)⁶

The general procedure was applied to 9,9'-bianthracene (71 mg, 0.2 mmol) under an atmosphere of H₂ (8.0 Mpa) at 60 °C for 60 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (27 mg, 37% yield). Melting point: 170–171 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.85 (s, 2H), 2.76 (t, *J* = 6.1 Hz, 8H), 2.06 (t, *J* = 6.3 Hz, 8H), 1.73–1.60 (m, 16H); ¹³C NMR (100 MHz, CDCl₃): δ = 139.7, 134.4, 131.4, 128.4, 29.8, 27.1, 23.7, 23.3; IR (neat): 2912, 2839, 1460, 1418, 1286, 1234, 912, 849 cm⁻¹. HRMS (EI): calcd for C₂₈H₃₄ [M⁺] 370.2661, found 370.2660.

1,2,3,4,6,11-Hexahydrotetracene (3r)⁶

The general procedure was applied to tetracene (46 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (13 mg, 28% yield). Melting point: 128–129 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.31–7.27 (m, 2H), 7.18 (dd, *J* = 5.6, 3.3 Hz, 2H), 7.03 (s, 2H), 3.88 (s, 4H), 2.76 (s, 4H), 1.80 (s, 4H); ¹³C NMR (100MHz, CDCl₃): δ = 137.2, 134.9, 134.0, 128.0, 127.5, 126.1, 35.9, 29.3, 23.6; IR (neat): 2965, 2912, 2839, 1475, 1412, 1260, 1081, 797, 713 cm⁻¹. HRMS (EI): calcd for C₁₈H₁₈ [M⁺] 234.1409, found 234.1411.

1, 2, 3, 4,7,8,9,10-Octahydrotetracene (3r')⁶

The general procedure was applied to tetracene (46 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a white solid (20 mg, 42% yield). Melting point: 174–175 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (s, 4H), 2.94 (s, 8H), 1.87–1.84 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 135.1, 130.9, 125.6, 29.8, 23.5; IR (neat): 3018, 2912, 2833, 2639, 1586, 1491, 1439, 1234, 923, 860, 813 cm⁻¹. HRMS (EI): calcd for C₁₈H₂₀ [M⁺] 236.1565, found 236.1567.

1,2,3,10,11,12-Hexahydroperylene (3s)⁶

The general procedure was applied to perylene (50 mg, 0.2 mmol) under an atmosphere of H₂ (8 Mpa) at 60 °C for 48 h. The crude product was purified by column chromatography on silica gel (petroleum ether) to afford the title compound as a yellow solid (41 mg, 79% yield). Melting point: 184–185 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.53 (d, *J* = 8.3 Hz, 2H), 7.50–7.41 (m, 2H), 7.33 (d, *J* = 7.0 Hz, 2H), 3.13–3.06 (m, 8H), 2.15–2.04 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 136.5, 129.6, 128.9, 128.7, 125.6, 124.9, 120.9, 31.6, 28.2, 23.1; IR (neat): 3007, 2923, 2854, 1597, 1460, 1423,1249, 807, 776, 734 cm⁻¹. HRMS (EI): calcd for C₂₀H₁₈ [M⁺] 258.1409, found 258.1410.

3. General Procedure for Cobalt -catalyzed hydrogenation of olefins

In a Schlenk tube were placed Mg turnings (10 mg, 0.4 mmol) and CoBr_2 (5 mg, 0.02 mmol). The solids were heated using a heat gun at around 300 °C under vacuum for 5 min. After cooling down under a nitrogen atmosphere, olefins (0.2 mmol), diketimine (8mg, 0.02mmol) and THF (2.0ml) were added, The resulting mixture was heated at 60°C for 1 hour, during which the color of the mixture turned dark. then the resulting mixture were quickly moved to a high-pressure autoclave. The reaction mixture was stirred under an atmosphere of H₂ (2 Mpa) at room temperature for 24 h. After quenching with saturated NH₄Cl/H₂O (4 mL), the crude product was extracted with EtOAc (3 × 4 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under vacuum. After removal of the volatiles under vacuum, the crude product was purified by column chromatography to afford the desired hydrogenation compound.

2-ethylnaphthalene (5a)9

The general procedure was applied to 2-vinylnaphthalene (31 mg, 0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (84% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.85 (m, 3H), 7.70 (s, 1H), 7.48 (m, 3H), 2.89 (q, 2H), 1.41 (t, *J* = 7.6 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ =141.7, 133.7, 131.9, 127.8, 127.6, 127.4, 127.1, 125.8, 125.5, 124.9, 29.0, 15.5. GC-MS (EI): calcd for C₁₂H₁₂ [M⁺] 156.09, found 156.08.

2-ethyl-6-methoxynaphthalene (5b)¹⁰

The general procedure was applied to 2-methoxy-6-vinylnaphthalene (37 mg, 0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h.The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a yellow solid (89% yield). M.p.:56-57°C;'H NMR (400 MHz, CDCl₃) δ =7.68 (d, *J* = 9.2, 2.7 Hz, 2H), 7.56 (s, 1H), 7.33 (d, *J* = 8.4, 1.2 Hz, 1H), 7.13 (m, 2H), 3.92 (s, 3H), 2.79 (q, 2H), 1.32 (t, *J* = 7.6 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ =141.7, 133.7, 131.9, 127.8, 127.6, 127.4, 127.1, 125.8, 125.5, 124.9, 29.0, 15.5. GC-MS (EI): calcd for C₁₃H₁₄O [M⁺] 186.10, found 186.09.

2,6-diethylnaphthalene (5c)9

The general procedure was applied to 2-ethyl-6-vinylnaphthalene (36 mg, 0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h.The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (90% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.71 (d, *J* = 8.4 Hz, 2H), 7.59 (s, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 2.80 (q, J = 7.6 Hz, 4H), 1.32 (t, J = 7.6 Hz, 6H).; ¹³C NMR (100MHz, CDCl₃) δ = 140.9, 132.1, 127.3, 127.0, 125.3, 28.9, 15.6. GC-MS (EI): calcd for C₁₄H₁₆ [M⁺] 184.13, found 184.13.

Ethylbenzene (5d)9

The general procedure was applied to styrene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h.The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (86% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.33 –7.10 (m, 2H), 2.65 (q, *J* = 7.6 Hz, 2H), 1.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =144.23, 128.29, 127.84, 125.57, 28.86, 15.61. GC-MS (EI): calcd for C₈H₁₀ [M⁺] 106.08, found 106.06.

1-ethyl-2-methylbenzene (5e)9

The general procedure was applied to 1-methyl-2-vinylbenzene (0.2 mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h.The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (87% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.20 –7.09 (m, 4H), 2.65 (q, *J* = 7.6 Hz, 1H), 2.33 (s, 1H), 1.24 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ =142.29, 135.73, 129.99, 127.86, 125.98, 125.70, 26.15, 19.14, 14.35. GC-MS (EI): calcd for C₉H₁₂ [M⁺] 120.09, found 120.08.

1-ethyl-2-methoxybenzene(5f)9

The general procedure was applied to 1-methoxy-2-vinylbenzene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h.The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (82% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.20 (t, *J* = 8.6 Hz, 2H), 6.97–6.85 (m, 2H), 3.86 (s, 3H), 2.68 (q, *J* = 7.5 Hz, 2H), 1.23 (dd, *J* = 9.0, 6.0 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 157.31, 132.56, 128.87, 126.73, 120.39, 110.08, 55.18, 23.19, 14.13. GC-MS (EI): calcd for C₉H₁₂O [M⁺] 136.09, found 136.10.

1-ethyl-3-methylbenzene (5g)9

The general procedure was applied to 1-methyl-3-vinylbenzene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h.The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (85% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.20 (t, *J* = 7.4 Hz, 1H), 7.08–6.98 (m, 3H), 2.64 (q, *J* = 7.6 Hz, 2H), 2.36 (s, 3H), 1.26 (d, *J* = 0.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =144.20, 137.82, 128.68, 128.20, 126.31, 124.83, 28.78, 21.40, 15.64. GC-MS (EI): calcd for C₉H₁₂ [M⁺] 120.09, found 120.05.

1-ethyl-4-methylbenzene (5h)9

The general procedure was applied to 1-methyl-4-vinylbenzene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (80% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.12 (s, 4H), 2.64 (q, *J* = 7.6 Hz, 1H), 2.35 (s, 1H), 1.25 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ =141.19, 134.97, 128.97, 127.72, 28.41, 20.96, 15.77. GC-MS (EI): calcd for C₉H₁₂ [M⁺] 120.09, found 120.08.

1-ethyl-4-methoxybenzene(5i)⁹

The general procedure was applied to 1-methoxy-4-vinylbenzene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h.The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (84% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.15 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 3.81 (s, 2H), 2.62 (q, *J* = 7.6 Hz, 1H), 1.24 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100

MHz, CDCl₃) δ =157.58, 136.35, 128.67, 113.68, 55.21, 27.94, 15.88. GC-MS (EI): calcd for C₉H₁₂O [M⁺] 136.09, found 136.10.

1-ethyl-4-(trifluoromethyl)benzene (5j)¹¹

The general procedure was applied to 1-(trifluoromethyl)-4-vinylbenzene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (87% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.54 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.71 (q, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 148.28, 128.15, 125.24, 125.20, 28.75, 15.28. ¹⁹F NMR (376 MHz, CDCl₃) δ =-62.27. GC-MS (EI): calcd for C₉H₉F₃ [M⁺] 174.07, found 174.09.

1-ethyl-4-fluorobenzene (5k)¹¹

The general procedure was applied to 1-fluoro-4-vinylbenzene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (80% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.52–7.46 (m, 1H), 7.31 (dd, *J* = 9.8, 7.7 Hz, 1H), 2.97 (q, *J* = 7.6 Hz, 1H), 1.57 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ =161.12(d, *J*=241Hz), 139.78(d, *J*=3.0 Hz), 129.10(d, *J*=8.0 Hz), 115.94(d, *J*=20 Hz), 55.24, 28.07, 15.76; ¹⁹F NMR (376 MHz, CDCl₃) δ =-118.28. GC-MS (EI): calcd for C₈H₉F [M⁺] 124.07, found 124.04.

1-chloro-4-ethylbenzene (5l)9

The general procedure was applied to 1-chloro-4-vinylbenzene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (73% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.24 (d, *J* = 8.3 Hz, 1H), 7.11 (d, *J* = 8.3 Hz, 1H), 2.61 (q, *J* = 7.6 Hz, 1H), 1.21 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ =142.60, 131.23, 129.19, 128.34, 28.24, 15.51. GC-MS (EI): calcd for C₈H₉Cl [M⁺] 140.04, found 140.02.

1,2-diphenylethane (5m)¹²

The general procedure was applied to (*E*)-1,2-diphenylethene (36 mg, 0.2mmol) or 1,2-diphenylethyne(35.6 mg, 0.2mmol)under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a yellow solid (90% yield). Melting point: 53°C; ¹H NMR (400 MHz, CDCl₃) δ =7.28 (t, *J* = 7.1 Hz, 4H), 7.22-7.17 (m, 6H), 2.92 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ =141.8, 128.4, 128.3, 125.9, 37.9. GC-MS (EI): calcd for C₁₄H₁₄ [M⁺] 182.11, found 182.11.

1,2-di-p-tolylethane (5n)¹²

The general procedure was applied to (E)-1,2-di-*p*-tolylethene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum

ether) to afford the title compound as a yellow solid (87% yield). Melting point: 86°C-89°C ¹H NMR (400 MHz, CDCl₃) δ = 7.11 (d, *J* = 0.8 Hz, 8H), 2.87 (s, 4H), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 138.9, 135.3, 128.9, 128.3, 37.6, 21.0. GC-MS (EI): calcd for C₁₆H₁₈ [M⁺] 210.14, found 210.14.

Cumene (50)9

The general procedure was applied to prop-1-en-2-ylbenzene (0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (82% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.43–7.03 (m, 1H), 2.90 (t, *J*=6.9 Hz, 1H), 1.25 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 148.65, 146.96, 135.35, 120.14, 111.73, 111.05, 55.87, 55.74, 37.63, 24.74, 13.79. GC-MS (EI): calcd for C₉H₁₂ [M⁺] 120.09, found 120.05.

ethane-1,1-diyldibenzene(5p)¹³

The general procedure was applied to ethene-1,1-diyldibenzene (36 mg, 0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (85% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.31–7.15 (m, 10H), 4.15 (q, 1H), 1.64 (d, *J* = 7.2 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ =146.3, 128.3, 127.6, 126.0, 44.7, 21.8. GC-MS (EI): calcd for C₁₄H₁₄ [M⁺] 182.11, found 182.09.

1-methoxy-4-propylbenzene (5q)⁹

The general procedure was applied to 1-allyl-4-methoxybenzene (30 mg, 0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a yellow oil (84% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.10 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 2.57 – 2.48 (m, 2H), 1.62-1.57(m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =157.6, 134.8, 129.3, 113.6, 55.2, 37.1, 24.8, 13.8. GC-MS (EI): calcd for C₁₀H₁₄O [M⁺] 150.10, found 150.09.

MeO MeO

1,2-dimethoxy-4-propylbenzene (5r)9

The general procedure was applied to 4-allyl-1,2-dimethoxybenzene (36 mg, 0.2mmol) under an atmosphere of H₂ (4.0 Mpa) at 60°C for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a yellow oil (78% yield). ¹H NMR (400 MHz, CDCl₃) δ =6.79 (d, *J* = 8.7 Hz, 1H), 6.74–6.69 (m, 2H), 3.87 (d, *J* = 6.8 Hz, 6H), 2.52 (d, *J* = 7.8 Hz, 2H), 1.5-1.59 (m, 2H), 0.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =148.6, 146.9, 135.3, 120.1, 111.7, 111.1, 55.9, 55.7, 37.6, 24.7, 13.8. GC-MS (EI): calcd for C₁₁H₁₆O₂ [M⁺] 180.12, found 180.12.

Cyclohexylbenzene (5s)¹³

The general procedure was applied to 2,3,4,5-tetrahydro-1,1'-biphenyl (30 mg, 0.2mmol) under an atmosphere of H₂ (2.0 Mpa) at room temperature for 24 h. The crude product was purified by column chromatography on silica gel (Petroleum ether) to afford the title compound as a colorless oil (79% yield). ¹H NMR (400 MHz, CDCl₃) δ =7.31–7.13 (m, 5H), 2.48 (q, 1H), 1.86–1.72 (m, 5H), 1.50 – 1.20 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ =148.07, 128.25, 126.80, 125.74, 44.58, 34.45, 26.91, 26.16; GC-MS (EI): calcd for C₁₂H₁₆ [M⁺] 160.13, found 160.09.

4. Preparation of diketimine-Co complex.

according to reported literature.14

To a solution of anhydrous CoBr₂ (1.40g, 6.40 mmol) in THF (15 mL) was added diketimine (2.40g, 6.40mmol, in 15 ml THF). The resulting green-brown solution was stirred for 24h at room temperature. After solvent evaporation the greenish brown powder was washed with hexane(4×15ml), filtered, and dried in vacuo. Yield 80%. ¹³C NMR (THF- d_8): δ =156.6, 142.8, 131.0, 121.8, 116.0, 25.7, 22.8; IR (KBr): 3053, 2949, 2913, 2854, 1467, 1433, 1385, 1364, 1347, 1322, 1255, 1181, 1107, 891, 788, 739. UV/vis (THF; λ_{max}): 592, 681.The spectroscopic data were consistent with those previously reported. ¹⁴

5. Gram-Scale Hydrogenation of 1a and 4p

In a 200ml Schlenk tube were placed Mg turnings (0.48 g, 20 mmol) and CoBr₂ (22 mg, 1 mmol). The solids were heated using a heat gun at around 300 °C under vacuum for 8 min. After cooling down under a nitrogen atmosphere, anthracene (10 mmol, 1.78 g), diketimine (0.38 g, 1 mmol) and THF (80 mL) were added, The resulting mixture was heated at 80 °C for 12 hours. then the resulting mixture were quickly moved to a high-pressure autoclave. The reaction mixture was stirred under an atmosphere of H₂ (8 Mpa) at 60 °C for 60 h. After quenching with saturated NH₄Cl/H₂O (30 mL), the crude product was extracted with EtOAc (4×50 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under vacuum. After removal of the volatiles under vacuum, the crude product was purified by column chromatography to afford the desired hydrogenation compound **3a** (1.46 g, 80% yield).

In a 200ml Schlenk tube were placed Mg turnings (0.48g, 20 mmol) and CoBr_2 (22 mg, 1mmol). The solids were heated using a heat gun at around 400°C under vacuum for 8 min. After cooling down under a nitrogen atmosphere, **4p** (10 mmol, 1.80g), diketimine (0.38 g, 1 mmol) and THF (80 ml) were added, The resulting mixture was heated at 60°C for 2hours. then the resulting mixture were quickly moved to a high-pressure autoclave. The reaction mixture was stirred under an atmosphere of H₂ (2 Mpa) at 25 °C for 48 h. After quenching with saturated NH₄Cl/H₂O (30 mL), the crude product was

extracted with EtOAc (4×50 mL). The combined organic phases were dried over anhydrous Na_2SO_4 and concentrated under vacuum. After removal of the volatiles under vacuum, the crude product was purified by column chromatography to afford the desired hydrogenation compound **5p** (1.36 g, 75% yield).

6. Reaction Profile for Hydrogenation of Anthracene

Cobalt catalysis: Kinetic studies were performed by treating **1a** (0.2 mmol) with CoBr_2 (0.02 mmol), diketimine (0.02 mmol) and Mg (2 equiv) under the atmosphere of hydrogen (8 Mpa) at 60 °C. The yield of **3a** and the recovery of **1a** were determined by ¹H NMR analysis using 1, 3, 5-trimethoxybenzene as an internal standard. The data points for reaction profiles were collected by performing multiple batches of the reaction with different reaction times.

Time (h)	Recovery of 1a (%)	Yield of 2a (%)	Yield of 3a (%)
0	100	0	0
1	89	4	0
2	81	9	0
5	72	24	0
8	57	35	4
10	38	50	6
11	31	46	17
12	27	43	24
16	19	28	41
20	12	18	60
24	9	1	70
36	0	7	81
48	0	0	88

Table S1. Studying the Reaction profile of Hydrogenation of Anthracene with Cobalt Catalysis

Figure S1. Reaction profile for cobalt-catalyzed hydrogenation of anthracene.

7. Experiments of XPS for Analysis of Active Metal Species

CoBr₂+diketimine: XPS studies were performed by CoBr₂ (60 mg, 0.276 mmol), diketimine (104 mg, 0.276 mmol) in THF (10 mL) under the nitrogen atmosphere at room temperature for 24 h. After the removal of the volatiles under vacuum.

CoBr₂+diketimine+Mg: In a Schlenk tube were placed Mg turnings (19 mg, 0.8 mmol) and CrCl₂ (9 mg, 0.04 mmol). The solids were heated using a heat gun at around 300 °C under vacuum for 5 min. After cooling down under a nitrogen atmosphere, diketimine (15 mg, 0.04 mmol) and THF (4 mL) were added, The resulting mixture was heated at 80 °C for 4 hours, mixture was filtered through Celite and the solvent was removed under vacuum.

8. X-Ray Crystal Structure of 3I

Figure S2. X-Ray Crystal Structure of 3I (CCDC:1840125)

Empirical formula	C ₂₈ H ₃₀	
Formula weight	366.52	
Temperature	296(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	a= 9.427(2) A alpha = 112.635(6) deg.	
b= 11.348(3) A beta = 97.722(6) deg.		
c = 11.761(5) A gamma = 106.198(4) deg.		
Volume	072.9(5) A^3	
Z, Calculated density	2, 1.135 Mg/m^3	
Absorption coefficient	0.064 mm^-1	
F(000)	396	
Crystal size	0.37 x 0.30 x 0.19 mm	
Theta range for data collection	2.09 to 25.10 deg.	
Limiting indices	-7<=h<=11, -13<=k<=13, -14<=l<=14	
Reflections collected / unique	5417 / 3772 [R(int) = 0.0228]	
Completeness to theta = 25.10	98.9 %	
Absorption correction	None	
Max. and min. transmission	0.9881 and 0.9771	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	3772 / 0 / 253	
Goodness-of-fit on F^2	1.034	
Final R indices [I>2sigma(I)]	na(I)] R1 = 0.0716, wR2 = 0.2051	

R indices (all data) Largest diff. peak and hole R1 = 0.1053, wR2 = 0.2378 0.295 and -0.275 e.A^-3

Supplementary References

- 1. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
- 2. a) Tang, P.; Wang, W.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 11482–11484; b) Fujimoto, T.; Ritter, T. Org. Lett. 2015, 17, 544–547.
- 3. Van Ausdall, B. R.; Glass, J. L.; Wiggins, K. M.; Aarif, A. M.; Louie, J. J. Org. Chem. 2009, 74, 7935-7942.
- 4. Guo, L.; Gao, H.; Guan, Q.; Hu, H.; Deng, J.; Liu, J.; Liu, F.; Wu, Q. Organometallics 2012, 31, 6054-6062.
- 5. Borowski, A. F.; Vendier, L.; Sabo-Etienne, S.; Rozycka-Sokolowska, E.; Gaudyn, A. V. Dalton Trans. 2012, 41, 14117–14125.
- 6. Han, B.; Ma, P.; Cong, X.; Chen, H.; Zeng, X. J. Am. Chem. Soc. 2019, 141, 9018–9026.
- 7. Okamoto, K.; Akiyama, R.; Kobayashi, S. J. Org. Chem. 2004, 69, 2871-2873.
- 8. Iwamoto, T.; Kayahara, E.; Yasuda, N.; Suzuki, T.; Yamago, S. Angew. Chem., Int. Ed. 2014, 53, 6430-6434.
- 9. Gieshoff, T. N.; Villa, M.; Welther, A.; Plois, M.; Chakraborty, U.; Wolf, R.; Jacobi von Wangelin, A. Green Chem. 2015, 17, 1408–1413.
- 10. Raya, B.; Biswas, S.; RajanBabu, T. V. ACS Catal. 2016, 6, 6318-6323.
- 11. Wang, Y.; Cao, X.; Zhao, L.; Pi, C. Ji, J.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2020, 362, 4119–4129.
- 12. Kim, Y.; Kim, S.; Cho, E.; Hosono, H.; Yang, J.; Kim, S. Chem. Sci. 2015, 6, 3577-3581.
- 13. Flinker, M.; Yin, H.; Juhl, R. W.; Eikeland, E. Z.; Overgaard, J.; Nielsen, D. U.; Skrydstrup, T. Angew. Chem. Int. Ed. 2017, 56,15910–15915;
- 14. Laine, T. V.; Klinga, M.; Maaninen, A.; Aitola, E.; Leskelä, M. Acta. Chem. Scand. 1999, 53, 968-973.

Figure S3. ¹H NMR spectrum for compound 3a.

S17

Figure S11. ¹H NMR spectrum for compound 3e.

Figure S13. ¹H NMR spectrum for compound 3f.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

Figure S17. ¹⁹F NMR spectrum for compound 3g.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure S19. ¹³C NMR spectrum for compound 3h.

Figure S21. ¹³C NMR spectrum for compound 3i.

Figure S22. ¹⁹F NMR spectrum for compound 3i.

-2.675-2.675-2.103-

Figure S24. ¹³C NMR spectrum for compound 3j.

7.461 7.461 7.424 7.424 7.321 7.323 7.323 7.323 7.327 7.219 7.219

L7.255 L7.235 V7.002 ~2.333 ~2.333

Figure S32. ¹³C NMR spectrum for compound 3n.

-1 200 190 180 170 160 150 140

Figure S34. ¹³C NMR spectrum for compound 3o.

S32

-6.851

Figure S38. ¹³C NMR spectrum for compound 3q.

Figure S40. ¹³C NMR spectrum for compound 3r.

7.883 7.882 7.882 7.884 7.881 7.881 7.881 7.518 7.518 7.518 7.481 7.481 7.481 7.481 7.481 2.916 2.897 2.889 2.889 2.889 2.889 2.889

-3.918

Figure S44. ¹³C NMR spectrum for compound 5b.

210 200 190 180 170 160 150 140

Figure S46. $^{\rm 13}{\rm C}$ NMR spectrum for compound 5c

Figure S48. ¹³C NMR spectrum for compound 5d

Figure S50. ¹³C NMR spectrum for compound 5e

Figure S52. ¹³C NMR spectrum for compound 5f

Figure S54. ¹³C NMR spectrum for compound 5g

Figure S55. ¹H NMR spectrum for compound 5h

Figure S57. ¹H NMR spectrum for compound 5i

Figure S58. ¹³C NMR spectrum for compound 5i

Figure S60. ¹³C NMR spectrum for compound 5j

Figure S61. ¹⁹F NMR spectrum for compound 5j

Figure S63. ¹³C NMR spectrum for compound 5k

Figure S64. ¹⁹F NMR spectrum for compound 5k

C2639 C2620 C2620 C2582 C2639 C2639

L7.248 L7.227 L7.125 L7.104

Figure S65. ¹H NMR spectrum for compound 5l

Figure S66. ¹³C NMR spectrum for compound 5l

Figure S68. ¹³C NMR spectrum for compound 5m.

<7.109 77.107 --2.875 --2.339

Figure S70. ¹³C NMR spectrum for compound 5n.

Figure S72. ¹³C NMR spectrum for compound 50.

Figure S73. $^1\!\mathrm{H}$ NMR spectrum for compound 5p

0 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

Figure S74. ¹³C NMR spectrum for compound 5p.

Figure S76. ¹³C NMR spectrum for compound 5q.

7.296 7.277 7.258 7.258 7.208 7.189 7.162

2.508 2.487 2.487 2.487 2.480 2.480 2.480 1.738 1.738 1.738 1.738 1.738 1.738 1.738 1.239 1.239 1.239 1.239 1.239 1.239 1.239

Figure S79. ¹H NMR spectrum for compound 5s.

Figure S81. ¹³C NMR spectrum for complex diketimine-Co.

Figure S82. IR spectrum for complex diketimine-Co.

Figure S83. UV spectrum for complex diketimine-Co.