Supporting information

for

Bis(imino)-6,7-dihydro-5*H*-quinoline-cobalt complexes as highly active catalysts

for the formation of vinyl-terminated PE waxes; steps towards inhibiting

deactivation pathways through targeted ligand design

Mingyang Han,^{a,b} Zheng Zuo,^{a,b} Yanping Ma,^a Gregory A. Solan,^{*a,c} Xinquan Hu,^{*d} Tongling

Liang^a and Wen-Hua Sun^{*a,b,e}

^a Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: whsun@iccas.ac.cn; Fax: +86-10-62618239; Tel: +86-10-62557955.

^b CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

^c Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: gas8@leicester.ac.uk. Tel.: +44-116-2522096.

^d College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China. Email: xin-quan@zjut.edu.cn

^e State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China.

Table of contentsPage		
1.	Table S1 Crystal data and structure refinement for Co1 and Co4	S2
2.	Fig. S1 GPC traces of the polyethylene generated using Co4/MAO over different run times.	S3
3.	Fig. S2 GPC traces of the polyethylene produced using Co4 /MMAO at different AI:Co molar ratios.	S3
4.	Fig. S3 ¹ H NMR spectrum of the polyethylene wax generated using Co4/MAO (entry 7,	S4
	Table 2); recorded in tetrachloroethane- d_2 (δ H 6.0).	
5.	Fig. S4 ¹³ C NMR spectrum of the polyethylene sample generated using Co4/MAO (entry	S4
	7, Table 2); recorded in tetrachloroethane- d_2 (δ C 74.37).	
6.	Fig. S5 Inverse-gated decoupled ¹³ C NMR spectrum of the polyethylene wax generated	S5
	using Co4 /MAO (entry 7, Table 2); recorded in tetrachloroethane- d_2 (δ C 74.70).	
7.	Fig. S6 FT-IR spectra of the polyethylene generated using Co1/MMAO (top, entry 15,	S5
	Table 3) and Co4 /MMAO (middle, entry 3, Table 3 and bottom, entry 9, Table 3)	

	Co1·CH ₂ Cl ₂	Co4·2CH ₂ Cl ₂
Crystal color	brown	yellow
Empirical formula	$C_{32}H_{31}Cl_2CoN_3 \cdot CH_2Cl_2$	$C_{34}H_{35}Cl_2CoN_3 \cdot 2CH_2Cl_2$
Formula weight	672.35	785.33
Т (К)	170(10)	220(13)
Wavelength (Å)	1.54184	1.54184
Crystal system	monoclinic	monoclinic
Space group	P21/c	C2/c
a /Å	8.8111(2)	36.8374(6)
b/Å	14.2113(3)	12.2282(2)
c/Å	25.8363(4)	17.1691(2)
α/°	90	90
β/°	95.520(2)	91.4370(10)
γ/°	90	90
Volume/ų	3220.15(11)	7731.5(2)
Z	4	8
$ ho_{ m calcg}/ m cm^3$	1.387	1.349
µ/mm ⁻¹	7.437	7.514
F(000)	1388.0	3240.0
Crystal size/mm ³	$0.15 \times 0.1 \times 0.08$	$0.15 \times 0.08 \times 0.03$
Θ range (°)	6.874 to 150.922	4.8 to 150.932
	$-10 \le h \le 10$	-46 ≤ h ≤ 46
Limiting indices	-17 ≤ k ≤ 16	$-14 \le k \le 15$
	-32 ≤ l ≤ 32	-21 ≤ l ≤ 16
No. of rflns collected	22545	32855
No. unique rflns [R(int)]	6376(0.0347)	7691(0.0561)
Completeness to θ (%)	99.98	99.75
Goodness of fit on F ²	0.955	1.076
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0495	R1 = 0.0657
	wR2 = 0.1303	wR2 = 0.1963
R indices (all data)	R1 = 0.0584	R1 = 0.0849
	wR2 = 0.1364	wR2 = 0.2216
Largest diff peak and hole (e Å-3) $$	0.93/-0.65	1.18/-0.85

 Table S1 Crystal data and structure refinement for Co1 and Co4

Fig. S1 GPC traces of the polyethylene generated using **Co4**/MAO over different run times (entries 7 and 10 - 13, Table 2)

Fig. S2 GPC traces of the polyethylene produced using Co4/MMAO at different Al:Co molar ratios (entries 3 and 6 - 9, Table 3).

Fig. S3 ¹H NMR spectrum of the polyethylene wax generated using **Co4**/MAO (entry 7, Table 2); recorded in tetrachloroethane- d_2 (δ H 6.0).

Fig. S4 ¹³C NMR spectrum of the polyethylene sample generated using **Co4**/MAO (entry 7, Table 2); recorded in tetrachloroethane- d_2 (δ C 74.37).

Fig. S5 Inverse-gated decoupled ¹³C NMR spectrum of the polyethylene wax generated using **Co4**/MAO (entry 7, Table 2); recorded in tetrachloroethane- d_2 (δ C 74.70).

Fig. S6 FT-IR spectra of the polyethylene generated using **Co1**/MMAO (top, entry 15, Table 3) and **Co4**/MMAO (middle, entry 3, Table 3 and bottom, entry 9, Table 3)