Supporting Information

In situ integration of cobalt diselenide nanoparticles on CNTs realizing durable hydrogen evolution

Hongfeng Ye, Xuejiao Zhou, Zhitao Shao, Jing Yao, Wenjie Ma, Lili Wu*, and

Xinzhi Ma*

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of

Education, School of Physics and Electronic Engineering, Harbin Normal University,

Harbin 150025, People's Republic of China.

^{*} Corresponding authors: E-mail:wll790107@hotmail.com; maxz@hrbnu.edu.cn.

Figure S1. SEM image of CNTs.

Figure S2. SEM image of pure CoSe₂.

Figure S3. Grain size distribution of CoSe₂ nanoparticles of pure CoSe₂.

Figure S4. (a) Polarization curves, and (b) histograms error bars of CoSe₂/CNT with different ratios.

Figure S5. CVs were scanned at various rates from 20 to 200 mV s⁻¹: (a) $CoSe_2/CNTs$ and (b) pure $CoSe_2$.

Figure S6. Cyclic voltammetry cycling of Pure $CoSe_2$ and $CoSe_2/CNTs$ in pH = 7 phosphate buffer with a scan rate of 50 mV s⁻¹ range from -0.2 to 0.6 V vs. RHE.

Figure S7. Polarization curves at different temperatures (a) CoSe₂/CNTs and (b) pure CoSe₂.

The exchange current density was taken as a function of the reciprocal of temperature, and the activation energy was calculated using the Arrhenius formula¹:

$$\log j_0 = \log A_i - E_a / (2.3RT)$$
 (S1)

Where A_i is the pre-Arrhenius factor. According to the slope of the Arrhenius curve, the E_a values of pure CoSe₂ and CoSe₂/CNTs electrocatalysts are 48.043 kJ mol⁻¹ and 17.342 kJ mol⁻¹, respectively.

Figure S8. (a) Co 2p, (b) Se 3d and Polarization curves, and (c) B 1s XPS spectra of CoSe₂/CNT composite after cycling measurement.

In the Se 3d spectra, the SeO_x characteristic peak at 59.3 eV, caused by the oxidation of a slight excess of metallic selenium, disappears after the long cycle.²

Catalysts	$\eta_{10/\text{ mV}}$	Stability test conditions (mA cm ⁻²)	Long cycle stability test time (h)	Ref
CoSe ₂ @HC	171.7	10	12	3
CoSe2/GD	/	20	24	4
CoSe ₂	272	20	8	5
CoSe ₂ /CNTs	153	30	48	Our work

Table S1. The stability of $CoSe_2/CNTs$ in 0.5 M H_2SO_4 solution compared with other HER catalysts.

References

1 D. M. F. SANTOS, C. A. C. SEQUEIRA, D. MACCIò, A. SACCONE and J. L. FIGUEIREDO, *Int. J. Hydrogen Energy*, 2013, 38, 3137-3145.

2 S. K. PARK, J. K. KIM and Y. C. KANG, Chem. Eng. J., 2017, 328, 546-555.

3 S. H. YANG, G. D. PARK, J. K. KIM and Y. C. KANG, *Chem. Eng. J.*, 2021, 424, 130341.

4 H. X. ZHANG, L. C. LEI and X. W. ZHANG, RSC Adv., 2014, 4, 54344-54348.

5 C. L. MCCARTHY, C. A. DOWNES, E. C. SCHUELLER, K. ABUYEN and R.

L. BRUTCHEY, ACS Energy Lett., 2016, 1, 607-611.