Supplementary Information

Visible light enabled [4+2] annulation reactions for anthracenone-furans from 2,3-dibromonaphthoquinone and phenylbenzofurans

Zhimei Mao, [†] Aimin Huang, [†] Lin Ma, [†] Min Zhang^{†, *}

[†] School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China

Email: cheminzhang@gxu.edu.cn; zhangminnju@hotmail.com

Contents

1.	General information	3
2.	Synthesis of starting materials	3
3.	Typical procedure	7
4.	Tables of reaction data	8
5.	The spectral data	.11
6.	The NMR and HRMS Charts	.29
7.	References	83

1. General information

All the commercially available coumarins are purified before use. All solvents are dried before use. Thin-layer chromatography (TLC) was performed with silica gel GF254 plates. Column chromatography was performed on silica gel (300 ~ 400 mesh) with petroleum ether/ethyl acetate for the gradient elution. All melting points were measured without correction. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III HD 600 spectrometer at 600 MHz (¹H NMR) and 151 MHz (¹³C NMR) respectively. The chemical shifts are reported relative to CHCl₃ (δ = 7.26 for ¹H NMR and δ = 77.16 for ¹³C NMR). The infrared spectra were recorded on a Nicolet iS 50 FT-IR spectrometer. Mass spectra (ESI-MS) were obtained on an Agilent 1240/6460 LC-MS system. HRMS spectra were obtained on Thermo Fisher HRMS, Q Exactive instrument.

2. Synthesis of starting materials

2,3-Dibromoquinones (1a, 1d, 1e) was synthesized as described¹ in supporting information of ref 1.

2,3-Dibromonaphthalene-1,4-dione $(1a)^1$: To a solution of naphthalene-1,4-dione (5.0g, 31.5 mmol) in glacial acetic acid, liquid bromine (3.25 mL, 63 mmol, 2eq) was added dropwise. The resulting solution was stirred at room temperature for 30 min and then heated to 110 °C. After 8 h reaction at this temperature, the mixture was poured into 200 mL ice-water, the precipitate was formed, filtered and washed with water and dried under vacuum. The pure product was gained as yellow solid (9.42g, 94%) with m.p. 216-218 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (dd, *J* = 5.7, 3.3 Hz, 2H), 7.79

(dd, J = 5.8, 3.3 Hz, 2H). The spectral data agree with the literature value.

1,4-Antraquinone²: Quinizarin (1g, 4.16 mmol) was dissolved in methanol (20 mL) at 0 °C. Sodium borohydride (0.96g, 25.4 mmol) was added carefully. The reaction was stirred for 90 min at 0°. An aq. solution of hydrochloric acid (6M, 18 mL) was added and the precipitate was filtered off and washed with water to afford 1,4-antraquinone as a brown solid (0.769g, 89%) with m.p. 214–216 °C.¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 2H), 8.10 – 7.98 (m, 2H), 7.73 – 7.64 (m, 2H), 7.06 (s, 2H). The spectral data agree with the literature value.

2,3-Dibromoanthracene-1,4-dione (1d) was synthesized as described above. Deep yellow to red solid, m.p. 289-290 °C. (lit³ 293°C).¹H NMR (500 MHz, CDCl₃) δ 8.74 (s, 2H), 8.10 (dd, *J* = 6.1, 3.3 Hz, 2H), 7.75 (dd, *J* = 6.3, 3.2 Hz, 2H).

1,4-Phenanthrenedione⁴: In a sealed tube, *p*-benzoquinone (1 g, 9.2 mmol), styrene (1.435 g, 13.8mmol), and toluene (2 ml) were refluxed to 120 °C under N₂ for 27 h. After cooling to rt, the toluene was stripped, and small amounts of *p*-benzoquinone were sublimed under vacuum from the flask heated to its neck in hot water. The solid residue was flash chromatographed on silica gel using petroleum ether/CH₂Cl₂ (3:1) as eluent. After concentration in vacuo, *p*-benzoquinone sublimed from the eluted product (0.815 g, 42%) as an orange solid with m.p. 147-148 °C (lit⁴ 146–148 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.55 (d, *J* = 8.8 Hz, 1H), 8.20 – 8.15 (m, 2H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.74 (ddd, *J* = 8.6, 6.8, 1.4 Hz, 1H), 7.65 (ddd, *J* = 8.0, 6.9, 1.0 Hz, 1H), 6.98 (d,

J = 10.1 Hz, 1H), 6.94 (d, J = 10.2 Hz, 1H). The spectral data agree with the literature value.

2,3-Dibromophenanthrene-1,4-dione (**1e**) was synthesized as **1a**. Yellow solid, m.p. 156-158 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 9.46 (d, *J* = 8.9 Hz, 1H), 8.25 (d, *J* = 8.5 Hz, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 7.93 (d, *J* = 8.2 Hz, 1H), 7.78 (ddd, *J* = 8.6, 6.9, 1.3 Hz, 1H), 7.72 – 7.67 (m, 1H).

2-Bromo-3-methoxynaphothoquninone (1c) was synthesized as similar procedure for 2-chloro-3-methoxynaphothoquninone⁵: 2,3-dibromo quinone (0.315 g, 1.00 mmol) and Et₃N (0.15 mL, 1.10 mmol) were dissolved in MeOH (10 mL) at 25 °C. After 5 h, the solid was filtered off and washed with cold H₂O (20 mL) to afford 2-Bromo-3methoxynaphothoquninone (1c) (195 mg, 73%) as a green solid with m.p.163-165 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.17 – 8.13 (m, 1H), 8.11 – 8.06 (m, 1H), 7.76 – 7.72 (m, 2H), 4.31 (s, 3H).

6,7-Dimethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione⁶: To a stirred solution of 1,4-benzoquinone (0.2 g, 1.85 mmol) and BF₃·OEt₂ (0.02 mL, 0.185 mmol) in toluene was added 2,3-dimethyl-1,3-butadiene (0.252 mL, 2.22 mmol) dropwise at -16 °C over 10 min. After addition completion the reaction was allowed to warm to rt over 80 min. Upon completion the mixture was washed twice with brine and the organics dried over Na₂SO₄, filtered and solvent condensed under vacuum. The product was recrystallized from toluene to yield yellow crystals.

6,7-Dimethylnaphthalene-1,4-dione⁶: To a stirred solution of 6,7-Dimethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (0.266 g, 1.4 mmol) in toluene (10mL) was added portion wise activated MnO₂(1.3 g, 15.4 mmol) and refluxed for 2 h. The reaction mixture was cooled and filtered through Celite by washing with EtOH. The solvent was condensed and crude material purified by column chromatography to yield a yellow solid (0.172 g, 66%).

2,3-dibromo-6,7-dimethylnaphthalene-1,4-dione was synthesized as **1a**. Yellow solid, m.p.235-236 °C.

Phenylbenzofurans were synthesized as described in the literature⁷ we previously reported.

Br
$$OH$$
 H_2O H_2O

3-Phenylfuran was synthesized as a literature procedure⁸ (PCT Int. Appl., 2012119046): To a solution of phenylboronic acid (0.3 g, 2.46 mmol) in dioxane (3.0 mL) and water (0.06 mL) was added 3-bromofuran (0.326 g, 2.25 mmol), H₃PO₄ (0.86 g, 4.05 mmol) and Pd(PPh₃)₄ (0.012g, 0.01 mmol) with stirring for 4h at 90 °C in an oil bath maintained with an inert atmosphere of nitrogen. The reaction mixture was concentrated under reduced pressure to give the residue, which was purified by silica gel column chromatography eluting with 1% ethyl acetate in petroleum ether to give 3-phenylfuran as a white solid (0.261, 82%) with m.p. 54-56 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.73 (m, 1H), 7.51 (t, *J* = 1.6 Hz, 1H), 7.49 (ddd, *J* = 4.1, 2.6, 1.3 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.30 – 7.26 (m, 1H), 6.72 (dd, *J* = 1.8, 0.9 Hz, 1H). The spectral data agree with the literature value.

3. Typical procedure

In a 12 mL glass vial, 2,3-dibromo-1,4-naphthoquinone (31.5mg, 0.1 mmol), 3phenylbenzofuran (25.2 mg, 0.13 mmol) and 4CzIPN (3.9 mg, 0.005 mmol) in 10 mL distilled benzene was dissolved. The solution was then ultrasonicated, purged with N₂ for10 minutes and sealed. The solution was then irradiated by 50 W blue LED until TLC showed the complete consumption of 2,3-dibromo-1,4-naphthoqunone. The solvent was removed in vacuum and the residue was put on silica gel chromatography with PE/DCM as eluent. The product is yielded as a red solid (32.1 mg, 92%).

4. Tables of reaction data

Table S1 Optimizing conditions for 3a.^a

Entry	VLPC, 5%	Solvent	Light Source	Time, h	Yield, % ^b
1	No PC	Benzene	24W Blue led	168	51
2	Butanedione, 30%	Benzene	24W Blue led	75	54
3	Rose Bengal, 2%	Benzene	24W Blue led	65	60
4	TXO, 2%	Benzene	24W Blue led	56	69
5	TXO, 5%	Benzene	24W Blue led	53	75
6	4CzIPN, 2%	Benzene	24W Blue led	51	79
7	4CzIPN	Benzene	24W Blue led	49	88
8	4CzIPN	DCE	24W Blue led	56	52
9	4CzIPN	1,4-Dioxane	24W Blue led	39	57
10	4CzIPN	MeCN	24W Blue led	48	19
11	4CzIPN	Benzene(0.02 M)	24W Blue led	76	67(1) °
12	4CzIPN	Benzene	24W Blue led	38	87(2) ^d
13	4CzIPN	Benzene	470-475 nm 3W	118	70
14	4CzIPN	Benzene	460-465 nm 3W	79	79
16	4CzIPN	Benzene	450-455 nm 3W	74	85
17	4CzIPN	Benzene	50W Blue Led	10	92
18	4CzIPN	Benzene	Light Off	126	NR
19	4CzIPN	Benzene	No Light, reflux	156	NR
20	4CzIPN	Benzene (0.02 M)	50W Blue Led	23	82
21	ТХО	Benzene	50W Blue Led	13	80
22	4CzIPN (2%)	Benzene	50W Blue Led	12	84

^{a.} Reagents and conditions: 0.1 mmol **1a** (31.5 mg), 0.13 mmol **2a** (25.2 mg) and 0.005 mmol VLPC in 10 mL distilled benzene was ultra-sonicated and purged with N₂ for 10 minutes and then irradiated under blue LED. TXO: Thioxanthen-9-one. 4CzIPN: 2,4,5,6-tetrakis(carbazol-9-yl)-1,3-dicyanobenze ^{b.} Isolated yield. ^{c.} Average of two parallel runs. ^{d.} Pyridine (2.2 eq) was added.

VLPC visible light Ö in benzene Ĉ 4a 1a 6a 5a Lewis acid visible light Time, h Entry PC, 5% Light Source Additive Yield, %^b 1 4CzIPN 24 W Blue led N/A 29 46 ^a 2 4CzIPN 24 W Blue led N/A 101 54 3 4CzIPN 50 W Blue led / 13 54 50 W Blue led 4 4CzIPN SnCl₄ 8 69 5 4CzIPN 50 W Blue led FeCl_{3.6}H₂O 63 28 $FeCl_{2.}4H_{2}O$ 6 4CzIPN 50 W Blue led 25 64 7 4CzIPN 50 W Blue led BF₃.Et₂O 16 55 8 4CzIPN 50 W Blue led Ni(OTf)₂ 10 57 9 4CzIPN 50 W Blue led AgOTf 11 59

Table S2 Lewis acid promoted one-pot reaction for 5a.

^{a.} Reagents and conditions: 0.1 mmol **1a** (31.5 mg), 0.13 mmol **2b** (25.2 mg), 0.005 mmol 4CzIPN and 0.01 mmol LA in 10 mL distilled benzene was ultrasonicated and purged with N_2 for 10 minutes and then irradiated under blue LED (24W*2). ^{b.} Isolated yield. ^{c.} Oxetane **6a** was obtained in 17% yield.

Product	Time, h	Yield, %	λ_{max} , nm	ε, mol ⁻¹ .L.cm ⁻¹
3 a	10	92	446	9360
3k	15	92	464	7760
3u	22	71	462	8160
3s	22	44	450	11300
3t	24	53	409, 537	24000, 14200
31	38	50	478	10000

 Table S3 Competitive absorption of annulated products to 4CzIPN.

When the UV absorption of annulated product is near 4CzIPN (471 nm) with a large extinction coefficient, the yield is reduced with a longer reaction time needed.

5. The spectral data

All the known compounds' spectral data (¹H NMR, ¹³C NMR, IR, MS) agree with the reported references. The new compounds were characterized by ¹H NMR, ¹³C NMR, IR and HRMS except no clear ¹³C NMR signals for **3i**, **3j**, **5d**, **5e**, **7a** and **7b** could be acquired for poor solubility in organic solvent.

3a

Tetrapheno[6,5-b]benzofuran-5,15-dione

Yellow solid, m.p. 221-223 °C (DCM/PE =4/1).

¹H NMR (500 MHz, CDCl₃) δ 9.67 (d, J = 8.8 Hz, 1H), 8.60 (d, J = 8.2 Hz, 1H), 8.38 (d, J = 7.9 Hz, 1H), 8.30 – 8.22 (m, 2H), 7.87 (d, J = 8.3 Hz, 1H), 7.83 – 7.74 (m, 3H), 7.71 – 7.66 (m, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 186.0, 183.1, 158.3, 150.1, 134.9, 134.2, 133.7, 132.8, 132.1, 130.1, 129.7, 129.1, 128.5, 128.1, 127.8, 127.2, 126.4, 125.4, 124.1, 123.6, 123.0, 122.9, 121.8, 113.1.

IR(KBr) v_{max}: 3064, 3030, 1673, 1654, 1572, 1451, 1341, 1292, 1239, 1213, 752, 741, 677 cm⁻¹.

HRMS: (ESI) calcd for $C_{24}H_{13}O_3^+$ [M+H]⁺ 349.08592; found 349.08572. UV(in PhH) $\lambda_{max} = 446$ nm, $\epsilon_{max} = 9360$ mol⁻¹.L.cm⁻¹.

3b

10-Methyltetrapheno[6,5-b]benzofuran-5,15-dione

Yellow solid, m.p. 218-220 °C (DCM/PE =3/1).

¹H NMR (500 MHz, CDCl₃) δ 9.67 (d, J = 8.5 Hz, 1H), 8.99 (d, J = 8.2 Hz, 1H), 8.31 – 8.27 (m, 2H), 7.84 – 7.79 (m, 2H), 7.78 – 7.69 (m, 3H), 7.50 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 7.4 Hz, 1H), 3.15 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.9, 183.2, 159.0, 150.4, 135.0, 134.2, 133.7, 133.3, 133.0, 131.8, 130.0, 129.7, 128.7, 128.6, 128.2(2C), 127.6, 127.4, 127.2, 126.5, 126.3, 122.8, 121.4, 110.8, 26.2.

IR(KBr) υ_{max} : 3126, 3077, 3054, 2958, 2858, 1677, 1659, 1613, 1593, 1442, 1336, 1287, 1258, 1238, 1212, 1191, 1129, 1057, 1025, 974, 771, 753, 697, 678 cm⁻¹. HRMS: (ESI) calcd for C₂₅H₁₅O₃⁺ [M+H]⁺ 363.10157; found 363.10110. UV(in PhH) λ_{max} = 458 nm, ε_{max} = 11760 mol⁻¹.L.cm⁻¹.

3c

11-Methyltetrapheno[6,5-b]benzofuran-5,15-dione

Yellow solid, m.p. 245-247 °C (DCM/PE =3/1).

¹H NMR (500 MHz, CDCl₃) δ 9.51 (d, *J* = 8.8 Hz, 1H), 8.36 (d, *J* = 8.2 Hz, 1H), 8.19 (ddd, *J* = 6.3, 2.8, 1.3 Hz, 2H), 7.93 (s, 1H), 7.78 – 7.72 (m, 2H), 7.62 (dd, *J* = 7.6, 5.2 Hz, 2H), 7.55 – 7.50 (m, 1H), 7.28 (d, *J* = 8.4 Hz, 1H), 2.51 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.7, 182.8, 156.6, 150.0, 134.8, 134.0, 133.5(2C),

132.7, 131.8, 129.9, 129.7, 129.4, 128.5, 127.8, 127.6, 127.1, 126.3, 125.1, 123.4,

122.74, 122.71, 121.5, 112.4, 21.7.

IR(KBr) v_{max} : 3075, 3005, 2958, 2923, 2856, 1671, 1654, 1618, 1571, 1458, 1384, 1330, 1289, 1246, 1080, 1058, 1026, 968, 751, 725 cm⁻¹.

HRMS: (ESI) calcd for $C_{25}H_{15}O_3^+$ [M+H]⁺ 363.10157; found 363.10117.

UV(in PhH) $\lambda_{max} = 450 \text{ nm}, \varepsilon_{max} = 10960 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

3d

12-Methyltetrapheno[6,5-*b*]benzofuran-5,15-dione Yellow solid, m.p. 241-243 °C (DCM/PE =4/1).

¹H NMR (500 MHz, CDCl₃) δ 9.75 (d, *J* = 8.7 Hz, 1H), 8.66 (d, *J* = 8.0 Hz, 1H), 8.32 – 8.27 (m, 3H), 7.85 – 7.77 (m, 3H), 7.77 – 7.72 (m, 1H), 7.69 (s, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 2.60 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 186.1, 183.4, 159.0, 150.1, 139.6, 135.1, 134.2, 133.6, 132.9, 132.0, 130.2, 129.6, 128.6, 128.1, 128.0, 127.2, 126.4, 125.8, 125.7, 123.8, 122.6, 122.0, 120.6, 113.3, 22.3.

 $IR(KBr) \upsilon_{max}: 3124, 3065, 3036, 2921, 2854, 1674, 1654, 1626, 1594, 1569, 1440, 1341, 1316, 1292, 1250, 1228, 1212, 1170, 1114, 1058, 1027, 973, 752 \ cm^{-1}.$

HRMS: (ESI) calcd for C₂₅H₁₅O₃⁺ [M+H]⁺ 363.10157; found 363.10126.

UV(in PhH) $\lambda_{max} = 456 \text{ nm}, \varepsilon_{max} = 10480 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

3e

13-Methyltetrapheno[6,5-*b*]benzofuran-5,15-dione Yellow solid, m.p. 240-242 °C (DCM/PE =4/1). ¹H NMR (500 MHz, CDCl₃) δ 9.65 (d, *J* = 8.8 Hz, 1H), 8.54 (d, *J* = 8.1 Hz, 1H), 8.28 – 8.22 (m, 2H), 8.13 (dt, *J* = 7.5, 3.8 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.71 (dd, *J* = 11.0, 4.0 Hz, 1H), 7.65 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.37 – 7.32 (m, 2H), 2.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 185.9, 182.9, 157.3, 149.9, 134.9, 134.0, 133.6, 132.8, 132.1, 130.1, 129.5, 129.4, 128.7, 127.9, 127.8, 127.2, 126.3, 125.8, 124.0, 123.6, 123.2, 122.3, 121.8, 120.4, 15.5. IR(KBr) υ_{max} : 3061, 2958, 2923, 2854, 1655, 1571, 1341, 1293, 1272, 1181, 1059, 968, 786, 748, 737, 729, 697, 679 cm⁻¹.

HRMS: (ESI) calcd for C₂₅H₁₅O₃⁺ [M+H]⁺ 363.10157; found 363.10114.

UV(in PhH) $\lambda_{max} = 450 \text{ nm}, \epsilon_{max} = 12080 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

3f

11-Phenyltetrapheno[6,5-*b*]benzofuran-5,15-dione Yellow solid, m.p. 293-295 °C (DCM/PE =5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.70 (d, J = 8.8 Hz, 1H), 8.68 (d, J = 8.2 Hz, 1H), 8.52 (s, 1H), 8.27 (dd, J = 8.2, 6.4 Hz, 2H), 7.91 (d, J = 8.6 Hz, 1H), 7.83 – 7.76 (m, 4H), 7.71 (dd, J = 12.8, 7.4 Hz, 3H), 7.54 (t, J = 7.6 Hz, 2H), 7.44 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 186.0, 183.1, 157.9, 150.6, 141.2, 137.9, 135.0, 134.2, 133.7, 132.8, 132.2, 130.2, 129.9, 129.3, 129.1(2C), 128.22, 128.18, 127.9, 127.8(2C), 127.6, 127.2, 126.5, 125.4, 123.7, 123.5, 121.9, 121.5, 113.2. IR(KBr) υ_{max}: 3058, 3027, 1671, 1655, 1648, 1637, 1570, 1460, 1384, 1330, 1304, 1294, 1271, 1162, 1140, 1115, 1058, 1036, 970, 747, 728, 692 cm⁻¹. HRMS: (ESI) calcd for C₃₀H₁₇O₃⁺ [M+H]⁺ 425.11722; found 425.11670. UV(in PhH) $\lambda_{max} = 446$ nm, $\varepsilon_{max} = 11280$ mol⁻¹.L.cm⁻¹.

3g

13-Phenyltetrapheno[6,5-*b*]benzofuran-5,15-dione Yellow solid, m.p. 270-272 °C (DCM/PE =6/1). ¹H NMR (500 MHz, CDCl₃) δ 9.78 (d, J = 8.7 Hz, 1H), 8.75 (d, J = 8.1 Hz, 1H), 8.44 (d, J = 7.7 Hz, 1H), 8.33 – 8.21 (m, 4H), 7.86 (t, J = 7.6 Hz, 2H), 7.83 – 7.74 (m, 3H), 7.69 (t, J = 7.8 Hz, 2H), 7.62 (t, J = 7.7 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 186.1, 182.7, 155.6, 150.1, 135.6, 135.0, 134.1, 133.6, 132.8, 132.2, 130.3, 129.8, 129.2, 129.1(2C), 129.0(2C), 128.5, 128.1, 128.0, 127.7, 127.2, 126.6, 126.5, 125.3, 124.7, 123.9, 123.7, 122.01, 121.99. IR(KBr) υ_{max}: 3059, 3030, 1674, 1657, 1594, 1574, 1442, 1404, 1346, 1336, 1294, 1246, 1213, 1152, 1115, 1059, 1025, 973, 752, 738, 690, 681 cm⁻¹. HRMS: (ESI) calcd for C₃₀H₁₇O₃⁺ [M+H]⁺ 425.11722; found 425.11673. UV(in PhH) λ _{max} = 452 nm, ε _{max} = 7760 mol⁻¹.L.cm⁻¹.

3h

11-Methoxytetrapheno[6,5-*b*]benzofuran-5,15-dione Yellow solid, m.p. 242-244 °C (DCM/PE =3/1). ¹H NMR (500 MHz, CDCl₃) δ 9.67 (d, *J* = 8.8 Hz, 1H), 8.51 (d, *J* = 8.2 Hz, 1H), 8.29 - 8.24 (m, 2H), 7.84 - 7.73 (m, 5H), 7.71 - 7.66 (m, 1H), 7.18 (dd, *J* = 9.0, 2.3 Hz, 1H), 3.99 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.0, 183.1, 156.7, 153.3, 150.8, 135.0, 134.2, 133.7, 132.8, 132.1, 130.2, 129.7, 129.0, 127.9, 127.7, 127.2, 126.4, 125.4, 123.4, 123.3, 121.9, 116.9, 113.5, 105.7, 56.3. IR(KBr) υ_{max} : 3110, 3077, 3001, 2962, 2932, 1678, 1655, 1593, 1571, 1475, 1467, 1458, 1330, 1297, 1236, 1188, 1172, 1061, 970, 832, 749, 726 cm⁻¹. HRMS: (ESI) calcd for C₂₅H₁₅O₄⁺ [M+H]⁺ 379.09648; found 379.09616.

3i

11-Fluorotetrapheno[6,5-*b*]benzofuran-5,15-dione

Yellow solid, m.p. >302 °C (DCM/PE =6/1).

¹H NMR (500 MHz, CDCl₃) δ 9.78 (d, *J* = 8.8 Hz, 1H), 8.61 (d, *J* = 8.2 Hz, 1H), 8.32 (d, *J* = 7.0 Hz, 2H), 8.14 (d, *J* = 8.6 Hz, 1H), 7.89 (dd, *J* = 13.3, 5.2 Hz, 2H), 7.82 (td, *J* = 14.2, 7.1 Hz, 3H), 7.42 – 7.35 (m, 1H).

This compound is difficult to solute and no clear ¹³CNMR signal in solvent could be obtained.

¹⁹F NMR (471 MHz, CDCl₃) δ -118.13 – -118.25 (m).

 $IR(KBr) \upsilon_{max}: 3093, 3063, 1673, 1654, 1593, 1571, 1470, 1458, 1333, 1301, 1293, 1231, 1174, 1156, 1127, 1057, 971, 839, 798, 750, 727 \ cm^{-1}.$

HRMS: (ESI) calcd for $C_{24}H_{12}FO_3^+$ [M+H]⁺ 367.07650; found 367.07648.

UV(in PhH) $\lambda_{max} = 442 \text{ nm}, \epsilon_{max} = 9120 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

3j

11-Chlorotetrapheno[6,5-b]benzofuran-5,15-dione

Yellow solid, m.p. >302 °C (DCM/PE =6/1).

¹H NMR (500 MHz, CDCl₃) δ 9.76 (d, J = 8.8 Hz, 1H), 8.62 (d, J = 8.2 Hz, 1H), 8.43 (s, 1H), 8.31 (d, J = 7.1 Hz, 2H), 7.95 – 7.74 (m, 5H), 7.60 (d, J = 8.3 Hz, 1H).

This compound is difficult to solute and no clear ¹³CNMR signal in solvent could be obtained.

IR(KBr) v_{max}: 3106, 3065, 1672, 1655, 1571, 1456, 1333, 1294, 1241, 1145, 1115, 1057, 817, 753 cm⁻¹.

HRMS: (ESI) calcd for $C_{24}H_{12}ClO_3^+$ [M+H]⁺ 383.04695; found 383.04648. UV(in PhH) $\lambda_{max} = 444$ nm, $\epsilon_{max} = 8960$ mol⁻¹.L.cm⁻¹.

3k

Naphtho[1,2-*b*]tetrapheno[5,6-*d*]furan-11,16-dione Red solid, m.p. 274-276 °C (DCM/PE=6/1).

¹H NMR (500 MHz, CDCl₃) δ 9.70 (d, J = 8.8 Hz, 1H), 8.70 – 8.63 (m, 2H), 8.31 (d, J = 8.7 Hz, 1H), 8.26 (t, J = 8.3 Hz, 2H), 7.95 (d, J = 8.0 Hz, 1H), 7.83 – 7.76 (m, 3H), 7.74 (d, J = 7.7 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 186.0, 183.2, 155.3, 150.9, 149.5, 135.1, 134.2, 133.6, 133.2, 132.8, 132.6, 132.0, 130.2, 129.5, 128.4, 128.21, 128.19, 127.6, 127.3, 127.2, 126.5, 126.3, 124.9, 123.9, 122.0, 121.4, 119.8, 118.4.

IR(KBr) v_{max}: 3114, 3065, 3032, 1671, 1651, 1577, 1569, 1336, 1292, 1245, 1214, 1058, 804, 752, 737, 726 cm⁻¹.

HRMS: (ESI) calcd for C₂₈H₁₅O₃⁺ [M+H]⁺ 399.10157; found 399.10132.

UV(in PhH) $\lambda_{max} = 464 \text{ nm}, \epsilon_{max} = 7760 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

31

Naphtho[2,1-b]tetrapheno[5,6-d]furan-11,16-dione

Dark red solid, m.p. 268-270 °C (DCM/PE=5/1).

¹H NMR (500 MHz, CDCl₃) δ 9.69 (d, J = 8.5 Hz, 1H), 9.08 (d, J = 8.1 Hz, 1H), 8.98 (d, J = 8.4 Hz, 1H), 8.30 (dd, J = 5.7, 3.2 Hz, 2H), 8.06 (dd, J = 8.3, 4.2 Hz, 2H), 7.99 (d, J = 8.9 Hz, 1H), 7.80 (tdd, J = 7.1, 5.7, 3.9 Hz, 4H), 7.76 – 7.71 (m, 1H), 7.60 (t, J = 7.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 185.7, 183.4, 158.1, 150.0, 135.0, 134.3, 133.7, 133.0, 131.6, 131.5, 131.4, 130.2, 129.9, 129.0, 128.5, 128.5, 128.4, 128.2, 127.6, 127.2,

127.1, 126.5, 125.6, 125.4, 125.3, 121.5, 117.7, 113.3.

IR(KBr) υ_{max} : 3089, 3054, 1671, 1649, 1585, 1567, 1349, 1320, 1304, 1293, 1253, 1060, 999, 973, 801, 758, 736 cm⁻¹.

HRMS: (ESI) calcd for C₂₈H₁₅O₃⁺ [M+H]⁺ 399.10157; found 399.10117.

UV(in PhH) $\lambda_{max} = 478 \text{ nm}, \epsilon_{max} = 10000 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

3m

tetrapheno[6,5-b]furan-8,13-dione Yellow solid, m.p. 250-252 °C (DCM/PE =3/1). ¹H NMR (500 MHz, CDCl₃) δ 9.74 – 9.69 (m, 1H), 8.31 – 8.24 (m, 2H), 8.19 – 8.15 (m, 1H), 8.14 (d, J = 2.1 Hz, 1H), 7.80 (td, J = 7.5, 1.7 Hz, 1H), 7.77 (td, J = 7.1, 1.4 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.35 (d, J = 2.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 186.2, 183.5, 150.0, 148.1, 135.0, 134.3, 133.6, 132.6, 131.3, 130.8, 130.0, 129.2, 128.4, 128.0, 127.2, 127.1, 126.4, 123.9, 122.2, 105.7. IR(KBr) ν_{max} : 3167, 3140, 3118, 3067, 1671, 1655, 1579, 1511, 1443, 1345, 1328, 1295, 1238, 1180, 1050, 961, 753, 728 cm⁻¹.

HRMS: (ESI) calcd for $C_{20}H_{11}O_3^+$ [M+H]⁺ 299.07027; found 299.07010. UV(in PhH) $\lambda_{max} = 434$ nm, $\epsilon_{max} = 6900$ mol⁻¹.L.cm⁻¹.

3n

9-Methyltetrapheno[6,5-*b*]benzofuran-5,15-dione Yellow solid, m.p. 214-216 °C (DCM/PE =3/1).

¹H NMR (500 MHz, CDCl₃) δ 9.47 – 9.42 (m, 1H), 8.30 – 8.22 (m, 3H), 7.85 (d, J = 8.3 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.60 (dd, J = 6.7, 3.5 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.43 – 7.39 (m, 1H), 3.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 186.1, 182.9, 158.2, 151.2, 135.1, 134.2, 133.6, 133.3, 132.9, 132.5, 132.3, 130.5, 129.1, 128.0, 127.6, 127.4, 127.2, 126.4, 126.2, 125.3, 123.7, 123.1, 121.3, 112.8, 24.9.

IR(KBr) υ_{max} : 3134, 3059, 2962, 2928, 1670, 1571, 1450, 1336, 1320, 1277, 1238, 1221, 1079, 963, 952, 771, 747, 724, 701 cm⁻¹.

HRMS: (ESI) calcd for $C_{25}H_{15}O_3^+$ [M+H]⁺ 363.10157; found 363.10104.

UV(in PhH) $\lambda_{\text{max}} = 467 \text{ nm}, \varepsilon_{\text{max}} = 8400 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

30

8-Methyltetrapheno[6,5-b]benzofuran-5,15-dione

Yellow solid, m.p. 269-270 °C (DCM/PE =3/1).

¹H NMR (500 MHz, CDCl₃) δ 9.61 (d, *J* = 9.0 Hz, 1H), 8.45 (d, *J* = 7.9 Hz, 1H), 8.43 (s, 1H), 8.28 (ddd, *J* = 9.2, 6.6, 2.2 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.83 – 7.77 (m, 2H), 7.62 (t, *J* = 7.7 Hz, 1H), 7.58 – 7.55 (m, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 2.67 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 186.2, 183.2, 158.3, 150.5, 140.4, 135.0, 134.1, 133.7, 132.9, 132.6, 130.4, 130.0, 129.2, 128.4, 127.2, 126.4, 126.1, 124.8, 124.0, 123.12, 123.07, 123.05, 121.2, 113.1, 22.3.

IR (KBr) υ_{max} : 3069, 3026, 2921, 2854, 1673, 1655, 1619, 1592, 1574, 1461, 1342, 1325, 1300, 1287, 1244, 1219, 1202, 1184, 1125, 1110, 1056, 1019, 797, 743 cm⁻¹. HRMS: (ESI) calcd for C₂₅H₁₅O₃⁺ [M+H]⁺ 363.10157; found 363.10107. UV(in PhH) λ_{max} = 446 nm, ε_{max} = 7160 mol⁻¹.L.cm⁻¹.

3p

7-Methyltetrapheno[6,5-*b*]benzofuran-5,15-dione Yellow solid, m.p. 251-253 °C (DCM/PE =3/1). ¹H NMR (500 MHz, CDCl₃) δ 9.49 (s, 1H), 8.51 (d, *J* = 8.4 Hz, 1H), 8.37 (d, *J* = 7.9 Hz, 1H), 8.29 – 8.24 (m, 2H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.83 – 7.76 (m, 2H), 7.62 – 7.57 (m, 2H), 7.49 (t, *J* = 7.5 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.1, 183.3, 158.4, 149.8, 138.2, 135.0, 134.2, 133.6, 132.8, 131.9, 130.3, 129.1, 128.5(2C), 128.2, 127.1, 126.4, 125.4, 124.0, 123.4, 123.04, 122.99, 121.8, 113.1, 22.5. IR(KBr) υ_{max} : 3075, 3061, 2940, 2913, 1675, 1654, 1615, 1572, 1457, 1341, 1290, 1242, 1214, 1145, 1122, 1110, 1059, 968, 755, 748, 724 cm⁻¹. HRMS: (ESI) calcd for C₂₅H₁₅O₃⁺ [M+H]⁺ 363.10157; found 363.10107. UV(in PhH) λ_{max} = 457 nm, ε_{max} = 7440 mol⁻¹.L.cm⁻¹.

3q

7-Phenyltetrapheno[6,5-*b*]benzofuran-5,15-dione Yellow solid, m.p. >302 °C (DCM/PE =5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.06 (s, 1H), 8.73 (d, *J* = 8.6 Hz, 1H), 8.45 (d, *J* = 7.8 Hz, 1H), 8.29 (d, *J* = 7.1 Hz, 2H), 8.09 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.91 (d, *J* = 8.3 Hz, 1H), 7.86 (d, *J* = 7.4 Hz, 2H), 7.83 – 7.77 (m, 2H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.58 – 7.51 (m, 3H), 7.45 (t, *J* = 7.3 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 186.1, 183.3, 158.9, 158.5, 150.3, 140.8, 140.7, 135.0, 134.3, 133.7, 132.8, 131.2, 129.3, 129.21(2C), 129.15, 128.7, 128.5, 128.1, 128.0, 127.8(2C), 127.2, 126.5, 125.5, 124.2, 123.1, 123.0, 122.3, 113.2.

IR(KBr) v_{max} : 3140, 3091, 3067, 3030, 1672, 1655, 1616, 1573, 1453, 1345, 1289, 1267, 1147, 1127, 1109, 1056, 970, 759, 751, 679 cm⁻¹.

HRMS: (ESI) calcd for C₃₀H₁₇O₃⁺ [M+H]⁺ 425.11722; found 425.11682.

UV(in PhH) $\lambda_{max} = 465 \text{ nm}, \epsilon_{max} = 6320 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

3r

7-Fluorotetrapheno[6,5-b]benzofuran-5,15-dione.

Yellow solid, m.p. 286-288 °C (DCM/PE =5/1).

¹H NMR (500 MHz, CDCl₃) δ 9.59 (dd, *J* = 12.9, 2.0 Hz, 1H), 8.68 (dd, *J* = 8.9, 6.0 Hz, 1H), 8.39 (d, *J* = 7.8 Hz, 1H), 8.34 – 8.24 (m, 2H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.87 – 7.77 (m, 2H), 7.68 – 7.58 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 185.7, 183.1, 162.4 (d, J = 246.9 Hz), 158.6, 149.8, 134.8, 134.4, 133.9, 132.8, 129.3 (d, J = 10.6 Hz), 129.1, 129.0, 128.0, 127.9, 127.4, 126.5, 126.0, 125.7 (d, J = 9.0 Hz), 124.3, 122.9, 122.7 (d, J = 3.5 Hz), 119.9 (d, J = 25.7 Hz), 114.4 (d, J = 25.5 Hz), 113.3.

¹⁹F NMR (471 MHz, CDCl₃) δ -110.69 (dt, *J* = 13.0, 6.6 Hz).

 $IR(KBr) \upsilon_{max}: 3128, 3079, 3054, 1669, 1595, 1573, 1456, 1435, 1409, 1341, 1325, 1297, 1282, 1246, 1222, 1195, 1160, 1139, 1113, 1056, 1026, 971, 880, 812, 733, 721, 675 cm^{-1}.$

HRMS: (ESI) calcd for $C_{24}H_{12}FO_3^+$ [M+H]⁺ 367.07650; found 367.07632. UV(in PhH) $\lambda_{max} = 450$ nm, $\varepsilon_{max} = 8880$ mol⁻¹.L.cm⁻¹.

3s

Benzo[3,4]tetrapheno[6,5-b]benzofuran-10,15-dione.

Yellow solid, m.p. 244-246 °C (DCM/PE =3/1).

¹H NMR (500 MHz, CDCl₃) δ 9.49 (d, J = 9.4 Hz, 1H), 9.14 (d, J = 8.2 Hz, 1H), 8.60 (d, J = 8.0 Hz, 1H), 8.36 – 8.28 (m, 2H), 7.99 (d, J = 7.7 Hz, 1H), 7.95 (d, J = 9.4 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.85 – 7.79 (m, 2H), 7.77 (t, J = 7.0 Hz, 1H), 7.69 (dd, J = 11.1, 4.0 Hz, 1H), 7.63 (dd, J = 11.4, 4.1 Hz, 1H), 7.41 (t, J = 7.3 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 186.3, 183.0, 158.8, 152.4, 135.3, 134.2, 133.8, 133.4, 133.2, 132.6, 129.28, 129.26, 128.9, 128.6, 128.5, 128.3, 128.1, 127.8, 127.4, 126.5, 126.2, 126

126.0, 125.6(2C), 124.1, 123.5, 123.0, 120.5, 113.1.

 $IR(KBr) \upsilon_{max}: 3136, 3067, 3042, 1674, 1655, 1616, 1453, 1296, 1269, 1256, 1243, 1212, 1158, 1064, 1025, 755, 743, 712, 658 \ cm^{-1}.$

HRMS: (ESI) calcd for $C_{28}H_{15}O_3^+$ [M+H]⁺ 399.10157; found 399.10144.

UV(in PhH) $\lambda_{max} = 450 \text{ nm}, \varepsilon_{max} = 11300 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

3t

Pentapheno[6,7-b]benzofuran-6,11-dione

Purple solid, m.p. >302 °C (DCM/PE =4/1).

¹H NMR (500 MHz, CDCl₃) δ 10.39 (s, 1H), 9.08 (s, 1H), 8.57 (d, J = 7.8 Hz, 1H), 8.31 (dd, J = 7.5, 1.2 Hz, 1H), 8.28 (dd, J = 7.4, 1.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.86 – 7.78 (m, 2H), 7.62 (t, J = 7.8 Hz, 2H), 7.56 (dd, J = 15.2, 7.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 185.9, 183.0, 158.0, 149.0, 134.7, 134.1, 133.6, 133.0, 132.58, 132.56, 131.5, 130.1, 129.6, 128.8, 128.2, 128.14, 128.11, 127.5, 127.0, 126.3, 126.2, 125.3, 124.4, 124.1, 123.2, 122.7, 121.7, 113.0.

IR(KBr) v_{max}: 3102, 3073, 3048, 1670, 1651, 1591, 1552, 1469, 1449, 1340, 1332, 1307,

1290, 1255, 1228, 1211, 1181, 1158, 1146, 1132, 1106, 1049, 1020, 745, 737 cm⁻¹.

HRMS: (ESI) calcd for $C_{28}H_{15}O_3^+$ [M+H]⁺ 399.10157; found 399.10120.

UV(in PhH) $\lambda_{max} = 537 \text{ nm}, \epsilon_{max} = 14200 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

3u

Benzo[b]tetrapheno[5,6-d]thiophene-5,15-dione Yellow solid, m.p. 244-246 °C (DCM/PE =3/1). ¹H NMR (500 MHz, CDCl₃) δ 9.64 (d, *J* = 8.2 Hz, 1H), 9.00 (d, *J* = 8.4 Hz, 1H), 8.77 (d, *J* = 7.6 Hz, 1H), 8.28 – 8.22 (m, 2H), 8.06 – 8.00 (m, 1H), 7.82 – 7.74 (m, 3H), 7.73 – 7.68 (m, 1H), 7.58 – 7.51 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 185.8, 184.3, 145.7, 136.3, 134.91, 134.85, 134.4, 134.0, 133.7, 133.3, 132.0, 130.1, 129.8, 129.2, 129.1, 128.2, 128.0, 127.3, 127.1, 126.7, 125.8, 125.3, 123.8, 123.3. IR(KBr) υ_{max} : 3130, 3063, 1658, 1591, 1528, 1430, 1405, 1333, 1310, 1291, 1272, 1221, 1210, 1148, 1099, 1083, 1068, 1058, 1043, 1014, 782, 754, 718, 658 cm⁻¹. HRMS: (ESI) calcd for C₂₄H₁₃O₂S⁺ [M+H]⁺ 365.06308; found 365.06287. UV(in PhH) λ_{max} = 462 nm, ε_{max} = 8160 mol⁻¹.L.cm⁻¹.

5a

Tetrapheno[5,6-b]benzofuran-10,15-dione

Yellow solid, m.p. 216-218 °C (DCM/PE =2/1).

¹H NMR (500 MHz, CDCl₃) δ 9.75 – 9.70 (m, 1H), 9.30 – 9.23 (m, 1H), 8.65 – 8.60 (m, 1H), 8.36 – 8.27 (m, 2H), 7.89 – 7.79 (m, 4H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.57 – 7.50 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 186.0, 185.1, 157.1, 156.4, 134.6, 134.0, 133.4, 132.9, 132.0, 130.3, 129.8, 129.5, 129.0, 128.0, 127.5, 127.4, 126.9, 126.4, 124.1, 123.8(2C), 121.5, 116.5, 111.5.

IR(KBr) v_{max} : 3116, 3052, 3016, 1676, 1655, 1594, 1453, 1347, 1294, 1277, 1244, 1203, 1110, 1086, 1062, 1048, 1021, 1005, 795, 760, 746, 716, 681 cm⁻¹.

HRMS: (ESI) calcd for C₂₄H₁₃O₃⁺ [M+H]⁺ 349.08592; found 349.08557.

UV(in PhH) $\lambda_{\text{max}} = 445 \text{ nm}, \varepsilon_{\text{max}} = 5920 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

5b

2-Methyltetrapheno[5,6-b]benzofuran-10,15-dione Yellow solid, m.p. 230-232 °C (DCM/PE =3/1). ¹H NMR (500 MHz, CDCl₃) δ 9.60 (dd, J = 7.3, 2.1 Hz, 1H), 8.88 (s, 1H), 8.44 (dd, J = 6.8, 2.6 Hz, 1H), 8.28 – 8.20 (m, 2H), 7.82 – 7.76 (m, 2H), 7.72 (ddt, J = 9.5, 6.8, 3.5 Hz, 2H), 7.52 (d, J = 8.3 Hz, 1H), 7.33 (d, J = 7.4 Hz, 1H), 2.59 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.1, 185.3, 156.8, 155.5, 134.7, 134.0, 133.4, 133.3, 133.0, 132.1, 130.3, 129.7, 129.5, 129.2, 129.0, 127.34, 127.29, 126.9, 126.4, 124.0, 123.9, 121.6, 116.5, 110.9, 22.0. IR(KBr) υ_{max} : 3120, 3069, 3020, 2926, 1672, 1660, 1591, 1344, 1319, 1298, 1203, 1116, 800, 755, 683 cm⁻¹.

HRMS: (ESI) calcd for $C_{25}H_{15}O_3^+$ [M+H]⁺ 363.10157; found 363.10107.

UV(in PhH) $\lambda_{max} = 450 \text{ nm}, \epsilon_{max} = 8240 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

5c

4-Methyltetrapheno[5,6-b]benzofuran-10,15-dione Yellow solid, m.p. 206-208 °C (DCM/PE =3/1). ¹H NMR (500 MHz, CDCl₃) δ 9.62 – 9.58 (m, 1H), 8.95 – 8.90 (m, 1H), 8.49 – 8.44 (m, 1H), 8.26 – 8.20 (m, 2H), 7.81 – 7.74 (m, 2H), 7.74 – 7.67 (m, 2H), 7.35 – 7.30 (m, 2H), 2.65 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.1, 185.2, 156.3, 156.0, 134.7, 134.0, 133.4, 133.0,

132.1, 130.3, 129.7, 129.5, 129.1, 128.9, 127.3, 126.9, 126.4, 124.9, 123.9, 123.7, 123.6, 121.53, 121.51, 116.9, 15.3.

IR(KBr) v_{max} : 3140, 3067, 3022, 2923, 1675, 1657, 1592, 1435, 1343, 1300, 1249, 1196, 1110, 1058, 798, 756, 745 cm⁻¹.

HRMS: (ESI) calcd for $C_{25}H_{15}O_3^+$ [M+H]⁺ 363.10157; found 363.10101.

UV(in PhH) $\lambda_{max} = 459 \text{ nm}, \epsilon_{max} = 9240 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

5d

2-Fluorotetrapheno[5,6-b]benzofuran-10,15-dione

Yellow solid, m.p. 256-258 °C (DCM/PE =4/1)

¹H NMR (500 MHz, CDCl₃) δ 9.68 (dd, J = 7.3, 1.8 Hz, 1H), 8.96 (dd, J = 10.4, 2.7 Hz, 1H), 8.57 – 8.51 (m, 1H), 8.34 – 8.25 (m, 2H), 7.85 – 7.77 (m, 4H), 7.66 (dd, J = 8.9, 4.4 Hz, 1H), 7.31 (td, J = 8.6, 2.8 Hz, 1H).

This compound is difficult to solute and no clear ¹³CNMR signal in solvent could be obtained.

¹⁹F NMR (471 MHz, CDCl₃) δ -118.68 (td, *J* = 8.9, 4.4 Hz).

IR(KBr) v_{max}: 3138, 3071, 1671, 1658, 1591, 1572, 1462, 1449, 1419, 1346, 1300, 1258, 1243, 1171, 1160, 1108, 1098, 1088, 1009, 811, 770, 759, 686 cm⁻¹.

HRMS: (ESI) calcd for C₂₄H₁₂FO₃⁺ [M+H]⁺ 367.07650; found 367.07605.

UV(in PhH) $\lambda_{max} = 439 \text{ nm}, \varepsilon_{max} = 7750 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

5e

2-Chlorotetrapheno[5,6-b]benzofuran-10,15-dione

Yellow solid, m.p. 262-264 °C (DCM/PE =3/1)

¹H NMR (500 MHz, CDCl₃) δ 9.63 (s, 1H), 9.18 (s, 1H), 8.47 (s, 1H), 8.33 – 8.16 (m, 2H), 7.88 – 7.72 (m, 4H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.55 – 7.48 (m, 1H).

This compound is difficult to solute and no clear ¹³CNMR signal in solvent could be obtained.

 $IR(KBr) \upsilon_{max}: 3138, 3081, 1674, 1656, 1590, 1448, 1346, 1315, 1298, 1254, 1243, 1113, 1087, 1076, 1047, 1007, 802, 760, 700, 686 \ cm^{-1}.$

HRMS: (ESI) calcd for C₂₄H₁₂ClO₃⁺ [M+H]⁺ 383.04695; found 383.04642.

UV(in PhH) $\lambda_{max} = 440 \text{ nm}, \varepsilon_{max} = 7120 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

5f

6-Methyltetrapheno[5,6-b]benzofuran-10,15-dione Yellow solid, m.p. 202-204 ° (DCM/PE=3/1).

¹H NMR (500 MHz, CDCl₃) δ 9.41 (d, *J* = 8.8 Hz, 1H), 9.13 (d, *J* = 8.1 Hz, 1H), 8.25 (d, *J* = 6.9 Hz, 1H), 8.22 (d, *J* = 7.0 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 6.9 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 3.11 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 186.3, 185.3, 157.5, 156.8, 135.1, 134.3, 134.0, 133.4, 133.0, 131.74, 131.71, 131.5, 129.1, 128.4, 127.8, 127.3, 127.2, 127.0, 126.4, 123.9, 123.7, 123.2, 117.2, 111.4, 24.2.

IR(KBr) v_{max}: 3128, 3063, 2918, 2849, 1738, 1673, 1650, 1455, 1338, 1290, 1245, 772, 739, 716 cm⁻¹.

HRMS: (ESI) calcd for $C_{25}H_{15}O_3^+$ [M+H]⁺ 363.10157; found 363.10132.

UV(in PhH) $\lambda_{max} = 457 \text{ nm}, \epsilon_{max} = 9280 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

5g

7-Methyltetrapheno[5,6-b]benzofuran-10,15-dione Yellow solid, m.p. 252-254 °C (DCM/PE=3/1). ¹H NMR (500 MHz, CDCl₃) δ 9.55 (d, J = 9.0 Hz, 1H), 9.22 (d, J = 8.0 Hz, 1H), 8.33 – 8.28 (m, 2H), 8.28 – 8.25 (m, 1H), 7.83 – 7.76 (m, 2H), 7.71 (d, J = 8.1 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.49 (t, J = 7.6 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.3, 185.4, 157.2, 156.2, 139.8, 134.8, 134.0, 133.4, 133.1, 132.2, 131.4, 129.4, 128.7, 128.0, 127.7, 127.6, 127.0, 126.5, 124.31, 124.29, 123.8, 120.7, 116.8, 111.5, 22.0. IR(KBr) ν_{max} : 3122, 3059, 3024, 2919, 2856, 1668, 1630, 1457, 1347, 1291, 1268, 1249, 1203, 1181, 1163, 1113, 1089, 1061, 1040, 1013, 788, 757, 721 cm⁻¹. HRMS: (ESI) calcd for C₂₅H₁₅O₃⁺ [M+H]⁺ 363.10157; found 363.10126. UV(in PhH) $\lambda_{max} = 449$ nm, $\varepsilon_{max} = 9200$ mol⁻¹.L.cm⁻¹.

8-Methyltetrapheno[5,6-b]benzofuran-10,15-dione

Yellow solid, m.p. 298-298°C (DCM/PE=3/1).

¹H NMR (500 MHz, CDCl₃) δ 9.45 (s, 1H), 9.17 (dd, J = 8.1, 0.8 Hz, 1H), 8.40 (d, J

= 8.4 Hz, 1H), 8.29 - 8.23 (m, 2H), 7.82 - 7.75 (m, 2H), 7.68 (d, J = 8.1 Hz, 1H),

7.59 – 7.53 (m, 2H), 7.50 – 7.45 (m, 1H), 2.63 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 186.3, 185.5, 157.2, 156.8, 140.4, 134.9, 134.1, 133.4, 133.1, 132.3, 131.3, 130.9, 128.6, 127.9, 127.5, 127.0, 126.9, 126.5, 124.3, 123.8, 122.2, 121.5, 116.1, 111.5, 22.8.

 $IR(KBr) \upsilon_{max}: 3108, 3057, 3016, 2917, 1672, 1655, 1593, 1449, 1348, 1293, 1246, 1206, 1109, 1087, 816, 744, 720 \ cm^{-1}.$

HRMS: (ESI) calcd for $C_{25}H_{15}O_3^+$ [M+H]⁺ 363.10157; found 363.10107.

UV(in PhH) $\lambda_{max} = 459 \text{ nm}, \varepsilon_{max} = 9500 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

6a

2,3-Dibromo-7a'-phenyl-2a',7a'-dihydro-4H-spiro[naphthalene-1,2'-oxeto[2,3-b]benzofuran]-4-one

White solid, m.p. 154-156 °C (DCM/PE =2/1).

¹H NMR (500 MHz, DMSO) δ 7.90 (dd, J = 7.7, 1.2 Hz, 1H), 7.77 – 7.73 (m, 1H), 7.59 (d, J = 1.6 Hz, 1H), 7.57 (d, J = 1.2 Hz, 1H), 7.53 – 7.45 (m, 3H), 7.40 (td, J = 7.5, 1.1 Hz, 1H), 7.34 (td, J = 7.6, 1.4 Hz, 1H), 7.13 – 7.08 (m, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 7.3 Hz, 1H), 6.60 (t, J = 7.4 Hz, 1H), 5.36 (s, 1H).

¹³C NMR (126 MHz, DMSO) δ 175.4, 160.7, 151.4, 138.8, 137.1, 132.5, 130.1,

129.4, 129.2, 129.1, 128.3(2C), 127.3, 127.2, 127.1, 125.8, 124.9(2C), 123.7, 122.0, 115.8, 109.2, 88.4, 60.1.

 $IR(KBr) \upsilon_{max}: 3067, 3038, 3001, 1666, 1593, 1555, 1475, 1463, 1451, 1337, 1269, 1235, 1129, 974, 954, 941, 914, 880, 764, 750 \ cm^{-1}.$

HRMS: (ESI) calcd for $C_{24}H_{15}Br_2O_3^+$ [M+H]⁺ 508.93825; found 508.93781.

7a

2,3-Dimethyltetrapheno[6,5-b]benzofuran-5,15-dione.

Yellow blocks, m.p. 266-268 °C (DCM/PE = 4/1).

¹H NMR (500 MHz, CDCl₃) δ 9.74 (d, J = 8.6 Hz, 1H), 8.71 – 8.65 (m, 1H), 8.44 (d, J = 7.9 Hz, 1H), 8.00 (s, 2H), 7.91 (d, J = 8.3 Hz, 1H), 7.81 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.73 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.62 (ddd, J = 8.3, 7.2, 1.2 Hz, 1H), 7.52 (td, J = 7.5, 7.1, 1.0 Hz, 1H), 2.45 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 186.3, 183.3, 158.3, 150.2, 144.1, 143.5, 132.9, 132.1, 130.8, 130.2, 129.6, 129.3, 128.4, 128.1, 127.9, 127.3(2C), 125.2, 124.0, 123.6, 123.05, 122.98, 122.0, 113.1, 20.5, 20.4.

IR(KBr) v_{max}: 3097, 3061, 2983, 2942, 1738, 1667, 1638, 1600, 1451, 1340, 1321, 1306, 782, 766, 746 cm⁻¹.

HRMS: (ESI) calcd for C₂₆H₁₇O₃⁺ [M+H]⁺ 377.11722; found 377.11667.

UV (in PhH) $\lambda_{max} = 448 \text{ nm}, \epsilon_{max} = 8000 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

8a

Benzo[3,4]tetraceno[1,2-b]benzofuran-9,16-dione

Yellow solid, m.p. >302 °C (DCM/PE =5/1).

¹H NMR (500 MHz, CDCl₃) δ 9.85 (d, *J* = 8.6 Hz, 1H), 8.82 (d, *J* = 5.4 Hz, 2H), 8.75 (d, *J* = 7.7 Hz, 1H), 8.49 (d, *J* = 7.7 Hz, 1H), 8.13 (d, *J* = 8.5 Hz, 2H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.88 (dd, *J* = 7.6, 6.3 Hz, 1H), 7.80 (dd, *J* = 8.6, 7.0 Hz, 1H), 7.73 – 7.68 (m, 2H), 7.66 (t, *J* = 7.8 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H).

This compound is difficult to solute and no clear ¹³CNMR signal in solvent could be obtained.

 $IR(KBr) \upsilon_{max}: 3126, 3091, 3059, 1672, 1614, 1570, 1453, 1438, 1403, 1338, 1318, 1288, 1245, 1209, 1180, 1162, 1142, 1054, 1044, 974, 842, 782, 769, 746 \ cm^{-1}.$

HRMS: (ESI) calcd for C₂₈H₁₅O₃⁺ [M+H]⁺ 399.10157; found 399.10114.

UV(in PhH) $\lambda_{max} = 435 \text{ nm}, \epsilon_{max} = 13280 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

8b

Benzo[3,4]tetraceno[2,1-b]benzofuran-10,17-dione Yellow solid, m.p. >302 °C (DCM/PE =5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.81 (dd, J = 7.7, 1.6 Hz, 1H), 9.30 (d, J = 7.9 Hz, 1H), 8.87 (s, 1H), 8.82 (s, 1H), 8.64 (dd, J = 7.1, 2.1 Hz, 1H), 8.13 (dd, J = 5.2, 3.6 Hz, 2H), 7.89 – 7.81 (m, 2H), 7.78 (d, J = 8.1 Hz, 1H), 7.74 – 7.67 (m, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H). This compound is difficult to solute and no clear ¹³CNMP signal in solvent could be

This compound is difficult to solute and no clear ¹³CNMR signal in solvent could be obtained.

$$\begin{split} & \text{IR}(\text{KBr}) \, \upsilon_{\text{max}} : 3134, 3052, 1671, 1619, 1460, 1452, 1425, 1403, 1367, 1343, 1296, 1250, \\ & 1217, 1198, 1186, 1131, 1077, 1055, 1025, 1017, 769, 736, 618 \, \text{cm}^{-1}. \\ & \text{HRMS}: (\text{ESI}) \text{ calcd for } \text{C}_{28}\text{H}_{15}\text{O}_{3}^{+} \, [\text{M}\text{+}\text{H}]^{+} \, 399.10157; \text{ found } 399.10114. \\ & \text{UV}(\text{in PhH}) \, \lambda_{\text{max}} = 428 \, \text{nm}, \epsilon_{\text{max}} = 11440 \, \text{mol}^{-1}.\text{L.cm}^{-1}. \end{split}$$

9a

Benzo[10,11]tetrapheno[6,5-b]benzofuran-7,17-dione

Yellow solid, m.p. >302 °C (DCM/PE =4/1).

¹H NMR (500 MHz, CDCl₃) δ 9.66 (d, *J* = 8.7 Hz, 1H), 9.61 (d, *J* = 8.7 Hz, 1H), 8.68 (d, *J* = 8.2 Hz, 1H), 8.44 (d, *J* = 7.8 Hz, 1H), 8.32 (d, *J* = 8.5 Hz, 1H), 8.19 (d, *J* = 8.5 Hz, 1H), 7.93 (t, *J* = 8.3 Hz, 2H), 7.84 – 7.72 (m, 3H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 186.7, 186.1, 158.3, 150.0, 136.4, 135.3, 135.1, 131.9, 129.97, 129.96, 129.66, 129.62, 129.0(2C), 128.8, 128.7, 128.5, 128.2, 127.9, 127.4, 125.5, 124.1, 123.8, 123.6, 123.2, 123.1, 122.7, 113.1.

IR(KBr) υ_{max} : 3079, 3059, 3038, 1668, 1615, 1569, 1454, 1342, 1298, 1235, 1209, 1169, 1146, 1122, 1074, 1057, 772, 744, 724 cm⁻¹.

HRMS: (ESI) calcd for C₂₈H₁₅O₃⁺ [M+H]⁺ 399.10157; found 399.10098.

UV(in PhH) $\lambda_{max} = 428 \text{ nm}, \epsilon_{max} = 10350 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

9a'

Benzo[8,9]tetrapheno[6,5-b]benzofuran-7,17-dione Yellow solid, m.p. >302 °C (DCM/PE =4/1). ¹H NMR (500 MHz, CDCl₃) δ 9.35 (d, *J* = 8.7 Hz, 1H), 9.25 (d, *J* = 8.6 Hz, 1H), 8.71 (d, *J* = 8.2 Hz, 1H), 8.45 (d, *J* = 7.8 Hz, 1H), 8.35 (d, *J* = 8.5 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 7.94 (t, *J* = 8.1 Hz, 2H), 7.86 (t, *J* = 7.5 Hz, 1H), 7.80 – 7.74 (m, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 189.6, 183.5, 158.2, 149.6, 136.7, 134.4, 133.1, 133.0, 132.6, 132.3, 130.0, 129.8, 129.6, 129.5, 128.98, 128.96, 128.32, 128.30, 127.6, 127.2, 124.4, 124.2, 123.9, 123.2, 122.9, 121.8, 120.1, 113.2. IR(KBr) ν_{max} : 3091, 3075, 1675, 1654, 1615, 1455, 1345, 1325, 1293, 1217, 1203, 1190, 1170, 1164, 1149, 1117, 1110, 1100, 1044, 1035, 978, 767, 739, 725 cm⁻¹.

HRMS: (ESI) calcd for $C_{28}H_{15}O_3^+$ [M+H]⁺ 399.10157; found 399.10098.

UV(in PhH) $\lambda_{max} = 454 \text{ nm}, \varepsilon_{max} = 10200 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

6. The NMR and HRMS Charts

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

7. References

- Jia, Y.; Xu, Y.; Nie, R.; Chen, F.; Zhu, Z.; Wang, J.; Jing, H., Artificial photosynthesis of methanol from carbon dioxide and water via a Nile red-embedded TiO2 photocathode. *Journal of Materials Chemistry A* 2017, 5 (11), 5495-5501.
- da Silva Júnior, E. N.; de Carvalho, R. L.; Almeida, R. G.; Rosa, L. G.; Fantuzzi, F.; Rogge, T.; Costa, P. M. S.; Pessoa, C.; Jacob, C.; Ackermann, L., Ruthenium(II)-Catalyzed Double Annulation of Quinones: Step-Economical Access to Valuable Bioactive Compounds. *Chemistry – A European Journal* 2020, 26 (48), 10981-10986.
- Barranco, E.; Martín, N.; Segura, J. L.; Seoane, C.; de la Cruz, P.; Langa, F.; Gonzalez, A.; Pingarr 6 n, J. M., Syntheses, electrochemistry and molecular modeling of N,N ['] dicyanoquinonediimine (DCNQI) derivatives of substituted 1,4-anthracenediones: precursors for organic metals. *Tetrahedron* 1993, 49 (22), 4881-4892.
- 4. Yang, H.-R.; Wang, J.-J.; Shao, P.-P.; Yuan, S.-Y.; Li, X.-Q., A facile three-step total synthesis of tanshinone I. *Journal of Asian Natural Products Research* **2016**, *18* (7), 677-683.
- Dias, G. G.; Rogge, T.; Kuniyil, R.; Jacob, C.; Menna-Barreto, R. F. S.; da Silva Júnior, E. N.; Ackermann, L., Ruthenium-catalyzed C–H oxygenation of quinones by weak O-coordination for potent trypanocidal agents. *Chemical Communications* **2018**, *54* (91), 12840-12843.
- Seymour, C. P.; Tohda, R.; Tsubaki, M.; Hayashi, M.; Matsubara, R., Photosensitization of Fluorofuroxans and Its Application to the Development of Visible Light-Triggered Nitric Oxide Donor. J Org Chem 2017, 82 (18), 9647-9654.
- Ma, Z.; Zhou, M.; Ma, L.; Zhang, M., Synthesis of benzofurans from the cyclodehydration of αphenoxy ketones mediated by Eaton's reagent. *Journal of Chemical Research* 2020, 44 (7-8), 426-436.
- 8. McCall, J. M.; Romero, D. L.; Kelly, R. C. Preparation of quinoxaline-6-carboxylic acid derivatives as modulators of PAS kinase. WO2012119046A2, 2012.