Electronic Supplementary Information

Enhancement of triboelectricity based on fully organic composite films

with conducting polymer

¹ Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

² Energy ICT Convergence Research Department, Energy Efficiency Research Division,

Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.

* Hakgeun Jeong and Kyung-Hwa Yoo are co-corresponding authors.

*Corresponding author.

Email address: hgjeong@kier.re.kr (H.G Jeong), khyoo@yonsei.ac.kr (K.-H. Yoo)

Fig. S1 (a) Preparation of PVDF-TrFE/PEDOT:PSS composite solutions. (b) Illustration of the fabrication of PVDF-TrFE/PEDOT:PSS composite films. (i) Attached the silicone rubber mold $(4 \times 4 \text{ cm}^2)$ on ITO/PET substrate. And PVDF-TrFE/PEDOT:PSS composite solutions were dropped 0.3 ml inner silicone rubber mold $(3 \times 3 \text{ cm}^2)$. (ii) The blade coating the solution. (iii) Peel off the silicone rubber mold. (iv) Vacuum process at 30 °C for 1 h to enhance interfaces between electrode and composite films. (v) The composite films were annealed at 80 °C for 3h. (vi) The composite film cropped except for the part where a copper wire was connected.

Fig. S2 FE-SEM images of the surface morphology of the PVDF-TrFE/PEDOT:PSS composite films with different PEDOT:PSS contents from 0% to 40%: (a) PVDF-TrFE films, (b) PVDF-TrFE/ 10 wt% PEDOT:PSS, (c) PVDF-TrFE/ 20 wt% PEDOT:PSS, (d) PVDF-TrFE/ 30 wt% PEDOT:PSS and (e) PVDF-TrFE/ 40 wt% PEDOT:PSS

Fig. S3 The PVDF-TrFE/PEDOT:PSS composite films with different PEDOT:PSS contents from 0% to 40%: (a) XRD analysis, (b) FT-IR spectra from 400 cm⁻¹ to 1600 cm⁻¹ and (c) FT-IR spectra of the PEDOT:PSS films from 400cm⁻¹ to 1600 cm⁻¹. (d) DSC heat flow vs. temperature during heating and cooling

Fig. S4 Power density of PVDF-TrFE/PEDOT:PSS composite films with different PEDOT:PSS contents from 0% to 40% under changing external load resistance.

Table S1. Power density of PVDF-TrFE/PEDOT:PSS composite films with differentPEDOT:PSS contents from 0% to 40% under changing external load resistance.

	PVDF-TrFE	10 wt% PEDOT:PS S	20 wt% PEDOT:PS S	30 wt% PEDOT:PS S	40 wt% PEDOT:PS S
Resistance (Ω)	6M	2M	2M	2M	2M
Power density (mW/m ²)	1.89	3.75	12.8	6.27	2.22

Fig. S5 The electrical output voltage and current of PVDF-TrFE films of FTENG by electric fan.

Host Material	Nanofiller	Structure	Opposite Materials	V o (V)	I _{sc}	Power Density	Input Condition	Refs.
PVDF- TrFE	MoS ₂	Composite films	Nylon/MoS ₂ composite films	145	350 μΑ	50 mW/cm ² (@10MΩ)	0.25 MPa	13
PVDF	AgNW	Nanofibers	Nylon nanofiber	240	12 µA	-	5 N	17
PVDF- TrFE	BaTiO ₃	Composite multilayer films	Al	44.5	1.77 μ A/cm ²	29.4 μW/cm ² (@100MΩ)	2 Hz	18
PVDF- TrFE	Polyaniline	Porous aerogel	-	246	122 μΑ	6.69 W/m ² (@10MΩ)	30 Hz	28
PVDF- TrFE	ZrO ₂	Composite films	Nylon/PMMA composite films	500	$500 \ \mu A/cm^2$	42 mW/cm ² (@10MΩ)	10 Hz	29
PVDF	Ti ₃ C ₂ T _x	Composite films	Cu tape	220	18 μΑ	2.6 mW (@10MΩ)	4 Hz	30
PVDF- TrFE	PEDOT:PSS	Composite films	PI film	15	2.3 μΑ	12.8 mW/m ² (@6MΩ)	1 Hz	This work

Table S2. Comparison of the TENGs systems based on PVDF composites with nanofiller.

Video S1 FTENG acts according to flow rate of 6.5 m/s.

Video S2 Nine commercial green light-emitting diodes lit on by FTENG.