Supporting Information

Importance of Water and Intramolecular Interaction Governs Substantial Blue Shift of C_{sp2}–H Stretching Frequency in the Complexes between Chalcogenoaldehydes and Waters

Nguyen Thi Thanh Cuc¹, Nguyen Truong An¹, Vu Thi Ngan¹, Asit. K. Chandra², Nguyen Tien Trung^{*1}

¹Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, Vietnam

²Department of Chemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India

	HO-1	FO-1	ClO-1	BrO-1	CH ₃ O-1	HS-1	FS-1	ClS-1	BrS-1	CH ₃ S-1
R1	1.98	2.18	2.18	2.21	1.93	2.47	2.63	2.60	2.61	2.44
R2	2.62	2.45	2.43	2.42	2.66	2.45	2.33	2.32	2.33	2.47
	HSe-1	FSe-1	ClSe-1	BrSe-1	CH ₃ Se-1	HTe-1	FTe-1	ClTe-1	BrTe-1	CH ₃ Te-1
R1	2.61	2.73	2.72	2.72	2.58	2.82	2.93	2.91	2.91	2.79
R2	2.44	2.32	2.31	2.32	2.44	2.46	2.33	2.31	2.32	2.45
	HO-2	FO-2	ClO-2	BrO-2	CH ₃ O-2	HS-2	FS-2	CIS-2	BrS-2	CH ₃ S-2
R1	1.87	1.96	1.97	1.99	1.84	2.37	2.43	2.42	2.42	2.34
R2	2.28	2.15	2.14	2.13	2.31	2.22	2.12	2.10	2.10	2.24
R3	1.86	1.87	1.87	1.87	1.85	1.87	1.87	1.87	1.87	1.86
	HSe-2	FSe-2	ClSe-2	BrSe-2	CH ₃ Se-2	HTe-2	FTe-2	ClTe-2	BrTe-2	CH ₃ Te-2
R1	2.50	2.55	2.54	2.55	2.48	2.71	2.75	2.74	2.74	2.69
R2	2.22	2.12	2.11	2.11	2.23	2.24	2.14	2.12	2.12	2.25
R3	1.87	1.87	1.87	1.87	1.86	1.88	1.87	1.87	1.87	1.87
	HO-3	FO-3	ClO-3	BrO-3	CH ₃ O-3	HS-3	FS-3	CIS-3	BrS-3	CH ₃ S-3
R1	1.83	1.90	1.90	1.92	1.79	2.34	2.39	2.38	2.38	2.29
R2	2.19	2.04	2.03	2.01	2.24	2.16	2.05	2.03	2.02	2.44
R3	1.78	1.79	1.79	1.80	1.77	1.79	1.80	1.80	1.80	1.80
R4	1.81	1.79	1.80	1.80	1.81	1.81	1.80	1.80	1.80	1.82
	HSe-3	FSe-3	ClSe-3	BrSe-3	CH ₃ Se-3	HTe-3	FTe-3	ClTe-3	BrTe-3	CH ₃ Te-3
R1	2.48	2.51	2.51	2.51	2.43	2.69	2.71	2.71	2.71	2.64
R2	2.16	2.05	2.04	2.03	2.45	2.16	2.07	2.05	2.05	2.45
R3	1.80	1.80	1.80	1.80	1.80	1.80	1.81	1.81	1.81	1.81
R4	1.82	1.80	1.80	1.80	1.82	1.82	1.81	1.81	1.81	1.83

Table S1 Contact distances R1, R2, R3, R4 (Å) in the complexes at MP2/6-311++G(3df,2pd)

Complex	H-bonds	ρ(r) (au)	$\nabla^2 \rho(\mathbf{r})$ (au)	H(r) (au)	E _{H-bond} (kJ.mol ⁻¹)
HO-1	C _{sp2} –H···O2	-	-	-	-
	O2–H1…O	0.0237	0.082	0.0003	-26.0
HS-1	C _{sp2} -H···O2	0.0089	0.038	0.0015	-8.7
	O2–H1…S	0.0165	0.043	0.0001	-14.1
HSe-1	C _{sp2} -H···O2	0.0088	0.038	0.0015	-8.5
	O2–H1…Se	0.0145	0.037	0.0004	-11.3
HTe-1	C _{sp2} -H···O2	0.0083	0.034	0.0013	-7.8
	O2–H1…Te	0.0122	0.028	0.0004	-8.1
FO-1	C _{sp2} –H···O2	0.0097	0.044	0.0018	-9.7
	O2–H1…O	0.0154	0.061	0.0015	-15.8
FS-1	C _{sp2} –H···O2	0.0111	0.047	0.0019	-10.6
	O2–H1…S	0.0120	0.036	0.0008	-9.7
FSe-1	C _{sp2} -H···O2	0.0112	0.047	0.0018	-10.6
	O2–H1…Se	0.0112	0.032	0.0008	-8.3
FTe-1	C _{sp2} -H···O2	0.0109	0.045	0.0017	-10.3
	O2–H1…Te	0.0103	0.025	0.0005	-7.0
ClO-1	C _{sp2} -H···O2	0.0099	0.044	0.0017	-9.8
	O2–H1…O	0.0155	0.061	0.0015	-16.0
CIS-1	C _{sp2} –H···O2	0.0099	0.044	0.0017	-9.8
	O2–H1…S	0.0127	0.037	0.0007	-10.4
ClSe-1	C _{sp2} -H···O2	0.0115	0.048	0.0018	-11.0
	O2–H1…Se	0.0117	0.033	0.0007	-8.8
CITe-1	C _{sp2} -H···O2	0.0113	0.046	0.0017	-10.7
	O2–H1…Te	0.0105	0.026	0.0005	-7.2
BrO-1	C _{sp2} –H···O2	0.0102	0.044	0.0017	-10.0
	O2–H1…O	0.0145	0.057	0.0015	-14.9
BrS-1	C _{sp2} –H…O2	0.0113	0.047	0.0018	-10.8
	O2–H1…S	0.0126	0.037	0.0007	-10.3
BrSe-1	C _{sp2} –H···O2	0.0113	0.047	0.0018	-10.8
	O2–H1…Se	0.0117	0.033	0.0008	-8.8
BrTe-1	C _{sp2} –H···O2	0.0113	0.046	0.0017	-10.6
	O2–H1…Te	0.0106	0.026	0.0005	-7.2
CH ₃ O-1	C _{sp2} –H···O2	-	-	-	-
	02–H1…O	0.0262	0.086	-0.0004	-29.4
CH ₃ S-1	C _{sp2} –H···O2	0.0089	0.037	0.0014	-8.7
	02–H1…S	0.0176	0.045	-0.0002	-15.2
CH ₃ Se-1	C _{sp2} –H…O2	0.0085	0.035	0.0018	-6.7
	O2–H1…Se	0.0159	0.043	-0.0011	-17.3
CH ₃ Te-1	C _{sp2} –H…O2	0.0086	0.036	0.0013	-8.2
	O2–H1…Te	0.0130	0.029	0.0003	-9.0

Table S2aElectron density ($\rho(r)$), Laplacian of electron density ($\nabla^2 \rho(r)$), total electron energy density (H(r)) and
individual energy of H-bond (E_{H-bond}) at BCPs of intermolecular contacts in XZ-1

Complex	H-bonds	o(r) (au)	$\nabla^2 o(\mathbf{r})$ (au)	H(r) (au)	Eu hand (kJ.mol-
НО-2	C _{sn2} –H…O5	0.0128	0.047	0.0015	-11.6
	02–H1…O	0.0296	0.090	-0.0017	-34.1
	O5–H4…O2	0.0299	0.095	-0.0015	-35.0
HS-2	C_{m2} -H···O5	0.0145	0.052	0.0014	-13.5
	$O_{2}-H1\cdots S$	0.0211	0.045	-0.0013	-18.4
	O5–H4…O2	0.0296	0.093	-0.0014	-34.4
HSe-2	C _{sn2} –H···O5	0.0145	0.052	0.0013	-13.5
	02–H1…Se	0.0188	0.039	-0.0008	-14.8
	O5–H4…O2	0.0294	0.093	-0.0014	-34.1
HTe-2	C _{sp2} –H···O5	0.0134	0.051	0.0017	-12.1
	O2–H1…Te	0.0160	0.030	-0.0004	-10.9
	O5–H4…O2	0.0271	0.091	-0.0012	-33.2
FO-2	C _{sp2} –H···O5	0.0166	0.064	0.0020	-15.8
	O2–H1…O	0.0228	0.081	0.0007	-24.7
	O5–H4…O2	0.0291	0.095	-0.0011	-34.0
FS-2	C _{sp2} –H···O5	0.0176	0.065	0.0015	-17.1
	O2–H1…S	0.0179	0.043	-0.0004	-15.0
	O5–H4…O2	0.0292	0.094	-0.0012	-33.9
FSe-2	C _{sp2} –H···O5	0.0178	0.064	0.0015	-17.2
	O2–H1…Se	0.0166	0.037	-0.0002	-12.7
	O5–H4…O2	0.0294	0.093	-0.0013	-34.1
FTe-2	C _{sp2} –H···O5	0.0172	0.062	0.0014	-16.5
	O2–H1…Te	0.0148	0.030	-0.0001	-9.9
	O5–H4…O2	0.0292	0.092	-0.0013	-33.8
ClO-2	C _{sp2} –H···O5	0.0173	0.065	0.0018	-16.5
	O2–H1…O	0.0226	0.079	0.0006	-24.4
	O5–H4…O2	0.0289	0.094	-0.0010	-33.6
CIS-2	C _{sp2} –H···O5	0.0187	0.067	0.0014	-18.3
	O2–H1…S	0.0185	0.043	-0.0005	-15.6
	O5–H4…O2	0.0293	0.094	-0.0012	-34.0
ClSe-2	C _{sp2} –H···O5	0.0186	0.066	0.0013	-18.1
	O2–H1…Se	0.0171	0.037	-0.0003	-13.1
	O5–H4…O2	0.0295	0.094	-0.0013	-34.2
ClTe-2	C_{sp2} -H···O5	0.0180	0.063	0.0013	-17.4
	O2–H1…Te	0.0150	0.030	-0.0001	-10.0
	O5–H4…O2	0.0291	0.092	-0.0013	-33.7
BrO-2	C_{sp2} -H···O5	0.0178	0.066	0.0018	-17.0
	O2–H1…O	0.0216	0.077	0.0009	-22.9
	O5–H4…O2	0.0288	0.094	-0.0010	-33.4
BrS-2	C_{sp2} -H···O5	0.0188	0.067	0.0013	-18.4
	02–H1…S	0.0182	0.043	-0.0005	-15.3
D.G. A	05–H4…O2	0.0292	0.094	-0.0012	-33.8
BrSe-2	C_{sp2} -H···O5	0.0187	0.066	0.0013	-18.2
	O_2 -H1Se	0.0169	0.03/	-0.0003	-13.0
D ₂ T ₂)	05-п4…02 С. Ц…05	0.0294	0.095	-0.0013	-34.1
Dr I e-2	$C_{sp2} - \Pi^{-1} O_{3}$	0.0182	0.004	0.0013	-17.5
	02-11.16	0.0130	0.030	-0.0001	-10.0
	C HO5	0.0291	0.092	-0.0013	-33.0
СП3О-2	$C_{sp2}=H^{-1}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3$	0.0122	0.044	0.0013	-10.9
	$02 - 111^{-10}0$	0.0324	0.095	-0.0029	-30.4
CH-C 2	$C_{-}HO5$	0.0504	0.095	0.0017	-33.0
01135-2	$O_{sp2} - H_{1S}$	0.0141	0.050	_0 0017	-13.1
	02-1115 05 H402	0.0221	0.040	-0.001/	-19.5
CH-So 2	C = H = 02	0.0501	0.094	-0.0010	-33.1
011300-2	O_{sp2} - 11 - 0.5	0.0142	0.030	_0.0013	-13.2
	$02 - 11^{-11} \cdot 3e$	0.0190	0.039	-0.0010	-13.0
CH.To 2	C . HO5	0.0299	0.095	-0.0010	-34.8 12.8
011310-2	$C_{sp2} - \Pi^{} O J$	0.0139	0.049	_0.0012	-12.0 11 A
	02 - 111 - 10 05 H/02	0.0100	0.001	-0.0005	-11.4

Table S2b	Electron density ($\rho(\mathbf{r})$), Laplacian of electron density ($\nabla^2 \rho(\mathbf{r})$), total electron er	nergy d	lensity
(H(r))	and individual energy of H-bond (E _{H-bond}) at BCPs of intermolecular contacts in	n XZ-2	2

Complex	H-bonds	ρ(r) (au)	$\nabla^2 \rho(\mathbf{r})$ (au)	H(r) (au)	E _{H-bond} (kJ.mol ⁻¹)
НО-3	C _{sp2} –H···O8	0.0155	0.056	0.0015	-14.5
	02–H1…O	0.0323	0.093	-0.0030	-38.5
	O5–H4…O2	0.0360	0.103	-0.0043	-45.0
	08–H7…O5	0.0339	0.098	-0.0034	-41.1
HS-3	C _{sn} 2–H···O8	0.0164	0.059	0.0015	-15.6
	02–H1…S	0.0224	0.046	-0.0018	-19.7
	O5–H4…O2	0.0348	0.101	-0.0038	-42.9
	O8–H7…O5	0.0336	0.098	-0.0032	-40.7
HSe-3	C _{sp2} –H···O8	0.0164	0.059	0.0015	-15.6
	O2–H1…Se	0.0199	0.039	-0.0012	-15.9
	O5–H4…O2	0.0345	0.100	-0.0036	-42.4
	O8–H7…O5	0.0334	0.098	-0.0031	-40.4
HTe-3	C _{sp2} –H···O8	0.0162	0.059	0.0015	-15.4
	O2–H1…Te	0.0171	0.031	-0.0006	-11.7
	O5–H4…O2	0.0340	0.100	-0.0034	-41.7
	O8–H7…O5	0.0329	0.095	-0.0021	-36.5
FO-3	C _{sp2} –H···O8	0.0208	0.076	0.0015	-21.1
	O2–H1…O	0.0258	0.088	-0.0002	-29.3
	O5–H4…O2	0.0349	0.102	-0.0037	-43.2
	O8–H7…O5	0.0351	0.100	-0.0039	-43.0
FS-3	C _{sp2} –H…O8	0.0206	0.075	0.0014	-20.8
	O2–H1…S	0.0194	0.044	-0.0008	-16.6
	O5–H4…O2	0.0341	0.100	-0.0034	-41.8
	O8–H7…O5	0.0345	0.099	-0.0036	-42.1
FSe-3	C _{sp2} –H···O8	0.0204	0.074	0.0014	-20.6
	O2–H1…Se	0.0179	0.038	-0.0006	-14.0
	O5–H4…O2	0.0341	0.100	-0.0034	-41.8
	O8–H7…O5	0.0344	0.099	-0.0036	-42.0
FTe-3	C _{sp2} –H…O8	0.0198	0.072	0.0014	-19.8
	O2–H1…Te	0.0159	0.030	-0.0003	-10.8
	O5–H4…O2	0.0339	0.099	-0.0034	-41.3
~ ~ ~	08–H7…O5	0.0340	0.099	-0.0034	-41.4
CIO-3	C_{sp2} -H···O8	0.0218	0.078	0.0013	-22.3
	02–H1…O	0.0256	0.086	-0.0002	-28.9
	05–H4···02	0.0345	0.101	-0.0036	-42.7
	08-H/05	0.0350	0.099	-0.0039	-42.9
CIS-3	C_{sp2} -H···O8	0.0216	0.077	0.0012	-22.1
	02-H1S	0.0200	0.044	-0.0010	-17.2
	03–п4 02 08 Ц705	0.0342	0.100	-0.0033	-42.0
CISe 3	06-п/- 05 С. Ц.:: 08	0.0343	0.099	-0.0030	-42.2
Cise-5	$C_{sp2} - \Pi^{m} O_{\delta}$	0.0213	0.070	0.0012	-21.0
	$02 - 111^{-1}3e$ 05 H402	0.0184	0.038	-0.0007	-14.4
	09-114 02	0.0344	0.100	-0.0035	-42.0
CITe-3	$C = H \cdots O S$	0.0344	0.073	0.0013	-20.7
circo	$O_{sp2} H = 00$	0.0200	0.079	-0.0004	-10.9
	05-H402	0.0339	0.090	-0.0034	-41.3
	08-H7…05	0.0340	0.099	-0.0034	-41.3
BrO-3	C_{m2} -H···O8	0.0227	0.080	0.0011	-23.3
	02–H1…O	0.0246	0.084	0.0001	-27.3
	O5–H4…O2	0.0342	0.101	-0.0034	-42.1
	08–H7…O5	0.0350	0.100	-0.0039	-42.9
BrS-3	C _{sn2} –H···O8	0.0219	0.077	0.0011	-22.4
	02–H1…S	0.0199	0.044	-0.0010	-17.0
	O5–H4…O2	0.0341	0.100	-0.0034	-41.8
	O8–H7…O5	0.0345	0.099	-0.0036	-42.1
BrSe-3	C _{sp2} –H···O8	0.0214	0.076	0.0012	-21.8
	O2–H1…Se	0.0183	0.038	-0.0007	-14.3
	O5–H4…O2	0.0341	0.100	-0.0034	-41.7
	O8–H7…O5	0.0343	0.099	-0.0035	-41.9

 $\begin{array}{ll} \textbf{Table S2c} & \text{Electron density } (\rho(r)), \text{ Laplacian of electron density } (\nabla^2 \rho(r)), \text{ total electron energy density } (H(r)) \\ & \text{and individual energy of H-bond } (E_{\text{H-bond}}) \text{ at BCPs of intermolecular contacts in } \textbf{XZ-3} \end{array}$

Complex	H-bonds	ρ(r) (au)	$\nabla^2 \rho(\mathbf{r})$ (au)	H(r) (au)	E _{H-bond} (kJ.mol ⁻¹)
BrTe-3	C _{sp2} –H…O8	0.0209	0.074	0.0013	-21.0
	O2–H1…Te	0.0161	0.030	-0.0004	-10.9
	O5–H4…O2	0.0338	0.099	-0.0033	-41.2
	O8–H7…O5	0.0339	0.099	-0.0043	-41.2
CH ₃ O-3	C _{sp2} –H···O8	0.0142	0.051	0.0014	-13.1
	O2–H1…O	0.0361	0.097	-0.0047	-44.2
	O5–H4…O2	0.0366	0.103	-0.0046	-45.9
	O8–H7…O5	0.0336	0.098	-0.0032	-40.7
CH ₃ S-3	C _{sp2} –H…O8	0.0102	0.037	0.0012	-9.0
	O2–H1…S	0.0247	0.048	-0.0026	-22.6
	O5–H4…O2	0.0343	0.101	-0.0035	-42.4
	O8–H7…O5	0.0325	0.098	-0.0027	-39.2
CH ₃ Se-3	C _{sp2} –H···O8	0.0100	0.036	0.0011	-8.8
	O2–H1…Se	0.0218	0.041	-0.0018	-18.1
	O5–H4…O2	0.0341	0.100	-0.0034	-41.9
	O8–H7…O5	0.0324	0.098	-0.0026	-39.0
CH ₃ Te-3	C _{sp2} –H…O8	0.0099	0.035	0.0011	-8.7
	O2–H1…Te	0.0183	0.032	-0.0009	-12.9
	O5–H4…O2	0.0335	0.099	-0.0032	-40.9
	O8–H7…O5	0.0320	0.097	-0.0025	-38.5

Table S2c Continued

Table S3 Concise summary of interaction energies of $(H_2O)_n$ systems, with n=2, 3, 4 (kJ.mol⁻¹)

Complexes	Level of theory	Interaction energy (kJ.mol ⁻¹)	Source
(H ₂ O) ₂	MP2/aug-cc-pVDZ	-18.5ª	[1]
	MP2/aug-cc-pVDZ	-19.4ª	[1]
	CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ	-11.3 ^b , -20.0 ^a	This work
	CCSDT/6-311++G(3df,2pd)//MP2/6-	-10.4 ^b , -19.3 ^a	This work
	311++G(3df,2pd)		
	Experiment	-22.6 ± 2.9	[2]
(H ₂ O) ₃	MP4SDQ/6-31+G(2d,2p)	-45.1 ^b	[3]
	CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ	-41.6 ^b , -64.2 ^a	This work
	CCSDT/6-311++G(3df,2pd)//MP2/6-	-39.2 ^b , -61.6 ^a	This work
	311++G(3df,2pd)		
(H ₂ O) ₄	MP2/6-31+G(d,p)	-117.9ª	[4]
. ,	MP2/6-311+G(2d,2p)	-102.5ª	[4]
	CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ	-79.2 ^b , -113.7 ^a	This work
	CCSDT/6-311++G(3df,2pd)//MP2/6-	-74.1 ^b , -108.7 ^a	This work
	311++G(3df,2pd)		
^a Corrected b	y only BSSE		
^b Corrected b	y both ZPE and BSSE		

^[1] S. S. Xantheas and T. H. Dunning Jr, J. Chem. Phys., 1993, 99, 8774-8792.

^[2] L. A. Curtiss, D. J. Frurip, and M. Blander, J. Chem. Phys., 1979, 71, 2703.

^[3] O. Mo, M. Yanez, and J. Elguero, J. Chem. Phys., 1992, 97, 6628.

^[4] M. Masella, N. Gresh and J. P. Flament, J. Chem. Soc. Faraday Trans, 1998, 94, 2745-2753.

 $\label{eq:s4} \begin{array}{l} \mbox{Table S4. Changes of H-bond lengths (Δr, in m$Å$) and their corresponding stretching frequencies (Δv, in cm$^-1$) in complexes at MP2/6-311++G(3df,2dp)} \end{array}$

	HO-1	FO-1	ClO-1	BrO-1	CH ₃ O-1	HS-1	FS-1	CIS-1	BrS-1	CH ₃ S-1
$\Delta r(C_{sp2}-H)$	-2.9	-1.3	-1.3	-1.2	-3.5	-0.3	-0.3	0.2	0.4	-0.7
$\Delta r(O2-H1)$	7.4	3.7	3.8	3.4	9.0	6.8	4.1	4.6	4.5	7.8
$\Delta \nu (C_{sp2}-H)$	45.8	24.4	27.3	28.1	49.4	15.6	13.9	11.5	9.7	19.9
$\Delta v(O2-H1)$	-147.5	-66.2	-68.3	-60.0	-181.7	-141.5	-81.2	-91.8	-89.6	-163.3
	HSe-1	FSe-1	ClSe-1	BrSe-1	CH ₃ Se-1	HTe-1	FTe-1	ClTe-1	BrTe-1	CH ₃ Te-1
$\Delta r(C_{sp2}-H)$	0	0	0.4	0.5	-0.4	0.4	0.1	0.4	0.6	-0.1
$\Delta r(O2-H1)$	6.4	4.4	4.8	4.7	7.3	5.7	4.4	4.7	4.7	6.6
$\Delta v(C_{sp2}-H)$	10.1	10.8	7.5	6.5	15.4	4.6	9.3	6.4	4.6	11.5
$\Delta v(O2-H1)$	-134.7	-87.6	-96.9	-95.6	-153.8	-121.2	-90.3	-95.5	-96.0	-139.0
	HO-2	FO-2	ClO-2	BrO-2	CH ₃ O-2	HS-2	FS-2	CIS-2	BrS-2	CH ₃ S-2
$\Delta r(C_{sp2}-H)$	-4.6	0.1	-0.1	0.3	-5.9	0.6	2.1	2.7	3.1	-0.9
$\Delta r(O2-H1)$	13.1	8.8	8.7	8.2	15.4	12.2	9.5	10.1	10.0	13.4
$\Delta r(O5-H4)$	12.6	12.3	12.1	12.0	13.2	12.2	11.9	12.0	11.9	12.7
$\Delta \nu (C_{sp2}-H)$	72.8	11.3	17.7	14.5	86.4	7.9	-15.4	-20.8	-25.3	27.7
$\Delta v(O2-H1)$	-255.7	-159.9	-161.4	-150.6	-303.0	-247.8	-188.9	-203.3	-200.6	-273.0
$\Delta v(O5-H4)$	-249.7	-240.6	-237.2	-234.0	-260.4	-240.8	-234.3	-237.1	-235.1	-250.8
	HSe-2	FSe-2	ClSe-2	BrSe-2	CH ₃ Se-2	HTe-2	FTe-2	ClTe-2	BrTe-2	CH ₃ Te-2
$\Delta r(C_{sp2}-H)$	1.3	2.5	3.1	3.4	-0.1	5.4	2.4	3.0	3.3	0.5
$\Delta r(O2-H1)$	11.6	9.7	10.3	10.2	12.7	9.7	9.7	10.0	10.0	11.8
$\Delta r(O5-H4)$	12.0	12.0	12.1	12.0	12.5	12.0	12.0	11.9	11.9	12.2
$\Delta \nu (C_{sp2}-H)$	-4.2	-20.9	-27.1	-30.9	16.4	-13.7	-20.5	-27.6	-32.0	7.5
$\Delta v(O2-H1)$	-237.2	-195.4	-207.6	-205.9	-259.2	-221.5	-195.5	-202.9	-201.8	-239.4
$\Delta v(O5-H4)$	-238.0	-237.4	-239.0	-237.6	-248.1	-230.8	-236.5	-235.9	-235.0	-241.1
	HO-3	FO-3	ClO-3	BrO-3	CH ₃ O-3	HS-3	FS-3	CIS-3	BrS-3	CH ₃ S-3
$\Delta r(C_{sp2}-H)$	-5.0	1.9	1.6	2.3	-7.4	0.6	2.9	3.5	3.9	-3.1
$\Delta r(O2-H1)$	14.9	10.1	10.1	9.5	17.9	13.4	10.6	11.3	11.2	15.3
$\Delta r(O5-H4)$	17.4	16.5	16.3	16.0	18.0	16.3	15.7	15.8	15.7	15.9
$\Delta r(O8-H7)$	15.9	16.9	16.8	16.8	15.8	15.3	16.0	16.0	16.0	14.7
$\Delta \nu (C_{sp2}-H)$	80.1	-14.3	-7.1	-15.9	109.0	8.7	-27.3	-32.1	-38.5	51.6
$\Delta v(O2-H1)$	-294.6	-190.2	-191.7	-180.5	-358.2	-274.9	-213.0	-228.7	-227.6	-317.0
$\Delta v(O5-H4)$	-341.6	-322.7	-317.8	-312.1	-354.2	-319.6	-307.2	-309.8	-307.8	-313.1
$\Delta v(O8-H7)$	-315.2	-346.5	-344.9	-334.6	-311.3	-304.4	-329.6	-330.7	-318.7	-289.5
	HSe-3	FSe-3	ClSe-3	BrSe-3	CH ₃ Se-3	HTe-3	FTe-3	ClTe-3	BrTe-3	CH ₃ Te-3
$\Delta r(C_{sp2}-H)$	1.5	3.2	3.7	4.1	-2.5	2.3	3.0	3.6	4.0	-2.1
$\Delta r(O2-H1)$	12.8	10.8	11.4	11.3	14.3	12.1	10.8	11.2	11.1	13.1
$\Delta r(O5-H4)$	16.0	15.7	15.8	15.7	15.7	15.6	15.5	15.5	15.5	15.3
$\Delta r(O8-H7)$	15.1	15.9	15.9	15.8	14.5	14.8	15.5	15.5	15.5	14.1
$\Delta v(C_{sp2}-H)$	-5.6	-31.5	-37.0	-42.0	43.3	-16.6	-28.1	-35.7	-41.3	37.8
Δv (O2–H1)	-262.9	-219.1	-231.8	-230.7	-298.0	-248.2	-219.2	-227.5	-227.1	-280.7
$\Delta v(O5-H4)$	-314.9	-307.8	-309.9	-307.7	-298.7	-307.6	-305.3	-306.0	-304.7	-300.0
$\Delta v(O8-H7)$	-300.3	-327.9	-328.0	-315.4	-284.7	-292.9	-309.8	-309.8	-309.1	-276.7

	НСНО	FCHO	CICHO	BrCHO	CH ₃ CHO
q(O)/e	-0.514	-0.493	-0.455	-0.445	-0.506
	HCHS	FCHS	CICHS	BrCHS	CH ₃ CHS
q(S)/e	0.114	0.075	0.156	0.177	0.089
	HCHSe	FCHSe	ClCHSe	BrCHSe	CH ₃ CHSe
q(Se)/e	0.202	0.148	0.238	0.261	0.175
	НСНТе	FCHTe	CICHTe	BrCHTe	CH ₃ CHTe
q(Te)/e	0.290	0.211	0.309	0.337	0.234

Table S5. NBO charges of Z atoms (Z = O, S, Se, Te) in monomers at ω B97XD/6-311++G(3df,2pd)

Table S6. Concise summary of stretching frequency changes of C_{sp}–H, C_{sp2}–H and C_{sp3}–H bonds involving hydrogen bond

Complexes	Level of theory/ Experiment	$\Delta \nu (C_{sp3}-H) (cm^{-1})$	Source
$C_2HX\cdots C_6H_6$	MP2/aug-cc-pVDZ	15.7 + 24.0	[5]
$(X = H, F, Cl, Br, CH_3, NH_2)$		13.7 ÷ 24.9	[3]
CH ₃ CN/CH ₃ NC···H ₂ O	B3LYP/ aug-cc-pVTZ	5-14	[6]
CHX ₃ ···NH ₂ Y	MP2/6-311++G(d,p)	0.4 ± 26.2	[7]
(X=F, Cl; Y=H, F, Cl, Br)		9.4 • 50.5	[/]
$DMSO \cdots CO_2$	MP2/6-311++G(2d,2p)	35	
DMSO…1H ₂ O		29 7	
DMSO···2H ₂ O (has water bridge O–H···O)		33.2	[8]
DMSO···2H ₂ O (no water bridge		25.2	
0–H…O)			
Cl ₃ CH···NCCH ₃	Exp.	8.7	[9]
F ₃ CH…ammonia	Exp.	7.6	[10]
F ₃ CH…pyridine		3	[10]
F ₃ CH···OH ₂	Exp.	20.3	[11]
	MP2/6-311++G(d,p)	39.4	[11]
Complexes	Level of theory/ Experiment	$\Delta \nu (C_{sp2}-H) (cm^{-1})$	Source
RCHZ…HCOOH	MP2/aug-cc-pVDZ	81÷96	[12]
$(R=H, F, Cl, Br, CH_3, NH_2; Z=O, S)$			[12]
CH_3CHO ···1 H_2O	B3LYP/6-311++G(d,p)	52	[13]
CH ₃ CHO···2H ₂ O		93	[15]
HCHO…1H ₂ O	B3LYP/6-311++G(d,p)	45	[14]
HCHO···2H ₂ O		66	[17]
CH_3CHZ 1 H_2O (Z=O, S, Se, Te)	MP2/6-311++G(3df,2dp)	$11.5 \div 49.4$	This
CH ₃ CHZ···2H ₂ O		$7.5 \div 86.4$	work
CH ₃ CHZ···3H ₂ O		37.8 ÷ 109.0	
BIM(benzimidazole)…2H ₂ O	Exp.	14	[15]
MBIM(N-methylbenzimidazole)…4H ₂ O	Exp.	14	[10]
Complexes	Level of theory/ Experiment	$\Delta \nu (C_{sp}-H) (cm^{-1})$	Source
RCHO…HCN	MP2/aug-cc-pVDZ	-56.7 ÷ -107.8	[16]
RCCH···NH ₃ (R= H, F, Cl, CH ₃ , CH ₂ F,	B3LYP/6-31(d,p)		
CHF_2 , CF_3 , CH_2Cl , $CHCl_2$, CCl_3 , CN , HCC ,		-193 ÷ -324	[17]
FCC, ClCC)			
(o-Chlorobenzoacetylen) ₃	Exp.	-69	[18]
(2-ethynyladamantan-2-ol)	Exp.	-130	[19]

[5] P. N. Khanh, V. T. Ngan, N. T. H. Man, N. T. A. Nhung, A. K. Chandra and N.T. Trung, *RSC Adv.*, 2016, **6**, 106662-106670.

- [6] D. L. Cao, X. Q. Feng, J. L. Wang, Y. X. Li, Z. Y. Hu and S. S. Chen, J. Mol. Struct.: THEOCHEM, 2008, 849, 76-83.
- [7] N.T.H. Man, P. L. Nhan, V. Vien, D.T. Quang and N. T. Trung, Int. J. Quantum Chem, 2017, 117, e25338.

[8] P. N. Khanh, P. D. Cam-Tu, H. Q. Dai, V. Q. Van, V. T. Ngan, M. T. Nguyen and N. T. Trung, J. Comput. Chem.,

- 2019, 140, 464-474.
- [9] B.Behera and P. K. Das, J. Phys. Chem. A, 2019, 123, 1830-1839.
- [10] W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin and B. J. van der Veken, J. Phys. Chem. A, 2005, 109, 3038-3044.
- [11] R. Gopi, N. Ramanathan and K. Sundararajan, Chem. Phys., 2016, 476, 36-45.
- [12] N. T. Trung, P. N. Khanh, A. J. P. Carvalho and M. T. Nguyen, J. Comput. Chem., 2019, 40, 1387-1400.
- [13] A. K. Chandra and T. Zeegers-Huyskens, J. At. Mol. Phys., 2012, 2012.
- [14] A. K. Chandra, T. Zeegers-Huyskens, J. Comput. Chem., 2012, 33, 1131-1141.
- [15] A. Bhattacherjee and S. Wategaonkar, Phys. Chem. Chem. Phys., 2016, 18, 27745-27749.
- [16] N. N. Tri, N. T. H. Man, N. L. Tuan, N. T. T. Trang, D. T. Quang and N. T. Trung, *Theor. Chem. Acc.*, 2017, **136**, 1-12.
- [17] V. Dimitrova, S. Ilieva and B. Galabov, J. Phys. Chem. A, 2002, 106, 11801-11805.
- [18] G. Ferguson and K.M.S. Islam, J. Chem. Sot B, 1966, 593.
- [19] E. Steinwender, E. T. G. Lutz, J. H. Van der Maas and J. A. Kanters, 1993, 4, 217-229.

Figure S1a. NCI isosurface and plots of s(r) as a function of $sign(\lambda_2)\rho(r)$ for **XZ-1** complexes (*The surfaces are colored on a blue-green-red scale according to the values of sign(\lambda_2)\rho(r) ranging from -0.04 to 0.04 a.u)*

Figure S1b. NCI isosurface and plots of s(r) as a function of $sign(\lambda_2)\rho(r)$ for **XZ-2** complexes (*The surfaces are colored on a blue-green-red scale according to the values of* $sign(\lambda_2)\rho(r)$ *ranging from* -0.04 *to* 0.04 *a.u*)

Figure S1c. NCI isosurface and plots of s(r) as a function of $sign(\lambda_2)\rho(r)$ for **XZ-3** complexes (*The surfaces are colored on a blue-green-red scale according to the values of sign(\lambda_2)\rho(r) ranging from -0.04 to 0.04 a.u)*

Figure S2. The linear correlation of change in stretching frequency $\Delta v(C_{sp2}-H)$ with respective to intermolecular hyperconjugative interaction energies and changes of intramolecular hyperconjugative interaction energies (E_{inter} + 1.5 ΔE_{intra}) for the obtained complexes at ω B97X-D/6-311++G(3df,2pd), with X = H, F, Cl, Br, CH₃; Z = O, S, Se, Te, n = 1-3.