Dynamic covalent hydrogel of natural product baicalin with

antibacterial activities

Zhen-Zhen Wang, ^a* Yuan Jia, ^a Guoqiang Wang, ^a Hongjuan He, ^a Lihua Cao, ^a Yanmei Shi, ^a Mingsan Miao, ^a* and Xiu-Min Li^{b, c}*

^aAcademy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China

^bDepartment of Pathology, Microbiology &Immunology, New York Medical College, Valhalla, NY, USA

°Department of Otolaryngology, New York Medical College, Ardsley, NY

*Corresponding authors: zzwang@hactcm.edu.cn; XiuMin_Li@NYMC.edu

Fig. S1 The Baicalin (BA) hydrogels. (A) BA/Na₂B₄O₇ mixtures at different pH conditions. (B) BA/ Na₂B₄O₇ mixtures (4:1) mixture at different concentration. (C) BA/ Na₂B₄O₇ mixtures at different ratios.

Fig. S2 The pore structure of BA hydrogel under SEM. (A) The pore with 10.7 μm diameter; (B) The pore with 12.4 μm diameter; (B) The wall with 720 nm thickness.

Fig. S3 The SEM images of BA hydrogel at different concentrations and BA/B ratios. (A)(B) BA:B=200 mM:200 mM; (C)(D) BA:B=200 mM:400 mM; (E)(F) BA:B=200 mM:800 mM.

Fig. S4 The the critical gelation temperature of BA/ $\mathrm{Na_2B_4O_7}$ hydrogel at different ratios.

Fig. S5 Rheological tests of BA hydrogel at 30 °C and 40 °C respectively. G' and G" of hydrogel as a function of strain at a frequency of 1 Hz at 30 °C (A) and 40 °C (B); (B) Viscosity with the change of shear rate at 30 °C (C) and 40 °C (D).

Fig. S6 Cell viability under different BA hydrogel concentration.