Supporting information

Generation of multi-valence Cu_xO by reduction with the activated semi-coke and their collaboration in the selective reduction of NO with NH_3

Bo Peng,^a Shuoyang Liang,^b Zheng Yan,^c Hao Wang,^{a,d} Zhao Meng ^d and Mei Zhang *a

- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
- College of energy & environment, Shenyang Aerospace University, Shenyang, 110136,
 PR China.
- d. School of Materials Science and Engineering, Peking University, Beijing 100871, PR China.

* Corresponding author: Mei Zhang

zhangmei@ustb.edu.cn

N_2 selectivity.

The N_2 selectivity of SCR process can be calculated according to the concentration of inlet and outlet gases stream, as follows:

$$N_2$$
 selectivity (%) = $\left(1 - \frac{\left[N_x O\right]_{out}}{\left[NO\right]_{in} - \left[NO\right]_{out}}\right) \times 100\%$

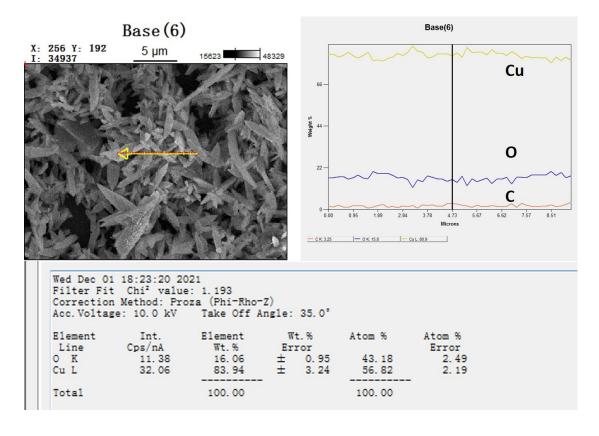
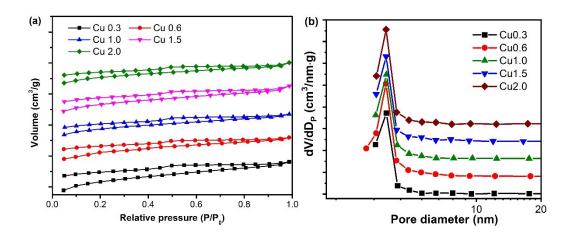



Figure S1. Elemental distribution of the best-performent catalyst (Cu1.0-350).

Figure S2. (a) N_2 adsorption isotherms and (b) BJH pore size distributions of these catalysts with different Cu loading.

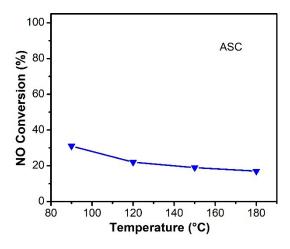


Figure S3. Reaction activity of the ASC.

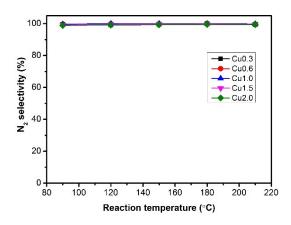


Figure S4. N_2 selectivity of these catalysts with different Cu loading.

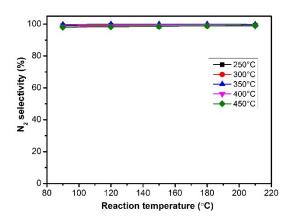


Figure S5. N_2 selectivity of these catalysts under different calcination temperature.