Electronic Supplementary Information

A novel strategy for sensitive and rapid detection of ascorbic acid via the Tyndall effect of cobalt hydroxide nanoflakes

Qian Gao, Jing Wan, Xuejiang Chen, Xiaomei Mo, Yao Sun, Jianmei Zou,* Jinfang

Nie and Yun Zhang *

College of Chemistry and Bioengineering, Guilin University of Technology, Guilin

541004, P. R. China

* Corresponding Author.

E-mail: 2019136@glut.edu.cn, zy@glut.edu.cn.

Tel: +86 773 5896453; Fax: +86 773 5896839.

Fig. S1 Dynamic light scattering (DLS) result of the prepared CoOOH nanoflakes.

Fig. S2 Zeta-Potential of Values of the prepared CoOOH nanoflakes.

Fig. S3 (A) The TE images obtained from the 2.5 μ g/mL CoOOH nanoflakes solution incubated without or with 10 μ M AA for different time (1, 4, 8, 12, 16 and 20 minutes). (B) The average grayscale change (Δ AG) of the TE images shown in (A). Each error bar represents a standard deviation across three replicate experiments.

Fig. S4 (A) The TE images obtained from the 2.5 μ g/mL CoOOH nanoflakes solution incubated without or with 10 μ M AA at different temperature (4, 25, 45 and 60 °C). (B) The average grayscale change (Δ AG) of the TE images shown in (A). Each error bar represents a standard deviation across three replicate experiments.

colorimetric technology.					
Materials	Detection method	Detection range	LOD	Reference	
		(µM)	(µM)		
Co ₃ O ₄ /CGM	Colorimetry	30 - 140	0.19	S 1	
Cu-Ag/rGO	Colorimetry	5 - 10	3.6	S2	
Fe-MOF	Colorimetry	30 - 485	6	S3	
BSA-AuNCs	Colorimetry	2 - 50	0.16	S4	
CoOOH-TMB	Colorimetry	0.5 - 50	0.14	S5	
CoOOH-ABTS	Colorimetry	0.5 - 15	0.16	S 6	
CoOOH-OPD	Colorimetry	0.5 - 60	0.43	S 7	
СоООН	TE	0.25 - 40	0.012	This work	

 Table S1 Comparison of the new AA assay with some previous nanoprobe-based

 colorimetric technology

TE, Tyndall Effect.

Sample	Spiked	Total found	Recovery (%)	RSD (%)
	(µM)	(µM)	n=3	n=3
	0.00	0.70	/	0.32
Vitamin C-tablet	5.00	5.91	104.2	7.17
	10.00	10.13	94.3	3.10

 Table S2 Determination of AA in vitamin C tablets.

Reference

(1) Fan, S.; Zhao, M.; Ding, L.; Li, H.; Chen, S. Preparation of Co₃O₄/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. *Biosensors and Bioelectronics* **2017**, *89*, 846-852.

(2) Darabdhara, G.; Sharma, B.; Das, M. R.; Boukherroub, R.; Szunerits, S. Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. *Sensors and Actuators B: Chemical* **2017**, *238*, 842-851.

(3) Zhang, J.-W.; Zhang, H.-T.; Du, Z.-Y.; Wang, X.; Yu, S.-H.; Jiang, H.-L. Water-stable metal öorganic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. *Chemical Communications* **2014**, *50*, 1092-1094.

(4) Yang, X.-H.; Ling, J.; Peng, J.; Cao, Q.-E.; Wang, L.; Ding, Z.-T.; Xiong, J. Catalytic formation of silver nanoparticles by bovine serum albumin protected-silver nanoclusters and its application for colorimetric detection of ascorbic acid. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **2013**, *106*, 224-230.

(5) Ji, D.; Du, Y.; Meng, H.; Zhang, L.; Huang, Z.; Hu, Y.; Li, J.; Yu, F.; Li, Z. A novel colorimetric strategy for sensitive and rapid sensing of ascorbic acid using cobalt oxyhydroxide nanoflakes and 3, 3′, 5, 5′ -tetramethylbenzidine. *Sensors and Actuators B: Chemical* **2018**, *256*, 512-519.

(6) Fang, X.; Wang, J.; Cui, X.; Zhang, Y.; Zhu, R.; Zhao, H.; Li, Z. Sensitive and facile colorimetric sensing strategy for ascorbic acid determination based on CoOOH nanoflakes-ABTs oxidative system. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **2019**, *575*, 66-74.

(7) Liu, S.; Han, L.; Li, N.; Xiao, N.; Ju, Y.; Li, N.; Luo, H. A fluorescence and colorimetric dualmode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes. *Journal of Materials Chemistry B* **2018**, 6, 2843-2850.