Supporting information for:

Reduction of Silver Ions in Molybdates: Elucidation of Framework Acidity as the Factor Controlling Charge Balance Mechanisms in Aqueous Zinc-Ion Electrolyte

Derrick Combs¹, Brendan Godsel¹, Julie Pohlman-Zordan¹, Allen Huff¹, Jackson King¹, Rob Richter², and Paul F. Smith¹*

¹Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso IN 46383 ²Department of Chemistry and Physics, Chicago State University, 9501 S. King Drive, Chicago IL 60628

Material	Electrolyte	Voltage	Specific	Retention	Ref
	-	(V)	Capacity (first,	%/cycle	
			mAh/g)		
Ag0.33V2O5	2 M	0.2-1.6	418 (0.2 A/g)	~60%/100@	1
	Zn(CF3SO3)2			0.5A/g	
Ag0.4V2O5	3M ZnSO4	0.4-1.4	~320 (0.5 A/g)	~70%/1000 @	2
			_	5A/g	
Ag0.33V2O5	2M ZnSO ₄	0.4-1.4	350 (0.05 A/g)	83%/100@	3
				1A/g	
Ag1.2V3O8	2M ZnSO ₄	0.4-1.4	350 (0.05 A/g)	~80%/100	3
			_	@1A/g	
Ag2V4O11	2M ZnSO ₄	0.4-1.4	~240 (0.1 A/g)	~66%/100@	3
			_	1A/g	
β-AgVO ₃	2M ZnSO ₄	0.4-1.4	300 (0.05 A/g)	<25%/100 @	3
				1A/g	
$Ag_4V_2O_7$	2M ZnSO ₄	0.4-1.4	160 (0.1 A/g)	<66%/100@	3
				1A/g	
Ag ₂ V ₄ O ₁₁	3M	0.4-1.7	210 (0.1A/g)	93%/6000@	4
	Zn(CF3SO3)2			5A/g	
Ag0.33V2O5@V2O5	3M	0.2-1.8	312 (0.5A/g)	90%/100@	5
	Zn(CF3SO3)2			0.5A/g	
β-AgVO ₃	1.5M ZnSO ₄	0.4-1.3	283 (0.1 A/g)	65%/200	6
				@0.1A/g	
CuV ₂ O ₆	3M	0.3-1.6	427 (0.1A/g)	99%/3000 @	7
	Zn(CF3SO3)2			5A/g	
Cu _{0.95} V ₂ O ₅	3M	0.2-1.6	405 (0.1A/g)	75%/100	8
	Zn(CF3SO3)2			@ 0.5 A/g	
Cu0.34V2O5	6M ZnSO4	0.25-	315 (0.02A/g)	91%/1000@	9
		1.8		0.8A/g	
Cu3(OH)2V2O7	3M ZnSO ₄	0.4-1.4	336 (1A/g)	~100%/3000	10
				@10A/g	
Cu ₃ (OH) ₂ V ₂ O ₇	2.5M	0.2-1.6	216 (0.1A/g)	89%/500	11
	Zn(CF3SO3)2			@0.5A/g	
Cu _x V ₂ O ₅	2M ZnSO ₄	0.3-1.4	300 (2A/g)	88%/10000@	12
				10A/g	

Table S1: Metrics for Ag or Cu-Vanadium oxide cathodes in Aqueous Zinc Ion Batteries.

Figure S1: EDS evidence for Ag⁺ autoreduction in the TEM beam. In **1Mo** and **3Mo** the surface particles/protrusions are clearly resolved as pure Ag.

Figure S2: EDS spectra for the HAADF images in the manuscript's Figure 1.

Figure S3. SEM images at 3000x magnification; the red box indicates the region analyzed by EDS mapping.

Fig S4: Cyclic voltammograms (20 mV/s) at a glassy carbon electrode of aqueous (top, grey) ZnSO₄, (middle, blue) (NH₄)₂Mo₂O₇ and (bottom, cyan) Na₂MoO₄.

Fig S5: The Scherrer equation determines the Ag crystallite size for each SMO as a function of its reduction. Red: 1Mo, Blue: m-2Mo, Green: t-2Mo, Purple: 3Mo.

Fig S6: A plot of log(i) vs. log(v) from variable rate CV's yield a line with slope b between 0.5 (pure diffusion) and 1 (pure capacitance). Here we plot the peak current for the reduction of silver in each SMO.

Figure S7: A HAADF/STEM image with EDS data from a 0.8V reduced **m-2Mo** electrode.

Figure S8: A HAADF/STEM image with EDS data from a 0.8V reduced **t-2Mo** electrode. The spectrum provided is for the region in the yellow box.

Figure S9: SEM/EDS characterization of 0.8V- reduced m-2Mo.

Figure S10: Zoomed in view of a **1Mo** particle reduced to 0.8V.

Figure S11: SEM/EDS characterization of 0.8V- reduced 1Mo.

Figure S12: An example of a Zn-O rich particle detected by HAADF/EDS from a 0.8V-reduced **3Mo** electrode; Zn and O represent 74% of the sample shown.

Figure S13: PXRD data of the anode following discharge of 3Mo in 2M ZnCl₂ electrolyte.

Figure S14: SEM/EDS characterization of 0.8V- reduced **3Mo**. This image clearly contrasts with Figures S9 and S11.

Figure S15. Black traces: Representative data following relaxation after 0.5e⁻/hr pulses (black traces). Colored circles: Depict 10-pt average smoothed data for log(D) for three replicates.

Fig S16: Galvanostatic discharge at 40 mA/g for all SMO's. Purple: **3Mo**, Red: **1Mo**, Blue: **m-2Mo**, Green: **t-2Mo**. The voltage recovery for t-2Mo is clearly slower than its compositional analog **m-2Mo**.

Discussion of 3Mo synthesis:

Hexagonal MoO₃ represents a class of materials with the formula $M_xH_yMoO_{3-\delta}$, where M can be a variety of monovalent cations.^{13–15} The 120°C hydrothermal reaction of Na₂MoO₄ and 3 eq. CH₃NH₃Cl (which forms (CH₃NH₃)₂Mo₇O₂₂) reported by Dessapt et. al.¹⁶ is considerably time dependent in large part due to hexagonal impurity. If the reaction proceeds longer than 6 hours, hexagonal MoO₃ becomes the predominant phase; we note that we are not the first to observe hexagonal MoO₃ as a cocrystallized impurity in a synthesis of (CH₃NH₃)₂Mo₇O₂₂.¹⁷ If the reaction proceeds shorter than 5 hours, formation of (CH₃NH₃)₂Mo₇O₂₂ is incomplete. While we are not sure of the identity of this intermediate phase at this time, we found it reacted with Ag⁺ under acidic conditions to yield phase-pure hexagonal MoO₃. Hence, the synthesis of (CH₃NH₃)₂Mo₇O₂₂ potentially can yield either hexagonal MoO₃ directly or an intermediate which forms hexagonal MoO₃ in the second step (reaction with silver). It becomes crucial to isolate (CH₃NH₃)₂Mo₇O₂₂ after it is fully formed and before it further reacts to become hexagonal-MoO₃.

The hexagonal phase is most stabilized in strongly acidic conditions. Therefore, pH alleviates this issue significantly: we found if the reaction occurs at pH 1.5, the hexagonal impurity is avoided more efficiently than at pH 1. Notably reaction of $(CH_3NH_3)_2Mo_7O_{22}$ with Ag⁺ at pH>1 formed the kinetically favorable m-Ag₂Mo₂O₇, so changes in pH in the second step are not possible. Rather, our modifications reflected in the Experimental section best avoid the hexagonal impurity by reacting $(CH_3NH_3)_2Mo_7O_{22}$ with a small excess of Ag⁺ at pH 1, and with longer reaction times (>6 hr). This excess favors the formation of the more silver-rich Ag₂Mo₃O₁₀ over Ag_{0.16}H_xMoO₃, and the low pH avoids thermodynamically favorable triclinic Ag₂Mo₂O₇.

Pure $(CH_3NH_3)_2Mo_7O_{22}$ obtains a blue tint in direct light and following XRD measurement.¹⁸ We found the use of blue tinted $(CH_3NH_3)_2Mo_7O_{22}$ in the second step does not change the phase purity of the Ag₂Mo₃O₁₀•2H₂O product and we believe any XRD- reduced Mo dissolves in the acidic conditions. Nonetheless, for this manuscript we only report data on Ag₂Mo₃O₁₀•2H₂O synthesized using $(CH_3NH_3)_2Mo_7O_{22}$ sample portions that were not x-rayed directly.

- (1) Lan, B.; Peng, Z.; Chen, L.; Tang, C.; Dong, S.; Chen, C.; Zhou, M.; Chen, C.; An, Q.; Luo, P. J. Alloys Compd. **2019**, 787, 9–16.
- (2) Shan, L.; Yang, Y.; Zhang, W.; Chen, H.; Fang, G.; Zhou, J.; Liang, S. *Energy Storage Mater.* **2019**, *18*, 10–14.
- (3) Guo, S.; Fang, G.; Liang, S.; Chen, M.; Wu, X.; Zhou, J. Acta Mater. 2019, 180, 51–59.
- (4) Li, Q.; Liu, Y.; Ma, K.; Yang, G.; Wang, C. Small Methods 2019, 3, 1900637.
- (5) Zeng, J.; Chao, K.; Wang, W.; Wei, X.; Liu, C.; Peng, H.; Zhang, Z.; Guo, X.; Li, G. *Inorg. Chem. Front.* **2019**, *6*, 2339–2348.
- Liu, H.; Wang, J.; Sun, H.; Li, Y.; Yang, J.; Wei, C.; Kang, F. J. Colloid Interface Sci. 2020, 560, 659–666.
- (7) Liu, Y.; Li, Q.; Ma, K.; Yang, G.; Wang, C. ACS Nano **2019**, *13*, 12081–12089.
- (8) Yu, X.; Hu, F.; Guo, Z.-Q. Q.; Liu, L.; Song, G.-H. H.; Zhu, K. Rare Met. 2021.
- (9) Chae, M. S.; Attias, R.; Dlugatch, B.; Gofer, Y.; Aurbach, D. ACS Appl. Energy Mater. **2021**, *4*, 10197–10202.
- (10) Shan, L.; Zhou, J.; Han, M.; Fang, G.; Cao, X.; Wu, X.; Liang, S. J. Mater. Chem. A **2019**, 7, 7355–7359.
- (11) Chen, L.; Yang, Z.; Wu, J.; Chen, H.; Meng, J. *Electrochim. Acta* **2020**, *330*, 135347.
- (12) Yang, Y.; Tang, Y.; Liang, S.; Wu, Z.; Fang, G.; Cao, X.; Wang, C.; Lin, T.; Pan, A.; Zhou, J. *Nano Energy* **2019**, *61*, 617–625.
- (13) McCarron, E. .; Thomas, D. M.; Calabrese, J. C. Inorg. Chem. 1987, 26, 370–373.
- (14) Guo, J.; Zavalij, P.; Whittingham, M. S. J. Solid State Chem. 1995, 117, 323–332.
- (15) Lunk, H.; Hartl, H.; Hartl, M. A.; Fait, M. J. G.; Shenderovich, I. G.; Feist, M.; Frisk, T. A.; Daemen, L. L.; Mauder, D.; Eckelt, R.; Gurinov, A. A. *Inorg. Chem.* **2010**, *49*, 9400–9408.
- (16) Hakouk, K.; Deniard, P.; Lajaunie, L.; Guillot-Deudon, C.; Harel, S.; Wang, Z.; Huang, B.; Koo, H.-J.; Whangbo, M.-H.; Jobic, S.; Dessapt, R. *Inorg. Chem.* 2013, *52*, 6440–6449.
- (17) Cui, X.; Yu, S. H.; Li, L.; Biao, L.; Li, H.; Mo, M.; Liu, X. M. Chem. A Eur. J. 2004, 10, 218–223.
- (18) Zavalij, P. Y.; Whittingham, M. S. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1997, 53, 1374–1376.