Supporting Information

Well-defined S-g-C3N4/Cu-NiS heterojunction interface towards enhanced spatial charge separation with excellent photocatalytic ability: synergetic effect, kinetics, antibacterial activity, and mechanism insights

Haya A. Abubshait^{1‡}, Shahid Iqbal^{2*‡}, Samar A. Abubshait³, Mohammed T. Alotaibi⁴, Norah Alwadai⁵, Nada Alfryyan⁵, Hashem O. Alsaab⁶, Nasser S. Awwad⁷, Hala A. Ibrahium^{7,8}

¹Basic Sciences Department, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.

²Department of Chemistry, School of Natural Sciences (SNS), National University of Science andTechnology (NUST), H-12, Islamabad, 46000, Pakistan.

³Department of Chemistry, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.

⁴Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. ⁵Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh

11671, Saudi Arabia.

⁶Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

⁷Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.

⁸Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt.

**To whom corresponding should be addressed*

shahidiqbal.chem@sns.nust.edu.pk (Shahid Iqbal)

‡ The authors have equal contribution

2.6.1. Material characterization

The microstructure and morphology of the fabricated materials were analyzed by TEM (JEM-2100) and SEM (TESCAN Vega 3). The crystal structure was studied by XRD (PANalytical X'Pert) and EDX was recorded with SEM (Hitachi S4800). FTIR spectra were analyzed by Brucker Tensor 27. XPS tests were carried on VG Scientific spectrometer (ESCA Lab220i-XL) outfitted with Al K α signals in twin anode at 14 kV \times 16 Ma, standardized via the control carbon (C 1s

284.6 eV). Photoluminescence (PL) analysis was checked by using a PL-FS-2500 (Japan) fluorescence spectrometer. The photocatalytic and optical measurements were carried out by (UV-3600, Shimadzu) a UV-vis spectrometer. The Brunauer-Emmett-Teller (BET) surface area was examined (Micromeritics ASAP 2020 instrument) through N_2 adsorption in a computerized gassorption machine. Transient photocurrent response tests were conducted on a standard threeelectrode system (CHI 602 Electrochemical Workstation) at 25 \degree C with the Pt wire as the counter electrode, photocatalyst-coated FTO as the working electrode and Ag/AgCl as a reference electrode (Shanghai Chenhua Instrument Co. Ltd, Shanghai, China). The EIS was assessed at -0.6 V (vs. Ag/AgCl) from 10⁵ to 0.1 Hz with a signal amplitude of 20 mV. The ESR signals were collected on a JES FA200, JEOL Co. spectrometer with the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) solvent.

2.6.2. Photocatalytic ability

Assessments on the photocatalytic ability were conducted under visible light ($\lambda \ge 420$) source via exploitation of a 350 W Xe lamp at 25 oC. In the MB degradation testing, 100 mg of each constructed material was disseminated in 100 mL of dye solution (10 mg L-1). Each catalyst dispersion was retained under dark for 30 min with continuous strong stirring magnetically to equilibrize the photocatalytic system and then exposed to visible light to induce photocatalysis. At systematic intervals, 4 mL of sample aliquots were taken out and centrifuged at 6000 rpm for 5 minutes. Then absorption characteristics of each centrifuged aliquot was measured (JASCO-V-770) by a UV-visible spectrophotometer. The chemical stability of designed materials was explored and the results of up to 7 cycles are presented in Fig. 8a.

2.6.3. Antimicrobial activity

The antibacterial activities of the $S-g-C₃N₄$, NiS NRs, Cu-NiS NRs and Cu-NiS/S-g-C₃N₄ binary NCs compared to Gram-positive and Gram-negative bacterial varieties were estimated by the agar well diffusion method. B. subtilis, S. aureus, S. salivarius (gram-positive bacteria) and E. coli as gram-negative bacterium strains were bought from Sigma-Aldrich. Ciprofloxacin (0.5 mg/mL) was employed as positive control and double DI water was used as the negative control. Ultrasonically S-g-C₃N₄, NiS NRs, Cu-NiS NRs and Cu-NiS/S-g-C₃N₄ NCs suspensions were prepared water at a concentration of 0.5 mg/mL.

Fig. S1. XPS survey spectrum of 22% 2D/1D SCN/CNS heterojunction.

Fig. S2. High-resolution XPS C 1s spectra of 18% 1D/2D Cu-NiS/S-g-C3N⁴ heterojunction.

Fig. S3. Valence-band XPS spectra of (a) NiS, (b) 7% Cu-NiS, (c) SCN and (d) 22% SCN/7CNS NCs.

Fig. S4. The evaluation of MB photodegradation under visible-light illumination after 36 min for pristine S-g-C3N4, undoped NiS NRs, 18% NiS/S-g-C₃N₄ heterostructure and 18% 1D/2D Cu-NiS/S-g-C₃N₄ binary NCs.

Antimicrobial agent	Escherichia $Coli$ (mm)	Bacillus subtilis (mm)	Streptococcus salivarius (mm)	Staphylococcus aureus (mm)
Negative control	00	00	00	00
Positive control	17	18	21	16
NiS NRs	4.5	2.5	3.5	2.5
Cu-NiS NRs	6.5	4.5	6.5	5.5
$S-g-C_3N_4$	09	07	10	09
$Cu-NiS/S-g-$	18	16	20	17
C_3N_4NCs				

Table S1. Bactericidal Efficiency of NiS NRs, Cu-NiS NRs, S-g-C₃N₄ and 22% 2D/1D SCN/CNS NCs.

Fig. S5. Zone of inhibition (mm) of NiS NRs, Cu-NiS NRs, S-g-C₃N₄, and 22% 2D/1D SCN/CNS NCs against Staphylococcus aureus, Streptococcus salivarius, Bacillus subtilis and Escherichia Coli.