Supplementary Information

Core-Shell Pd-P@Pt-Ni Nanoparticles with Enhanced Activity and Durability as Anode Electrocatalyst for Methanol Oxidation

Reaction

Jiangbin Guo, ^a Man Zhang, ^b Jing Xu, *^a Jun Fang, ^a Shuiyuan Luo, ^a and Chaolong Yang *^c

^aCollege of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou
362000, Fujian Province, PR China. E-mail: jingxu@qztc.edu.cn
^bState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular
Science, Fudan University, Shanghai 200433, PR China
^cSchool of Materials Science and Engineering, Chongqing University of Technology, Chongqing
400054, PR China. E-mail: yclzjun@163.com

Figure S1. (a) Representative TEM and (b) HRTEM images of Pd-P@Pt-Ni NPs.

Figure S2. STEM-EDS images of (a) Pd, (b) P, (c) Ni and (d) Pt in Pd-P@Pt-Ni NPs.

Sample	Pt(acac) ₂ /mmol	OAm/mL	TEM image
1	0.20	10	Figure S3(a)
2	0.15	10	Figure S3(b)
3	0.10	10	Figure S3(c)
4	0.20	17	Figure S3(d)
5	0.15	17	Figure S3(e)
6	0.13	17	Figure S3(f)

Table S1. The amounts of $Pt(acac)_2$ and OAm corresponding to the TEM images in Figure S3.

Figure S3. TEM images of products fabricated with different amounts of $Pt(acac)_2$ and OAm. The detailed information is summarized in Table S1.

materials	plane (111)			plane (220)	
	2θ	d-spacing	lattice parameter	2θ	lattice parameter
	(degree)	(nm)	(nm)	(degree)	(nm)
Pd-P@Pt-Ni/C	40.13	0.2244	0.3887	68.67	0.3861
commercial Pt/C	39.72	0.2267	0.3927	67.55	0.3917
Ni powder	44.61	0.2029	0.3514	76.48	0.3519

Table S2. Peak position (2θ) , *d*-spacing and lattice parameter collected from XRD data.

Figure S4. (a) TEM and (b) HRTEM images of the as-prepared Pt/C NPs.

Figure S5. CV curve of Pd-P@Pt-Ni/C NPs in 0.5 M $H_2SO_4 + 10$ M CH₃OH solution. The sweep

rate is 50 mV \cdot s⁻¹.

Figure S6. (a)-(b) TEM and HRTEM images, (c) XRD pattern and (d) XPS spectrum of Pt 4f in Pd-P@Pt-Ni/C after the stability test.

Figure S7. (a) CV curves of Pd-P@Pt-Ni/C NPs, commercial Pt/C and the as-prepared Pt/C in 0.5 M H₂SO₄ + 0.5 M HCOOH solution. The sweep rate is 50 mV·s⁻¹. (b) Chronoamperometry curves of Pd-P@Pt-Ni/C NPs, commercial Pt/C and the as-prepared Pt/C in 0.5 M H₂SO₄ + 0.5 M HCOOH solution at 0.95 V.

Figure S8. Cyclic voltammetry profiles of Pd-P@Pt/C NPs (a) in N₂-saturated 0.1 M HClO₄ solution and (b) in 0.5 M H₂SO₄ + 1 M CH₃OH solution. The sweep rate is 50 mV s⁻¹.