SUPPLEMENTARY INFORMATION

Detection of free chlorine in water using graphene-like carbon based chemiresistive sensors

Ana Zubiarrain-Laserna,^a Shayan Angizi,^a Md Ali Akbar,^a Ranjith Divigalpitiya,^b Ponnambalam Ravi Selvaganapathy^c and Peter Kruse^{*a}

^aDepartment of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada

^b3M Canada Company, 1840 Oxford Street, London, Ontario N5V 3R6, Canada

^eDepartment of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada

*Corresponding Author: pkruse@mcmaster.ca

Table of Contents

Figure S1. (a) Dimensions of the sensor components and the flow channel. (b) Experimental setup	Page S - 1
Figure S2. Raw data from the chemiresistive sensing characteristics as a function of GLC film thickness	Page S - 2
Table S1. Equations of the models used to fit the data in Figure S2, as well as the curve parameters obtained with each of the sensors	Page S - 16
Figure S3. Calibration curves obtained with the raw data in Figure S2, fitted to a Langmuir adsorption isotherm using the curve parameters in Table S1	Page S - 18
Equation S1. Derivation showing that 1/B is proportional to the saturation concentration	Page S - 22
Figure S4. Replicates of the low range detection data	Page S - 23
Table S2. Curve parameters from the low range detection data	Page S - 24
Figure S5. Replicates of the detection of free chlorine concentration fluctuations (raw and processed data)	Page S - 25
Figure S6. Replicate data from the real drinking water testing	Page S - 27

Figure S1. (a) Dimensions of the sensor components and the flow channel. The exposed area of the GLC in the dip sensors after masking the contacts with PDMS is approximately 8×22 mm. (b) Experimental setup for measurement.

(a)

Figure S2. Raw data from the chemiresistive sensing characteristics as a function of GLC film thickness. The data consists of 2 doped sensors and 2 blank sensors for each thickness (i.e. 12, 24, 38, and 46 nm) and each bias (i.e. 10 mV and 100 mV).

S - 4

Table S1. Equations of the models used to fit the data in Figure S2, as well as the curve parameters obtained with each of the sensors.

Langmuir adsorption isotherm: $y = \frac{ABx}{1+Bx}$

Exponential decay: $y = i(1 - e^{-jx})$

Freundlich adsorption isotherm: $y = mx^{1/n}$

Doped sensors										
	Langmuir			Exponenti	Exponential			Freundlich		
	А	В	R ²	i	j	R ²	m	n	R ²	
				1	0 mV					
12 nm	0.1678	13.7553	0.9991	0.1556	7.3097	0.9980	0.1516	10.4393	0.9894	
12 nm	0.0943	12.2518	0.9994	0.0868	6.8688	0.9967	0.0869	7.3615	0.9948	
24 nm	0.1101	9.0850	0.9995	0.0992	5.7888	0.9966	0.0987	5.8172	0.9932	
24 nm	0.0934	8.7750	0.9981	0.0838	5.7196	0.9917	0.0835	5.5675	0.9951	
38 nm	0.0915	2.6758	0.9993	0.0724	2.6500	0.9963	0.0657	2.6099	0.9919	
38 nm	0.0754	4.5298	0.9988	0.0637	3.7066	0.9910	0.0612	3.5431	0.9960	
46 nm	0.0535	3.6201	0.9972	0.0441	3.1880	0.9875	0.0414	3.0805	0.9983	
46 nm	0.0931	2.4328	0.9998	0.0727	2.4905	0.9981	0.0650	2.4879	0.9911	
100 mV										
12 nm	0.1612	17.2411	0.9949	0.1517	7.9730	0.9987	0.1516	10.4396	0.9874	
12 nm	0.1783	15.8516	0.9985	0.1669	7.8144	0.9994	0.1671	9.3111	0.9930	
38 nm	0.0788	3.9558	0.9991	0.0654	3.4401	0.9981	0.0622	3.2825	0.9879	
38 nm	0.1203	2.5774	0.9966	0.0943	2.6263	0.9993	0.0854	2.5631	0.9801	
46 nm	0.0770	4.4994	0.9973	0.0648	3.7705	0.9977	0.0623	3.5559	0.9839	
46 nm	0.0520	5.0905	0.9945	0.0444	4.0623	0.9989	0.0430	3.9017	0.9770	

	Langmuir			Exponential			Freundlich		
	А	В	R ²	i	j	R ²	m	n	R ²
				10	mV				
12 nm	0.1720	11.9299	0.9924	0.1585	6.5844	0.9990	0.1576	7.6494	0.9799
12 nm	0.1544	18.3155	0.9896	0.1461	8.0345	0.9973	0.1455	11.6104	0.9798
24 nm	0.1024	7.2660	0.9994	0.0905	5.0544	0.9937	0.0894	4.8867	0.9945
24 nm	0.2735	2.2057	0.9980	0.2115	2.2973	0.9931	0.1541	0.0000	#DIV/0!
38 nm	0.1084	2.4534	0.9977	0.0846	2.5263	0.9996	0.0759	2.5028	0.9829
38 nm	0.0609	3.8946	0.9980	0.0505	3.4058	0.9930	0.0479	3.2239	0.9916
46 nm	0.0778	1.7693	0.9984	0.0579	2.0198	0.9996	0.0489	2.1297	0.9868
46 nm	0.0515	2.8837	0.9993	0.0411	2.7989	0.9979	0.0377	2.7218	0.9891

100 mV									
12 nm	0.1715	12.1452	0.9877	0.1583	6.6069	0.9960	0.1572	7.8573	0.9741
12 nm	0.1495	23.0048	0.9741	0.1432	8.6211	0.9845	0.1422	15.6823	0.9643
38 nm	0.0852	6.5103	0.9973	0.0745	4.7763	0.9894	0.0734	4.4752	0.9945
38 nm	0.0729	8.6910	0.9962	0.0656	5.5911	0.9991	0.0649	5.7617	0.9841
46 nm	0.0881	3.6779	0.9971	0.0725	3.3051	0.9991	0.0684	3.1457	0.9814
46 nm	0.0379	6.2814	0.9307	0.0332	4.5225	0.9495	0.0323	4.7866	0.8995

Figure S3. Calibration curves obtained with the raw data in Figure S2, fitted to a Langmuir adsorption isotherm using the curve parameters in Table S1.

Equation S1. Derivation showing that 1/B is proportional to the saturation concentration (SC). When exposed to the saturation concentration, the sensor response (y) should be equal to the maximum response (A). However, if the sensors are exposed to 95% of the saturation concentration, the sensor response should be 95% of the maximum response. If we rearrange the equation, we get an expression that shows that the saturation concentration is proportional to 1/B.

$$y = \frac{ABx}{1+Bx} \longrightarrow x = \frac{\frac{y}{A}}{1-\frac{y}{A}} \cdot \frac{1}{B} \longrightarrow SC_{95\%} = \frac{0.95}{1-0.95} \cdot \frac{1}{B} \longrightarrow SC \propto \frac{1}{B}$$

Doped (1) Doped (2) 10% 6% 5% 8% Sensor response × Sensor response 4% 6% 3% 4% 2% 2% 1% 0% 0% **X** 0 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0 Free chlorine (ppm) Free chlorine (ppm) Blank (1) Blank (2) 14% 6% 12% 5% 10% Sensor response Sensor response 4% × 8% 3% 6% 2% 4% 1% 2% 0% 0% 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0 0 Free chlorine (ppm) Free chlorine (ppm) Doped (1) Doped (2) 1245 786 1240 784 1235 782 Contrent (nA) Current (nA) Current (nA) Current (nA) 1230 Current (nA) 1225 1220 1215 774 1210 772 1205 1200 11:00 770 13:00 15:00 17:00 19:00 13:00 15:00 17:00 19:00 Time (hh:mm) Time (hh:mm) Blank (2) Blank (1) 940 1855 935 1850 930 925 925 920 915 910 905 1845 Current (nA) 1840 1835 905 900 1830 895 890 1825

Figure S4. Replicates of the low range detection data (calibration curves and raw data from the lowest concentration).

19:00

17:00

19:00

13:00

11:00

15:00

Time (hh:mm)

17:00

15:00

Time (hh:mm)

13:00

11:00

Table S2. Curve parameters from the Langmuir adsorption isotherms used to fit the low range detection data shown in Figure S4.

	А	В	\mathbb{R}^2
Doped (1)	0.1052	29.8152	0.9922
Doped (2)	0.0601	31.8057	0.9985
Blank (1)	0.1358	25.0066	0.9687
Blank (2)	0.0738	10.2781	0.9978

Figure S5. Replicates of the detection of free chlorine concentration fluctuations (raw and processed data). The first graph (top left) uses arrows to display where a new free chlorine concentration was introduced and what the concentration was (measured with the DPD method, AquaMate). The second graph (top right) shows the ORP values for each of those concentrations.

Figure S6. Replicate data from the real drinking water testing. The purple cross shows the sensor response to the real water, while the black crosses represent the sensor response to the spiked concentrations.