Supporting Information

Cross-linked β -CD-CMC as an effective aqueous binder for silicon-based anode in rechargeable lithium-ion batteries

Hao-wen Jiang ^a, Yan Yang ^a, Yi-ming Nie ^a, Zhi-fang Su ^a, Yun-fei Long ^a, Yan-xuan Wen ^{a,b} and Jing Su*^a

- * Corresponding authors
- ^a School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China. E-mail: sujing@gxu.edu.cn
- ^b Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning, China

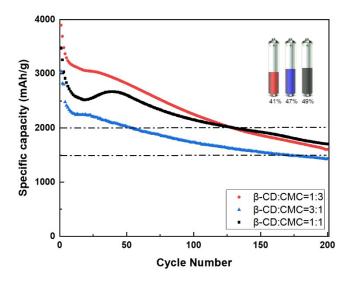


Fig. S1 The cross-linking ratio of β -CD to CMC on the electrochemical performance

The effect of the cross-linking ratio of β -CD to CMC on the electrochemical performance of the electrode is shown in Fig. S1). The binders synthesized with β -CD excess and CMC excess were compared with the samples synthesized in equal amounts, respectively. The results show that the electrode exhibits the characteristics of a pure CMC electrode when there is an excess of CMC, with the electrode having the highest initial capacity. When there is an excess of β -CD the electrode exhibits the characteristics of pure β -CD, with a low initial capacity but a gentle trend of capacity decay. Their capacity retention rates were 41%, 47% and 49% respectively. The equal

synthesized samples have the highest capacity retention a trend.	and a gentle capacity decay