Support Information

First-principles study on optoelectronic properties of $\mathbf{C s}_{\mathbf{2}} \mathbf{P b X}_{4}{ }^{-}$ PtSe_{2} van der Waals Heterostructures

Jingjing Li, ${ }^{a}$ Dan Liang, ${ }^{\text {a* }}$ Gang Liu,,${ }^{\text {a }}$ Baonan Jia, ${ }^{a}$ Jingyu Cao, ${ }^{\text {a }}$ Jinbo Hao, ${ }^{\text {b }}$ Pengfei Lu ${ }^{\mathrm{a}}$ a.State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China. Email: liangdan@bupt.edu.cn,
b.CAS Key Laboratory for Biomedical EDects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Email: wuly2018@gmail.com c.School of Information Management, Beijing Information Science \& Technology University, Beijing 100085, China.

d.School of Science, $X i^{\prime}$ an University of Architecture and Technology, $X i^{\prime}$ an 710055, Shaanxi,

China.

There are one table and three figures in Supplementary Material. Table S1 and Fig. S2 illustrate the band gap of monolayer $\mathrm{Cs}_{2} \mathrm{PbX}_{4}$ and PtSe_{2} with different calculation functional. The unit cells of 2D $\mathrm{Cs}_{2} \mathrm{PbX}_{4}-\mathrm{PtSe}_{2}$ are shown in Fig. S1. We computed the band structures of orbital contribution for $\mathrm{Cs}_{2} \mathrm{PbX}_{4}-\mathrm{PtSe}_{2}$ heterostructures, as shown in Fig. S3.

Table S1 The bandgaps of monolayer $\mathrm{Cs}_{2} \mathrm{PbX}_{4}$ and PtSe_{2} by different calculation method.

	$\mathrm{Cs}_{2} \mathrm{PbCl}_{4}$	$\mathrm{Cs}_{2} \mathrm{PbBr}_{4}$	$\mathrm{Cs}_{2} \mathrm{PbI}_{4}$	PtSe_{2}
PBE	2.59	2.18	1.84	1.38
HSE	3.58	2.91	2.57	1.96
PBE+SOC	1.84	1.46	1.09	1.21
HSE+SOC	2.78	2.14	1.78	1.79
expriment	3.01	2.32	1.86	1.20

*Exprimental values are from Ref. [6,14,25,45]

Fig. S1 Top and side views of relaxed $90^{\circ} \mathrm{Cs}_{2} \mathrm{PbX}_{4}-\mathrm{PtSe}_{2}$ heterostructures. (a-b) $\mathrm{Cs}_{2} \mathrm{PbCl}_{4}-\mathrm{PtSe}_{2}$ heterostructure. (c-d) $\mathrm{Cs}_{2} \mathrm{PbBr}_{4}-\mathrm{PtSe}_{2}$ heterostructure. (e-f) $\mathrm{Cs}_{2} \mathrm{PbI}_{4}-\mathrm{PtSe}_{2}$ heterostructure.

Fig. S2 The bandgaps of monolayer (a) $\mathrm{Cs}_{2} \mathrm{PbCl}_{4}$, (b) $\mathrm{Cs}_{2} \mathrm{PbBr}_{4}$, (c) $\mathrm{Cs}_{2} \mathrm{PbI}_{4}$, and (d) PtSe_{2} by PBE , HSE and HSE with SOC. The blue, black and red lines correspond to PBE, HSE and HSE with SOC, respectively

Fig. S3 The band structures of orbital contribution for $\mathrm{Cs}_{2} \mathrm{PbX}_{4}-\mathrm{PtSe}_{2}$ heterostructures. The $p_{x, y}$-orbital, p_{z}-orbital and d-orbital contributions are indicated by blue, red and yellow dots, respectively.

