Support Information

First-principles study on optoelectronic properties of Cs₂PbX₄-PtSe₂ van der Waals Heterostructures

Jingjing Li,^a Dan Liang,^{a*} Gang Liu,^{a*} Baonan Jia,^a Jingyu Cao,^a Jinbo Hao,^b Pengfei Lu^a

a.State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China. Email: liangdan@bupt.edu.cn,

b.CAS Key Laboratory for Biomedical Elects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Email: wuly2018@gmail.com c.School of Information Management, Beijing Information Science & Technology University, Beijing 100085, China.

d.School of Science, Xi' an University of Architecture and Technology, Xi' an 710055, Shaanxi,

China.

There are one table and three figures in Supplementary Material. Table S1 and Fig. S2 illustrate the band gap of monolayer Cs_2PbX_4 and $PtSe_2$ with different calculation functional. The unit cells of 2D Cs_2PbX_4 -PtSe₂ are shown in Fig. S1. We computed the band structures of orbital contribution for Cs_2PbX_4 -PtSe₂ heterostructures, as shown in Fig. S3.

	Cs_2PbCl_4	Cs_2PbBr_4	Cs_2PbI_4	PtSe ₂
PBE	2.59	2.18	1.84	1.38
HSE	3.58	2.91	2.57	1.96
PBE+SOC	1.84	1.46	1.09	1.21
HSE+SOC	2.78	2.14	1.78	1.79
expriment	3.01	2.32	1.86	1.20

*Exprimental values are from Ref. [6,14,25,45]

Fig. S1 Top and side views of relaxed 90° Cs_2PbX_4 -PtSe₂ heterostructures. (a-b) Cs_2PbCl_4 -PtSe₂ heterostructure. (c-d) Cs_2PbBr_4 -PtSe₂ heterostructure. (e-f) Cs_2PbI_4 -PtSe₂ heterostructure.

Fig. S2 The bandgaps of monolayer (a) Cs_2PbCl_4 , (b) Cs_2PbBr_4 , (c) Cs_2PbI_4 , and (d) $PtSe_2$ by PBE, HSE and HSE with SOC. The blue, black and red lines correspond to PBE, HSE and HSE with SOC, respectively

Fig. S3 The band structures of orbital contribution for Cs_2PbX_4 -PtSe₂ heterostructures. The $p_{x,y}$ -orbital, p_z -orbital and d-orbital contributions are indicated by blue, red and yellow dots, respectively.