Electronic Supplementary Information

Antiviral Activities of Natural Compounds and Ionic Liquids to Inhibit the Mpro of SARS-CoV-2: A Computational Approach

Kandhan Palanisamy,^a S. M. Esther Rubavathy,^a Muthuramalingam Prakash,^{*,a} Ramasamy Thilagavathi,^b M. S. Hosseini Zare^c and Chelliah Selvam^{*,c}

^a Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Chennai, Tamil Nadu, India.

^b Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India

^c Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA.

Electronic Supplementary Information (ESI): Docking energies of ILs with Mpro, the average values of RMSD, RMSF, Rg and Hydrogen bonding interactions, RMSF plots and binding free energies of Mpro with cholinium-based ILs and natural compounds are shown.

Mpro-Lopinavir complex:

The optimized lopinavir structure was docked with Mpro. The docking score is -7.7 kcal/mol and the binding sites were shown in **Fig. S1.** The Mpro residues of His-163, His-164 and Gln-189 form non-conventional H-bonding interactions with lopinavir at the distance of 2.6, 2.6 and 2.1 Å. The π - π interactions arise between lopinavir and His-41 of Mpro. The ADMET properties of lopinavir were displayed in **Table S2**.

We performed MD simulation for the Mpro-lopinavir complex for 100 ns. The same MD protocol which is mentioned in the manuscript, used for MD simulations. The RMSD, RMSF plots show the deviations and fluctuations of each residue which is shown in **Fig. S2.** It revealed that the lopinavir strongly enhances the stability of Mpro. The average H-bonding interactions of the Mpro-lopinavir complex is 1, and lopinavir forms van der Waals interactions with the Mpro. We conclude that our selected natural products and cholinium-based ILs improve the stability of Mpro.

Name of the	Optimized Geometries	B3LYP	M05-2X
compounds		Energy (in a.u.)	Energy (in a.u.)
NP-Hit 1		E ₁ = -1757.0886	E ₂ = -1756.9537
NP-Hit 2		E ₁ = -1419.7228	E ₂ =-1419.5942
NP-Hit 3	A A A A A A A A A A A A A A A A A A A	E ₁ = -1202.8659	E ₂ =-1202.7683
NP-Hit 4		E ₁ = -1434.5949	E ₂ =-1434.4357
Choline	in the second se	E ₁ = -328.7124	E ₂ = -328.6541
Geranate		E ₁ = -540.6271	E ₂ = -540.5408
Ketoprofene		E ₁ = -843.3461	E ₂ = -843.2504
Linoleate	and the former of the second s	$E_1 = -855.1525$	E ₂ = -855.0067

Table S1 The optimized geometries and their energies are shown E_1 =B3LYP and E_2 = M05-2X methods using 6-31+G(d,p).

Naproxenate	the second se	E ₁ = -767.1127	$E_2 = -767.0205$

Table S2 The ADMET properties of lopinavir.

ADME Properties	Lopinavir
MW	628.8
nHB acceptors	5
nHB donors	4
nRotB	17
nVio	1
TPSA (Å ²)	120
GI absorption	High
Hepatotoxicity	Inactive
Carcinogenicity	Inactive
PAINS	0

 Table S3 The docking energies of Mpro with IL complexes are shown.

No. of	Compound Names	BEs
Compounds		(kcal/mol)
1.	Choline acesulfamate	-6.16
2.	Choline acetate	-7.26
3.	Choline alanine	-5.83
4.	Choline arginate	-5.25
5.	Choline aspartate	-7.55
6.	Choline bitartrate	-5.71
7.	Choline DBS	-6.50
8.	Choline DHP	-7.39
9.	Choline erucate	-8.08
10.	Choline geranate	-9.05
11.	Choline glutamate	-6.65
12.	Choline glycinate	-5.53
13.	Choline histidine	-5.84

14.	Choline hydroxide	-6.22
15.	Choline ketoprofene	-10.28
16.	Choline linoleate	-9.35
17.	Choline methionine	-5.88
18.	Choline myristate	-8.90
19.	Choline naproxenate	-10.76
20.	Choline oleate	-8.52
21.	Choline phenylacetate	-9.03
22.	Choline phenylalanine	-7.25
23.	Choline proline	-6.47
24.	Choline ricinoleate	-7.92
25.	Choline saccharine	-7.98
26.	Choline serine	-5.02
27.	Choline trichloroacetate	-6.88
28.	Choline tryptophan	-6.83
29.	Choline tyrosine	-6.72
30.	Choline valine	-4.95

Table S4 The average values of RMSD, RMSF and Rg of Mpro with natural compounds were shown.

Compounds	RMSD _{C-alpha} (Å)	RMSF (Å)	Rg (nm)
Mpro	1.8599	1.4391	2.1927
Mpro- NP-Hit1	2.0443	1.1110	2.2033
Mpro- NP-Hit2	1.8862	1.1768	2.2133
Mpro- NP-Hit3	1.7743	1.2248	2.2112
Mpro- NP-Hit4	1.7837	1.3184	2.2144

Compounds	RMSD _{C-alpha} (Å)	RMSF (Å)	Rg (nm)
Mpro	1.8599	1.4391	2.1927
Mpro-Naproxenate	1.5871	1.1379	2.1886
Mpro-Ketoprofene	1.2597	0.9960	2.1782
Mpro-Linoleate	1.8083	1.1140	2.1620
Mpro-Geranate	1.6406	1.1173	2.1959

Table S5 The average values of RMSD, RMSF and Rg of Mpro with ILs were shown.

Table S6 The average number of H-bonding interactions of Mpro with natural compounds and cholinium-based ILs.

Compound Names	The average no. of H-bonds
NP-Hit1	1.41 ± 0.01
NP-Hit2	1.28 ± 0.02
NP-Hit3	0.71 ± 0.01
NP-Hit4	2.49 ± 0.01
Choline naproxenate (3M)	46.35 ± 0.12
Choline ketoprofene (3M)	50.21 ± 0.12
Choline linoleate (3M)	39.46 ± 0.10
Choline geranate (3M)	41.31 ± 0.13

Table S7 The binding free energies were calculated for natural products with Mpro.^a

Compound	Ele	vdW	Pol	SASA	Average binding
Names					energy (in Kcal/mol)
NP-Hit1	-39.12	-5.85	29.68	-3.94	-19.23 ± 3.99
NP-Hit2	-48.82	-7.04	34.99	-4.74	-25.62 ± 3.28
NP-Hit3	-43.61	-4.92	27.49	-4.25	-25.30 ± 3.45
NP-Hit4	-42.67	-7.41	30.05	-4.14	-24.19 ± 4.71

^a Calculated MM-PBSA binding energies of cholinium-based ILs with Mpro of SARS-CoV-2. Ele = Electrostatic, vdW = van der Walls, Pol = Polar solvation and SASA = Solvent accessible surface area free energies are shown.

Compound	Ele	vdW	Pol	SASA	Average binding
Names					energy (in Kcal/mol)
Choline	-1025.34	-552.75	1304.03	-75.61	-346.67 ± 60.85
naproxenate					
Choline	-1086.98	-704.95	1643.79	-93.37	-241.52 ± 60.27
ketoprofene					
Choline	-1173.53	-555.26	1496.49	-79.19	-311.49 ± 77.02
linoleate					
Choline	-876.16	-520.10	1227.96	-75.90	-244.21 ± 72.88
geranate					

Table S8 The binding free energies were calculated for choline-based ILs with Mpro.^a

^a 3M concentration of cholinium-based ILs were used.

Fig. S1 The docking complexes of Mpro-lopinavir.

Fig. S2 The Mpro-lopinavir complex of A) RMSD B) RMSF C) Rg and D) H-bonding interactions are shown.

Fig. S3 RMSF plots of Mpro with A) Natural compounds and B) Choline-based ILs.

Fig. S4 The binding free energies of Mpro with natural compounds are shown.