Supporting Information

A salicylaldehyde benzoyl hydrazone based near-infrared probe for copper(II) and its bioimaging applications

Jie Zhao,[†]a Yue-yuan Wang,[†]a Wen-ling Chen,^b Guang-shu Hao,^a Jian-ping Sun,^a Qing-fang Shi,^a Fang Tian^{*}a and Run-tian Ma^{*b}

- ^a Gansu Provincial Maternity and Childcare Hospital, Lanzhou 730000, Gansu Province, P. R. China, E-mail: tianfang720203@163.com
- ^b College of Science, Gansu Agricultural University, Lanzhou 730000, Gansu Province, P. R. China, E-mail: mart@gsau.edu.cn

Figure S1 Time-dependent fluorescence spectra of CySBH (5 µM).

Figure S2 Effect of pH on the fluorescence intensities of CySBH. F_0 and F are the fluorescence intensities of CySBH in the absence and presence of Cu^{2+} in different pH, respectively.

Figure S3 Cell viability of A 549 (a) and HeLa cells (b) incubated with different amounts of probe CySBH for 24 h.

 $\begin{array}{cc} \textbf{A 549} & \textbf{HeLa} \\ \textbf{Figure S4} Fluorescence intensities analyses CySBH (5 μM) in A549 and HeLa cells incubated with (green bar) and without (yellow bar) Cu²⁺. (*P < 0.05, **P < 0.01, and ***P < 0.001). \end{array}$

Figure S6 ¹³C NMR spectrum of compound 4.

Probe	$\lambda_{\rm ex}/\lambda_{\rm em}$ (nm)	LOD (nM)	Selectivity cations	Time	Ref.
	560/700	25.4	11	20 min	1 (2021)
$\left \begin{array}{c} c_{i} \\ c_{i}$	542/589	100	12	NA	2 (2021)
	650/696	200	16	NA	3 (2020)
$ \begin{array}{ c c } \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	350/523	19.7	13	20 min	4 (2020)
	656/669	1.93	13	40 s	5 (2020)
	365/460	157	20	20 min	6 (2020)
H ₂ N NH N N	647/718	47	16	NA	7 (2020)

Table S1 Comparison of CySBH with some relevant reported copper(II) probe.

	663/749	350	12	NA	8 (2020)
Br Br					
	365/466	660	11	NA	9 (2020)
HO HO H O O	370/476	NA	13	100 s	10 (2020)
HO H H H O O O O	460/519	NA	13	50 s	10 (2020)
	449/505	60	14	NA	11 (2020)
	711/744	28.4	17	1.8 s	This work

References

- 1. Z. Li, Y. Xu, H. Xu, M. Cui, T. Liu, X. Ren, J. Sun, D. Deng, Y. Gu and P. Wang, A dicyanomethylene-4H-pyran-based fluorescence probe with high selectivity and sensitivity for detecting copper (II) and its bioimaging in living cells and tissue, *Spectrochim. Acta A*, 2021, **244**, 118819
- 2. Y. Song, J. Tao, Y. Wang, Z. Cai, X. Fang, S. Wang and H. Xu, A novel dualresponsive fluorescent probe for the detection of copper(II) and nickel(II) based on BODIPY derivatives, *Inorganica Chimica Acta*, 2021, **516**, 120099
- 3. Z. Aydin, B. Yan, Y. Wei and Maolin Guo, A novel near-infrared turn-on and ratiometric fluorescent probe capable of copper(II) ion determination in living cells, *Chem. Commun.*, 2020, **56**, 6043-6046
- M. Li, H. Chen, X. Liu, N. Zhang, Q. Sun and K. Zheng, A selective and sensitive sequential ratio/"turn-off" dual mode fluorescent chemosensor for detection of copper ions in aqueous solution and serum, *Inorganica Chimica Acta*, 2020, **511**, 119825
- 5. Y. Shen, W. Zheng, Y. Yao, D. Wang, G. Lv and C. Li, Phenoxazine-based nearinfrared fluorescent probes for the specific detection of copper (II) ions in living cells, *Chem Asian J.*, 2020, **15**, 2864–2867
- 6. J. Yin, Z. Wang, F. Zhao, H. Yang, M. Li and Y. Yang, A novel dual functional pyrene-based turn-on fluorescent probe for hypochlorite and copper (II) ion detection and bioimaging applications, *Spectrochim. Acta A*, 2020, **239**, 118470
- O. Hanmeng, N. Chailek, A. Charoenpanich, P. Phuekvilai, N. Yookongkaew, N. Sanmanee, J. Sirirak, P. Swanglap and N. Wanichacheva, Cu²⁺-selective NIR fluorescence sensor based on heptamethine cyanine in aqueous media and its application, *Spectrochim. Acta A*, 2020, 240, 11806
- 8. Y. Gawale, S. Mangalath, N. Adarsh, J. Joseph, D. Ramaiah and N. Sekar, Novel Aza-BODIPY based turn on selective and sensitive probe for on-site visual detection of bivalent copper ions, *Dyes Pigm.*, 2019, **171**, 207684
- S. M. Hossainm, V. Prakashm, P. Mamidi, S. Chattopadhyay and A. K. Singh, Pyrene-appended bipyridine hydrazone ligand as a turn-on sensor for Cu²⁺ and its bioimaging application, *RSC Adv.*, 2020, 10, 3646
- 10. H. Chen, P. Yang, Y. Li, L. Zhang, F. Ding, X. He, J. Shen, Insight into triphenylamine and coumarin serving as copper (II) sensors with "OFF" strategy and for bio-imaging in living cells, *Spectrochim. Acta A*, 2020, **224**, 117384
- 11. S. Li, D. Cao, X. Meng, Z. Hu, Z. Li, C. Yuan, T. Zhou, X. Han and W. Ma, A novel fluorescent chemosensor based on coumarin and quinolinylbenzothiazole for sequential recognition of Cu²⁺ and PPi and its applicability in live cell imaging, *Spectrochim. Acta A*, 2020, **230**, 118022