Supporting Information

Guaiane Sesquiterpenes from the Gorgonian Echinogorgia flora Collected in the

South China Sea

Xiangchao Luo,^{‡ab} Rongcui Wu,^{‡ab} Xiao Han,^{‡ab} Xuli Tang,^c Qi Wang,^{abd} Pinglin Li,^{*ab} and Guoqiang Li^{*ab}

^a Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and

Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China

^b Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine

Science and Technology, Qingdao 266235, People's Republic of China

^c College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100,

People's Republic of China

^d Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao

University, Qingdao 266021, People's Republic of China

Contents

Fig. S1. The target structures of compound 1 for calculation
Table S1. Stable conformers of compound 1 with $(4R, 6R, 8R)$ -1a, $(4R, 6R, 8S)$ -1b,
(4R, 6S, 8R)-1c and $(4R, 6S, 8S)$ -1d configurations, respectively4
Table S2. Important thermodynamic parameters (a.u.) of the optimized compound 1
with simplified structures at B3LYP/6-31+G(d,p) level in the gas phase4
Table S3. Optimized Z-Matrixes of compound 1 with simplified structures in the Gas
Phase (Å) at B3LYP/6-31+G(d,p) level
Fig. S2 The fitting lines of experimental and calculated NMR data of 17
Table S4 Chemical shifts of experimental and calculated NMR and spatial distance
between H-4 and N-1'8
Fig. S3 Detailed DP4+ probability (calculated at PCM/b3lyp/6-311+G(d,p) level) for
compound 1 . Isomer 1 is (4 <i>R</i> , 6 <i>R</i> , 8 <i>R</i>)- 1a , isomer 2 is (4 <i>R</i> , 6 <i>R</i> , 8 <i>S</i>)- 1b , isomer 3 is (4 <i>R</i> ,
6 <i>S</i> , 8 <i>R</i>)-1c, and isomer 4 is (4 <i>R</i> , 6 <i>S</i> , 8 <i>S</i>)-1d
Fig. S4. The target structures of compound 2 for calculation
Table S5. Stable conformers of compound 2 with $(1R, 5S, 8S)$ -2a and $(1R, 5R, 8S)$ -2b
configurations, respectively9
Table S6. Important thermodynamic parameters (a.u.) of the optimized compound 2
with simplified structures at B3LYP/6-31+G(d,p) level in the gas phase9
Table S7. Optimized Z-Matrixes of compound 2 with simplified structures in the Gas
Phase (Å) at B3LYP/6-31+G(d,p) level
Fig. S5. Detailed DP4+ probability (calculated at PCM/b3lyp/6-311+G(d,p) level) for
compound 2 . Isomer 1 is (1 <i>R</i> , 5 <i>S</i> , 8 <i>S</i>)- 2a , isomer 2 is (1 <i>R</i> , 5 <i>R</i> , 8 <i>S</i>)- 2b , isomer 3 is (1 <i>R</i> ,
5R, 8R)-2c, isomer 4 is (1R, 5R, 8S)-2d, isomer 5 is (1R, 5S, 8R)-2e, isomer 6 is (1R,
5 <i>S</i> , 8 <i>S</i>)- 2f 11
Table S8. Stable conformers of compound 3 with (1S, 4R, 8R, 10R)-3a and(1R, 4S, 8S,
10S)-3b configurations, respectively12
Table S9. Important thermodynamic parameters (a.u.) of the optimized compound 3
with simplified structures at B3LYP/6-31+G(d,p) level in the gas phase12
Table S10. Optimized Z-Matrixes of compound 3 with simplified structures in the
Gas Phase (Å) at B3LYP/6-31+ $G(d,p)$ level
Table S11. Stable conformers of compound 4 with $(1R, 5S, 8S, 10R)$ -4a and $(1S, 5R, SR)$
8 <i>R</i> , 10 <i>S</i>)-4 b configurations, respectively
Table S12. Important thermodynamic parameters (a.u.) of the optimized compound 4
at B3LYP/6-31+G(d,p) level in the gas phase
Table S13. Optimized Z-Matrixes of compound 4 with simplified structures in the
Gas Phase (Å) at B3LYP/6-31+ $G(d,p)$ level
Fig. S6 (A) Experimental ECD spectra of 3-4; (B) optimal conformations and MOs of
3 and 4e (the enantiomer of 4)15
Fig. S7. HRESIMS spectrum of compound 1
Fig. S8. ¹ H NMR spectrum of compound 1 in CDCl ₃
Fig. S9. ¹³ C NMR spectrum of compound 1 in CDCl ₃
Fig. S10. ¹³ C and DEPT spectrum of compound 1 in CDCl ₃

Fig. S11. HSQC spectrum of compound 1 in CDCl ₃	18
Fig. S12. ¹ H- ¹ H-COSY spectrum of compound 1 in CDCl ₃	18
Fig. S13. HMBC spectrum of compound 1 in CDCl ₃	19
Fig. S14. NOESY spectrum of compound 1 in CDCl ₃	19
Fig. S15. IR spectrum of compound 1	
Fig. S16. UV spectrum of compound 1	
Fig. S17. HRESIMS spectrum of compound 2	21
Fig. S18. ¹ H NMR spectrum of compound 2 in CDCl ₃	
Fig. S19. ¹³ C NMR spectrum of compound 2 in CDCl ₃	
Fig. S20. ¹³ C and DEPT spectrum of compound 2 in CDCl ₃	
Fig. S21. HSQC spectrum of compound 2 in CDCl ₃	23
Fig. S22. ¹ H- ¹ H-COSY spectrum of compound 2 in CDCl ₃	23
Fig. S23. NOESY spectrum of compound 2 in CDCl ₃	
Fig. S24. HMBC spectrum of compound 2 in CDCl ₃	24
Fig. S25. IR spectrum of compound 2	
Fig. S26. UV spectrum of compound 2	
Fig. S27. HRESIMS spectrum of compound 3	26
Fig. S28. ¹ H NMR spectrum of compound 3 in DMSO	
Fig. S29. ¹³ C NMR spectrum of compound 3 in DMSO	
Fig. S30. ¹³ C and DEPT spectrum of compound 3 in DMSO	
Fig. S31. HSQC spectrum of compound 3 in DMSO	28
Fig. S32. ¹ H- ¹ H-COSY spectrum of compound 3 in DMSO	
Fig. S33. HMBC spectrum of compound 3 in DMSO	29
Fig. S34. NOESY spectrum of compound 3 in DMSO	
Fig. S35. IR spectrum of compound 3	
Fig. S36. UV spectrum of compound 3	
Fig. S37. HRESIMS spectrum of compound 4	31
Fig. S38. ¹ H NMR spectrum of compound 4 in DMSO	
Fig. S39. ¹³ C NMR spectrum of compound 4 in DMSO	
Fig. S40. HSQC spectrum of compound 4 in DMSO	32
Fig. S41. ¹ H- ¹ H-COSY NMR spectrum of compound 4 in DMSO	
Fig. S42. HMBC NMR spectrum of compound 4 in DMSO	33
Fig. S43 NOESY spectrum of compound 4 in CDCl ₃	
Fig. S44. IR spectrum of compound 4	
Fig. S45. UV spectrum of compound 4	

Fig. S1. The target structures of compound 1 for calculation.

Table S1. Stable conformers of compound 1 with (4R, 6R, 8R)-1a, (4R, 6R, 8S)-1b, (4R, 6S, 8R)-1c and (4R, 6S, 8S)-1d configurations, respectively.

Table S2. Important thermodynamic parameters (a.u.) of the optimized compound 1 with simplified structures at B3LYP/6-31+G(d,p) level in the gas phase.

NO.	E+ZPE	G	NO.	E+ZPE	G
1a	-920.670050	-920.717362	1b	-920.666615	-920.713374
1c	-920.663978	-920.710861	1d	-920.673352	-920.720436

		1a		1b			
С	1.558967	1.069277	-0.539885	C	1.734230	0.816509	-0.080712
C	1.291596	-0.285838	-0.227453	C	1.258819	-0.470487	0.276978
C	0.095753	-0.746867	0.619686	C	-0.059257	-1.008665	-0.298187
C	-1.213518	-0.237927	0.066669	C	-1.206871	-0.129465	0.173454
C	-1.636128	1.203066	0.197717	C	-0.995244	1.310456	0.590210
C	-0.762007	2.193546	-0.574534	C	-0.361376	2.244984	-0.439670
С	0.717542	2.288002	-0.150892	C	0.957137	1.698555	-1.058513
С	-2.177962	-0.921851	-0.573492	C	-2.485413	-0.461814	0.428367
С	-3.297624	0.015952	-0.855935	C	-3.194504	0.754225	0.914237
0	-2.963073	1.251213	-0.361910	0	-2.297262	1.788914	0.965692
0	-4.353345	-0.210260	-1.396326	0	-4.353940	0.872703	1.228613
N	0.217706	-0.369104	2.053769	N	0.025087	-1.126586	-1.782082
С	-2.286282	-2.354045	-0.986692	C	-3.231273	-1.751441	0.313272
С	-0.853599	-0.967455	2.850933	C	1.091754	-2.044894	-2.178513
С	1.513783	-0.718375	2.635359	C	-1.226303	-1.517914	-2.424062
С	2.705515	1.336426	-1.300553	C	2.931104	1.242622	0.499867
С	3.519812	0.299778	-1.730327	C	3.595168	0.408747	1.394482
N	3.262979	-0.982405	-1.467445	N	3.150981	-0.797610	1.747733
C	2.176016	-1.273691	-0.735716	C	2.000603	-1.233400	1.202910
C	1.983408	-2.760985	-0.511161	C	1.570242	-2.608197	1.670669
C	0.910771	2.731266	1.313957	C	1.767347	2.853461	-1.659188
Η	0.055590	-1.842388	0.545018	Н	-0.243513	-2.010059	0.122842
Η	-1.709493	1.499176	1.250016	Н	-0.379903	1.323457	1.499641
Η	-1.217772	3.184668	-0.468742	H	-0.177085	3.206012	0.054615
Η	-0.820498	1.928659	-1.636462	Н	-1.085274	2.430310	-1.240454
Η	1.117354	3.103092	-0.765736	H	0.663951	1.031123	-1.873472
Η	-1.557074	-2.989920	-0.478921	H	-3.900133	-1.865077	1.171264
Η	-3.292892	-2.727025	-0.776319	Н	-2.561627	-2.613068	0.261823
Η	-2.133730	-2.457380	-2.067333	Н	-3.865107	-1.761543	-0.580995
Η	-0.765026	-0.624342	3.885594	Н	0.904652	-3.086148	-1.853243
Η	-1.833818	-0.664946	2.476539	Η	2.049536	-1.723376	-1.766085
Η	-0.818559	-2.073266	2.854028	Н	1.175224	-2.045504	-3.269163
Η	2.324676	-0.238947	2.085619	H	-1.576047	-2.523554	-2.124828
Η	1.701615	-1.807451	2.655635	Η	-2.014681	-0.797735	-2.203326
Η	1.543630	-0.357432	3.667747	Η	-1.073850	-1.528629	-3.507360
Η	2.953031	2.360723	-1.563711	Η	3.350441	2.212950	0.261537
Η	4.411646	0.502869	-2.320833	Η	4.530232	0.728449	1.851862
Η	1.986759	-3.030226	0.549992	H	0.595297	-2.587781	2.170452
Н	1.043513	-3.127128	-0.939085	Н	2.312992	-2.974209	2.380170

Table S3. Optimized Z-Matrixes of compound **1** with simplified structures in the Gas Phase (Å) at B3LYP/6-31+G(d,p) level.

Η	2.806874	-3.281274	-1.000956	H	1.498128	-3.323293	0.843786		
Η	0.560325	1.968955	2.011709	Н	2.677953	2.495417	-2.149337		
Η	1.969741	2.921142	1.516133	Η	2.053262	3.595716	-0.905812		
Η	0.364402	3.663692	1.495606	Н	1.165717	3.373264	-2.411520		
		1c			1d				
С	1.705674	0.925086	-0.336344	C	-1.623765	0.888487	-0.277636		
C	1.285377	-0.423595	-0.266856	C	-1.212583	-0.459357	-0.150349		
C	-0.003620	-0.837779	0.446452	C	0.001709	-0.860448	0.698727		
С	-1.202378	-0.214918	-0.233033	C	1.246092	-0.206592	0.140695		
С	-1.150360	1.194469	-0.765524	C	1.554562	1.255978	0.357410		
С	-0.558189	2.183544	0.232967	C	0.514699	2.240678	-0.182350		
С	0.994853	2.172596	0.215941	C	-0.894868	2.032052	0.429287		
С	-2.436080	-0.709975	-0.429323	C	2.223032	-0.753320	-0.603792		
C	-3.279070	0.378050	-0.999274	C	3.221608	0.306812	-0.905053		
0	-2.507986	1.507161	-1.120575	0	2.807835	1.473842	-0.313088		
0	-4.447511	0.345533	-1.299985	0	4.248176	0.220031	-1.534428		
N	0.064666	-0.470473	1.891752	N	-0.162051	-0.533933	2.137303		
C	-3.042773	-2.041398	-0.127097	C	2.432442	-2.139829	-1.121397		
C	1.198915	-1.128540	2.543905	C	-1.414848	-1.047156	2.690913		
C	-1.160497	-0.785685	2.625604	C	0.964376	-1.037841	2.922975		
C	2.919859	1.175962	-0.992497	C	-2.722371	1.148417	-1.103030		
C	3.649170	0.132926	-1.542368	C	-3.354801	0.099812	-1.760265		
N	3.242986	-1.138638	-1.510159	N	-2.979244	-1.174029	-1.645022		
C	2.084556	-1.413262	-0.891721	C	-1.929390	-1.454942	-0.854532		
C	1.701052	-2.878872	-0.924529	C	-1.592260	-2.930794	-0.785619		
C	1.552079	2.579749	1.594290	C	-1.667680	3.359167	0.432322		
Η	-0.115702	-1.929474	0.364915	Η	0.136096	-1.946711	0.589702		
Η	-0.569692	1.230067	-1.698178	Η	1.711346	1.458633	1.424685		
Η	-0.902555	3.190118	-0.024804	Н	0.869753	3.250721	0.049105		
Η	-0.934173	1.957079	1.233920	Η	0.475315	2.156856	-1.274218		
Η	1.288472	2.962711	-0.486625	Η	-0.757326	1.724026	1.471997		
Η	-2.287832	-2.799364	0.093821	H	3.495481	-2.393298	-1.079995		
Η	-3.722846	-1.975295	0.729966	H	1.865913	-2.883727	-0.555885		
Η	-3.645508	-2.375143	-0.977235	H	2.132535	-2.212093	-2.173542		
Η	1.253202	-0.796616	3.584759	Н	-1.490748	-0.739769	3.738049		
Η	1.111301	-2.231503	2.544944	H	-2.270626	-0.636231	2.153200		
Η	2.135450	-0.859109	2.053336	H	-1.481930	-2.150752	2.658340		
Η	-1.406565	-1.864007	2.616479	Η	0.843815	-0.728942	3.965240		
Η	-2.010613	-0.236310	2.219394	Η	1.908822	-0.630026	2.555879		
Η	-1.031323	-0.482273	3.668473	Η	1.041779	-2.141182	2.900292		
Η	3.287432	2.194774	-1.079110	Η	-3.089631	2.157936	-1.240425		
Η	4.595003	0.324446	-2.046285	Η	-4.207719	0.292716	-2.409053		
Η	1.644915	-3.316266	0.078472	Η	-2.324994	-3.471112	-1.385684		

Η	0.731856	-3.042774	-1.408176	Η	-0.595449	-3.148842	-1.184336
Η	2.463934	-3.414417	-1.490310	Н	-1.627515	-3.319223	0.237829
Η	2.641619	2.678047	1.570484	Н	-1.739575	3.797665	-0.568947
Η	1.280562	1.832647	2.343011	Н	-2.681772	3.238175	0.825060
Н	1.132070	3.544733	1.898511	Н	-1.148322	4.083188	1.067029

Fig. S2 The fitting lines of experimental and calculated NMR data of 1.

	Chemical shift (ppm)	Spatial distance (Å)
Expetl.	4.11	
Calcd. For 4R6R8R	3.12	4.56
Calcd. For 4R6R8S	5.33	2.25
Calcd. For 4R6S8R	3.39	4.35
Calcd. For 4R6S8S	4.45	2.42

Table S4 Chemical shifts of experimental and calculated NMR and spatial distance between H-4 and N-1'.

- 4	A	В	С	D	E	F	G	H
1	Funct	ional	Solv	ent?	Basi	s Set	Type of Data	
2	B3L	YP	PC		6-31+	G (d, p)	Unscale	d Shifts
3							-	-
12			DP4+	d 0.00%	₫ 0.00%	₫ 0.00%	d 100.00%	-
14	Nuclei	sp2?	rperimenta	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
15	С	x	155.2	165.6309	163.031	164.0987	165.6045	
16	С	x	120.1	139.4987	140.6198	141.7372	139.2584	
17	С		64.5	67.9516	67.441	66.9533	69.3415	
18	С	x	160.6	174.5185	170.7675	172.0453	173.3425	
19	С		80.7	84.5074	87.6118	86.0367	86.2166	
20	С		42.2	45.3764	40,7453	37.0889	47.5415	
21	С		28.4	47.795	33.6546	46.5458	34.6522	
22	С	x	125	135.381	139.5042	136.5257	134.7425	
23	С	x	173.7	182.3171	181.7725	181.7933	181.9192	
24	С		9.5	12.1005	13.7195	11.9115	12.0503	
25	С		43.7	44.4804	46.60623745	44.3971	43.1678	
26	С		43.7	44.7492	42.48684755	44.5548	45.173	
27	С	x	118.8	132.0331	125.8288	133.0309	124.326	
28	С	x	149.2	156.4742	157.0274	155.6494	156.8612	
29	С	x	156	168.1975	165.5414	167.2391	166.3813	
30	С		24.7	29.3018	27.0638	28.358	28.5173	
31	С		20	21.9811	19.8791	26.0044	20.9726	
32								
33	Н		4.67	4.76	4.49	4.41	4.71	
34	н		5.29	5.48	4.23	4.65	5.41	
35	н		2.44	2.61	1.89	2.46	2.40	
36	н		1.2	1.43	1.83	1.96	1.13	
37	Н		4.11	3.12	5.33	3.39	4.45	
38	Н		1.92	1.96	1.97	1.99	1.95	
39	Н		2.15	2.16	2.25	2.17	2.14	
40	Н	x	7.1	7.18	7.46	7.20	7.34	
41	н	x	8.38	8.68	8.71	8.66	8.57	
42	н		2.77	2.83	2.65	2.65	2.83	
43	н		1.41	1.90	1.36	1.50	1.39	
44								
	()	Main	Detaile	d Result	s (+			
1	А	В	С	D	E	F	G	Н

100	Л D	U	D	L	1.	U	11
1	Functional	Solvent?		Basi	s Set	Type of Data	
2	B3LYP	PCM		6-31+	G(d, p)	Unscaled Shifts	
3							
4		Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
5	sDP4+ (H data)	₫ 0.00%	₫ 0.00%	₫ 0.00%	d 100.00%	-	-
6	sDP4+ (C data)	ⅆ 0.00%	<i>d</i> 0. 05%	ⅆ 0.00%	4 99.95%	<u> </u>	_
7	sDP4+ (all data)	₫ 0.00%	a 0. 00%	₫ 0.00%	d 100.00%	-	-
8	uDP4+ (H data)	ⅆ 0.00%	ⅆ 0.00%	ⅆ 0.00%	1 00. 00%	-	-
9	uDP4+ (C data)	ⅆ 0.00%	1.01%	ⅆ 0.00%	4 98. 99%	-	-
10	uDP4+ (all data)	<i>i</i> 0. 00%	<i>i</i> 0. 00%	ⅆ 0.00%	a 100.00%	-	-
11	DP4+ (H data)	ⅆ 0.00%	<i>d</i> 0. 00%	ⅆ 0.00%	100.00%	1	
12	DP4+ (C data)	ⅆ 0.00%	ⅆ 0.00%	ⅆ 0.00%	d 100.00%	-	-
13	DP4+ (all data)	ⅆ 0.00%	ⅆ 0.00%	ⅆ 0.00%	a 100.00%	-	-
					Vie	2	10. 180

Fig. S3 Detailed DP4+ probability (calculated at PCM/b3lyp/6-311+G(d,p) level) for compound 1. Isomer 1 is (4R, 6R, 8R)-1a, isomer 2 is (4R, 6R, 8S)-1b, isomer 3 is (4R, 6S, 8R)-1c, and isomer 4 is (4R, 6S, 8S)-1d.

Fig. S4. The target structures of compound 2 for calculation.

Table S5. Stable conformers of compound 2 with (1R, 5S, 8S)-2a and (1R, 5R, 8S)-2b configurations, respectively.

Table S6. Important thermodynamic parameters (a.u.) of the optimized compound **2** with simplified structures at B3LYP/6-31+G(d,p) level in the gas phase.

conformations	E+ZPE	G	conformations	E+ZPE	G
2a1	-806.605191	-806.647421	2b1	-806.600672	-806.642066

Table S7. Optimized *Z*-Matrixes of compound **2** with simplified structures in the Gas Phase (Å) at B3LYP/6-31+G(d,p) level.

		2a1				2b1	
С	-1.478349	-0.514769	-0.223943	C	-1.160734	-0.616712	-0.543077
С	-1.401156	0.706664	0.750932	С	-1.151928	0.940744	-0.420980
С	-0.016518	0.842626	1.455138	С	-0.039036	1.454740	0.514807
С	1.091636	0.247899	0.635340	С	1.192076	0.622782	0.264289
С	0.718212	-0.919727	-0.255292	С	0.972583	-0.864074	0.005778
С	0.058592	-2.073440	0.477561	С	0.172736	-1.502742	1.120958
С	-1.257542	-1.843817	0.497976	С	-1.117390	-1.321382	0.826527

-							
С	2.372686	0.567908	0.414736	С	2.497188	0.890241	0.134424
С	2.897679	-0.380878	-0.607188	С	3.185711	-0.390614	-0.196095
0	1.873739	-1.241949	-0.987290	0	2.239186	-1.406007	-0.261543
С	-2.721531	-0.233099	-1.059574	С	-2.384790	-0.868840	-1.425287
С	-2.635106	1.287419	-1.321567	С	-3.408617	0.219011	-0.978873
С	-1.874332	1.861309	-0.127662	С	-2.605334	1.261800	-0.191749
С	-1.681722	3.157711	0.109528	С	-3.107887	2.223186	0.582732
0	4.001228	-0.453203	-1.081152	0	4.356280	-0.594855	-0.384171
С	-2.347376	-2.623355	1.160114	С	-2.318831	-1.656714	1.651831
С	3.236275	1.660691	0.955486	С	3.270512	2.164725	0.234115
0	-0.326544	-0.433584	-1.095950	0	0.101028	-0.990933	-1.125259
Н	-2.159741	0.555506	1.533383	Н	-0.895132	1.269370	-1.440346
Н	0.194502	1.887901	1.698351	Н	0.160075	2.519424	0.357626
Н	-0.061828	0.307433	2.412272	Н	-0.353666	1.336828	1.559861
Н	0.612215	-2.875142	0.950644	Н	0.611865	-1.913243	2.021896
Н	-2.732017	-0.832551	-1.972987	Н	-2.084770	-0.721893	-2.467246
Н	-3.616293	-0.479727	-0.476546	Н	-2.774136	-1.886213	-1.337966
Н	-3.617977	1.751348	-1.448985	Н	-4.202071	-0.203453	-0.354236
Н	-2.066259	1.472102	-2.239080	Н	-3.903635	0.672425	-1.844599
Н	-1.124917	3.513921	0.971662	Н	-2.467576	2.917159	1.119630
Н	-2.075212	3.920798	-0.556143	Н	-4.179388	2.360842	0.700207
Н	-1.950940	-3.494622	1.687271	Н	-2.031237	-2.180646	2.567004
Н	-2.894250	-2.007329	1.885566	Н	-2.868158	-0.750968	1.934311
Н	-3.084488	-2.973204	0.427487	Н	-3.018071	-2.296116	1.100227
Н	4.090349	1.244442	1.501192	Н	4.024759	2.097353	1.025660
Н	2.681444	2.316199	1.630984	Н	2.619676	3.016186	0.446744
Н	3.649358	2.263962	0.140550	Н	3.811945	2.360397	-0.697394

	A	В	С	D	Е	F	G	Н	I
1	1 Functional		So1v	Solvent?		Basis Set		Type of Data	
2	B3I	.YP	P	CM	6-311	-G (d, p)	Unscal	ed Shifts	
12			DP4+	499 89%	0 11%	d 0 00%	0.00%	0.00%	0.00%
14	Nuclei	5p2?	sperimenta	Isomer 1	Isomer 2	Isomer 3	Isomer	4 Isomer 5	Isomer 6
15	С		95.75	103.16	99.95	92.05	92.32	88.99	89.20
16	с		42.13	48.36	54.14	66.54	57.04	52.38	57.85
17	С		22.45	27.81	27.64	36.25	35.62	29.93	31.36
18	С	x	154.25	166.72	167.37	168.42	170.85	170.27	169.70
19	с		108.89	114.98	116.56	109.35	108.82	109.76	109.69
20	с	x	125.10	133.77	133.82	128.71	131.05	132.87	132.93
21	с	x	148.04	161.77	160.67	160.38	162.13	161.05	166.25
22	С	x	120.56	128.59	129.89	133.02	131.87	134.73	132.75
23	с	x	172.63	181.83	181.69	180.08	180.69	179.64	180.17
24	с		30.47	34.80	33.32	41.74	39.55	41.70	40.52
.25	С		30.39	35.95	34.89	32.64	35.90	34.85	35.84
26	с	x	150.29	165.38	162.15	170.00	170.65	168.31	168.52
27	с	x	107.60	111.36	110.47	113.90	111.37	111.02	110.93
28	с		13.37	14.68	16.96	27.73	24.72	24.50	24.53
29	С		8.69	10.54	10.82	11.08	10.95	10.85	11.19
30									
31	H		2.46	2.74	2.79	2.52	3.54	2.65	3.68
32	Н		2.91	3.10	3.09	2.85	2.81	3.00	2.91
33	Н		2.67	2.82	2.32	2.73	2.46	2.78	3.10
34	H	x	5.78	5.89	5.98	6.04	6.00	6.06	6.05
35	H		2.60	1.88	2.04	2.19	2.10	1.82	2.03
36	H		2.67	1.98	2.10	2.26	1.72	2.01	1.89
37	н		1.99	2.74	2.57	2.71	2.45	2.84	2.51
38	н		1.96	2.81	2.92	2.64	2.95	2.58	2.94
39	H	x	4.93	5.28	5.12	5.48	5.36	5.33	5.39
40	н	x	5.07	5.40	5.13	5.34	5.25	5.19	5.22
41	H		1.89	2.00	1.93	2.01	2.03	2.03	1.89
42	H		1.79	1.78	1.84	1.86	1.82	1.84	1.89
	٨	P	C	1		ъ.	ъ	C	Ц
-	A	D		C-1+9		B	1.		
1	rund			Solvent?	1			Type of	
4	D	JLIF	0	FUL	0.00	0-211+0(0	1, p) 🛛	Unscaled	Shirts
- 2	-		T	1 T		0 1		. .	T C
4		/	Isome	r l lsom	er Z Iso	mer 3 1s	somer 4	Isomer 5	Isomer b
5	sDP4+	(H data) 3.02	2% 0.5	01% 05	.08%	0.01%	31.38%	0.00%
6	sDP4+	(C data) 190.6	0% 9.4	10% 0.	. 00% 000	0.00%	0.00%	0.00%
7	sDP4+	(all dat	a) 📶 98.2	7% 1.1	73% 0.	. 00% att.	0.00%	0.00%	0.00%
8	uDP4+	(H data) 10.11	1% dl 0. (07% 1198	. 82%	0.01%	0.98%	0.00%
9	uDP4+	(C data) 🔐 91.0	7% 18.9	93% 📶 0.	.00% 📶	0.00%	0.00%	1 0. 00%
10	uDP4+	(all dat	a) 🔐 94.0	1% 15.9	99% 📶 0.	.00% 📶	0.00%	0.00%	0.00%
11	DP4+	(H data)	0. 01	% 10.0	00% 199	. 52%	0.00%	0.47%	0.00%
12	DP4+	(C data)	198.9	9% 11.0	01% 10	.00%	0.00%	0.00%	0.00%
13	DP4+ (all data) 11 99.8	9% 10.1		.00%	0.00%	0.00%	0.00%

Fig. S5. Detailed DP4+ probability (calculated at PCM/b3lyp/6-311+G(d,p) level) for compound 2. Isomer 1 is (1R, 5S, 8S)-2a, isomer 2 is (1R, 5R, 8S)-2b, isomer 3 is (1R, 5R, 8R)-2c, isomer 4 is (1R, 5R, 8S)-2d, isomer 5 is (1R, 5S, 8R)-2e, isomer 6 is (1R, 5S, 8S)-2f.

Table S8. Stable conformers of compound **3** with (1S, 4R, 8R, 10R)-**3a** and (1R, 4S, 8S, 10S)-**3b** configurations, respectively.

Table S9. Important thermodynamic parameters (a.u.) of the optimized compound **3** with simplified structures at B3LYP/6-31+G(d,p) level in the gas phase.

NO.	E+ZPE	G	NO.	E+ZPE	G
3a1	-921.104802	-921.149688	3b1	-921.104802	-921.149688

Table S10. Optimized Z-Matrixes of compound **3** with simplified structures in the Gas Phase (Å) at B3LYP/6-31+G(d,p) level.

3a1				3b1			
С	-0.834277	0.982343	-0.329107	С	0.834277	0.982343	-0.329107
С	-1.069920	-0.364933	0.351658	С	1.069920	-0.364933	0.351658
С	-0.034303	-1.135482	0.733374	С	0.034303	-1.135482	0.733374
С	1.290009	-0.633095	0.431029	С	-1.290009	-0.633095	0.431029
С	1.362772	0.781877	-0.118538	С	-1.362772	0.781877	-0.118538
С	1.019570	1.887487	0.908759	С	-1.019570	1.887487	0.908759
С	-0.499401	2.112087	0.712574	С	0.499401	2.112087	0.712574
С	2.514806	-1.189883	0.361241	С	-2.514806	-1.189883	0.361241
С	3.401027	-0.218305	-0.328911	С	-3.401027	-0.218305	-0.328911
0	2.661629	0.917522	-0.642373	0	-2.661629	0.917522	-0.642373
С	-2.092736	1.148006	-1.135185	С	2.092736	1.148006	-1.135185
С	-3.022336	0.250942	-0.792561	С	3.022336	0.250942	-0.792561
С	-2.548759	-0.730968	0.274271	С	2.548759	-0.730968	0.274271
С	-0.823312	3.518106	0.198497	С	0.823312	3.518106	0.198497
0	4.564644	-0.322466	-0.620429	0	-4.564644	-0.322466	-0.620429
С	3.015957	-2.537698	0.761622	С	-3.015957	-2.537698	0.761622
С	-3.286448	-0.539654	1.607879	С	3.286448	-0.539654	1.607879
0	0.367626	0.931612	-1.133000	0	-0.367626	0.931612	-1.133000

0	-2.777021	-2.102933	-0.057838	0	2.777021	-2.102933	-0.057838
С	-2.333129	-2.528877	-1.340980	С	2.333129	-2.528877	-1.340980
Н	-0.181534	-2.141576	1.116402	Н	0.181534	-2.141576	1.116402
Н	1.594203	2.778704	0.644143	Н	-1.594203	2.778704	0.644143
Н	1.292696	1.595213	1.925327	Н	-1.292696	1.595213	1.925327
Н	-1.051865	1.930551	1.639865	Н	1.051865	1.930551	1.639865
Н	-2.214055	1.947986	-1.856602	Н	2.214055	1.947986	-1.856602
Н	-4.032251	0.205472	-1.188747	Н	4.032251	0.205472	-1.188747
Н	-0.463997	4.273448	0.904773	н	0.463997	4.273448	0.904773
Н	-1.900593	3.665379	0.072832	Н	1.900593	3.665379	0.072832
Н	-0.334205	3.699726	-0.764159	Н	0.334205	3.699726	-0.764159
Н	2.231575	-3.139051	1.227052	н	-2.231575	-3.139051	1.227052
Н	3.403268	-3.079653	-0.108012	н	-3.403268	-3.079653	-0.108012
Н	3.848979	-2.445464	1.467188	н	-3.848979	-2.445464	1.467188
Н	-4.354369	-0.731368	1.468751	н	4.354369	-0.731368	1.468751
Н	-2.901336	-1.248682	2.345670	Н	2.901336	-1.248682	2.345670
Н	-3.157007	0.476634	1.988404	Н	3.157007	0.476634	1.988404
Н	-2.552365	-3.597348	-1.395659	Н	2.552365	-3.597348	-1.395659
Н	-2.863481	-2.015247	-2.152607	Н	2.863481	-2.015247	-2.152607
Н	-1.255793	-2.376320	-1.479226	Н	1.255793	-2.376320	-1.479226

Table S11. Stable conformers of compound 4 with (1R, 5S, 8S, 10R)-4a and (1S, 5R, 8R, 10S)-4b configurations, respectively.

Table S12. Important thermodynamic parameters (a.u.) of the optimized compound 4 at B3LYP/6-31+G(d,p) level in the gas phase.

NO.	E+ZPE	G	NO.	E+ZPE	G
4a1	-921.103880	-921.148568	4b1	-921.103880	-921.148568

	4a1				4b1			
С	0.819684	0.977039	-0.587258	C	-0.819684	0.977039	-0.587258	
С	1.062314	-0.233212	0.314844	С	-1.062314	-0.233212	0.314844	
С	0.025681	-0.910136	0.846250	С	-0.025681	-0.910136	0.846250	
С	-1.302082	-0.456543	0.487804	С	1.302082	-0.456543	0.487804	
С	-1.378394	0.823125	-0.329264	С	1.378394	0.823125	-0.329264	
С	-1.028036	2.103543	0.468169	С	1.028036	2.103543	0.468169	
С	0.472778	2.309031	0.162586	С	-0.472778	2.309031	0.162586	
С	-2.529012	-1.010544	0.543485	С	2.529012	-1.010544	0.543485	
С	-3.420143	-0.191985	-0.318242	С	3.420143	-0.191985	-0.318242	
0	-2.681181	0.853896	-0.860591	0	2.681181	0.853896	-0.860591	
С	2.069894	1.006411	-1.419472	С	-2.069894	1.006411	-1.419472	
С	2.993405	0.152458	-0.967477	С	-2.993405	0.152458	-0.967477	
С	2.519183	-0.684514	0.215892	С	-2.519183	-0.684514	0.215892	
С	1.337175	2.671152	1.366535	С	-1.337175	2.671152	1.366535	
0	-4.586953	-0.347933	-0.571480	0	4.586953	-0.347933	-0.571480	
С	-3.029597	-2.249398	1.208849	С	3.029597	-2.249398	1.208849	
С	3.342664	-0.439563	1.487065	С	-3.342664	-0.439563	1.487065	
0	-0.390111	0.765657	-1.359734	0	0.390111	0.765657	-1.359734	
0	2.644235	-2.095957	-0.002120	0	-2.644235	-2.095957	-0.002120	
С	2.105075	-2.605554	-1.216646	С	-2.105075	-2.605554	-1.216646	
Н	0.170853	-1.849334	1.373307	Н	-0.170853	-1.849334	1.373307	
Н	-1.644962	2.924959	0.097991	Н	1.644962	2.924959	0.097991	
Н	-1.229875	1.977821	1.535636	Н	1.229875	1.977821	1.535636	
Н	0.571388	3.097784	-0.592385	Н	-0.571388	3.097784	-0.592385	
Н	2.189977	1.701836	-2.243911	Н	-2.189977	1.701836	-2.243911	
Н	3.995395	0.035643	-1.369274	Н	-3.995395	0.035643	-1.369274	
Н	2.391903	2.762650	1.087400	Н	-2.391903	2.762650	1.087400	
Н	1.022976	3.632349	1.785470	Н	-1.022976	3.632349	1.785470	
Н	1.253431	1.920176	2.158524	Н	-1.253431	1.920176	2.158524	
Н	-2.240054	-2.755402	1.769276	Н	2.240054	-2.755402	1.769276	
Н	-3.437080	-2.946947	0.469096	Н	3.437080	-2.946947	0.469096	
Н	-3.848199	-2.012773	1.897529	Н	3.848199	-2.012773	1.897529	
Н	3.316505	0.609729	1.785697	Н	-3.316505	0.609729	1.785697	
Н	4.381359	-0.733066	1.310058	Н	-4.381359	-0.733066	1.310058	
Н	2.947833	-1.052046	2.302373	Н	-2.947833	-1.052046	2.302373	
Н	2.222133	-3.690209	-1.164941	Н	-2.222133	-3.690209	-1.164941	
Н	2.643597	-2.231538	-2.096336	Н	-2.643597	-2.231538	-2.096336	
Н	1.041352	-2.364808	-1.332822	Н	-1.041352	-2.364808	-1.332822	

Table S13. Optimized Z-Matrixes of compound 4 with simplified structures in the Gas Phase (Å) at B3LYP/6-31+G(d,p) level.

Fig. S6 (A) Experimental ECD spectra of 3-4; (B) optimal conformations and MOs of 3 and 4e (the enantiomer of 4).

Fig. S7. HRESIMS spectrum of compound 1.

Fig. S8. ¹H NMR spectrum of compound 1 in CDCl₃.

Fig. S10. ¹³C and DEPT spectrum of compound 1 in CDCl₃.

Fig. S11. HSQC spectrum of compound 1 in CDCl₃.

Fig. S12. ¹H-¹H-COSY spectrum of compound 1 in CDCl₃.

Fig. S13. HMBC spectrum of compound 1 in CDCl₃.

Fig. S14. NOESY spectrum of compound 1 in CDCl₃.

Fig. S15. IR spectrum of compound 1.

Fig. S16. UV spectrum of compound 1.

Fig. S17. HRESIMS spectrum of compound 2.

Fig. S18. ¹H NMR spectrum of compound 2 in CDCl₃.

Fig. S20. ¹³C and DEPT spectrum of compound 2 in CDCl₃.

Fig. S21. HSQC spectrum of compound 2 in CDCl₃.

Fig. S22. ¹H-¹H-COSY spectrum of compound 2 in CDCl₃.

Fig. S23. NOESY spectrum of compound 2 in CDCl₃.

Fig. S24. HMBC spectrum of compound 2 in CDCl₃.

Fig. S25. IR spectrum of compound 2.

Fig. S26. UV spectrum of compound 2.

Fig. S27. HRESIMS spectrum of compound 3.

Fig. S28. ¹H NMR spectrum of compound 3 in DMSO.

Fig. S30. ¹³C and DEPT spectrum of compound 3 in DMSO.

Fig. S31. HSQC spectrum of compound 3 in DMSO.

Fig. S32. ¹H-¹H-COSY spectrum of compound 3 in DMSO.

Fig. S34. NOESY spectrum of compound 3 in DMSO.

Fig. S35. IR spectrum of compound 3.

Fig. S36. UV spectrum of compound 3.

20121016-B5-1-3_121016154026 #57-60 RT: 1.34-1.41 AV: 4 NL: 8.17E6 T: FTMS + p ESI sid=40.00 Full ms [100.00-1000.00]

Fig. S37. HRESIMS spectrum of compound 4.

Fig. S38. ¹H NMR spectrum of compound 4 in DMSO.

Fig. S40. HSQC spectrum of compound 4 in DMSO.

Fig. S41. ¹H-¹H-COSY NMR spectrum of compound 4 in DMSO.

Fig. S42. HMBC NMR spectrum of compound 4 in DMSO.

Fig. S43 NOESY spectrum of compound 4 in CDCl₃.

Fig. S44. IR spectrum of compound 4.

Fig. S45. UV spectrum of compound 4.