Supporting Information

New Small γ-Turn Type *N*-Primary Amino Terminal Tripeptide Organocatalyst for solvent free Asymmetric Aldol Reaction of Various Ketones with Aldehydes

Rajkumar Thiyagarajan,^a Zubeda Begum,^a Chigusa Seki,^a Yuko Okuyama,^b Eunsang Kwon,^cKoji Uwai,^a Michio Tokiwa,^d Suguru Tokiwa,^d Mitsuhiro Takeshita,^d and Hiroto Nakano^a

^a Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of

Technology, 27-1 Mizumoto-cho, Muroran 050-8585, Japan.

E-mail: catanaka@mmm.muroran-it.ac.jp

^bTohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981 8558, Japan

^cResearch and Analytical Centre for Giant Molecules, Graduate School of Sciences, Tohoku University 6-3 Aoba, Aramaki,

Aoba-ku, Sendai 980-8578, Japan.

^d Tokiwakai Group, 62 Numajiri, Tsuduri-chou Uchigo, Iwaki 973-8053, Japan.

CONTENTS

		Pages
1.	General information	1
2.	Experimental procedure	2-12
3.	Theoretical Calculations	13-24
4.	¹ H & ¹³ C NMR spectra of 3a-d, 5a-h, 6a-j, 8, 9, 12a,b, 13a,b and 14a,b	25-55
5.	HPLC spectra of 17a-s	56-73

1.General Information

Reagents and dry solvents were of the commercially available maximum grade and used without further purification. Reactions were performed under an inert atmosphere in flame dried and cooled glassware. The reaction progress was monitored by thin layer chromatography (TLC) using Merk silica plate gel 60 F₂₅₄ aluminum sheet. The purification of products were carried out using column chromatography techniques in silica gel 60 N (40–50 μ m) purchased from Kanto Chemical Company. Visualization of the products was confirmed by ultraviolet light, iodine vapor and ninhydrin stain. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECA500 (¹H for 500 MHz and ¹³C for 125 MHz). All the spectra were recorded at 21 °C. Chemical shifts (δ) are reported in parts per million (ppm) relative to the signals of tetramethylsilane (TMS) using the residual solvents signals. Report data for ¹H NMR spectroscopy was reported as: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, dd = doublet of doublets, td = triplet of doublets, m = multiplet and br = broad, coupling constants (J) and assimilation were measured in hertz (Hz). Optical rotation was measured by JASCO DIP-360 polarimeter. The melting point apparatus. High resolution mass spectra (HRMS) data was collected by electron impact (EI) using Hitachi RMG-GMG and JEOL JNK-DX303 sector instruments. The enantiomeric excess (*ee*) was determined using high pressure liquid chromatography (HPLC) principle by DAICEL CHIRALPAK AD-H, AS-H, IC columns.

2. Experimental procedure

2.1 General procedure for the synthesis of peptide organocatalysts 3a-d, 5a-h, 6a-j, 8, 9,12a,b, 13a,b and 14a,b

To a solution of *N*-Boc-L-Proline, **7** and **11a,b** (0.5mmol), *N*,*N*'-Dicyclohexylcarbodiimide (DCC) (0.6 mmol) was suspended in dry CH₂Cl₂ (5 ml) and stirred at 0 °C for 1 hour. The corresponding primary aromatic amines **2a-d** (0.55 mmol) were added slowly and the reaction mixture was gradually allowed to stir from 0 °C to 30 °C until the reaction completion. After the reaction was completed, as monitored by TLC, the insoluble by-product Dicyclohexyl urea (DCU) was filtered off and the filtrate was evaporated to dryness. The obtained oily residue was dissolved in CHCl₃ and washed consecutively with saturated aqueous NaHCO₃ solution, aqueous HCl (1.0 M) and brine. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under a reduced pressure to afford the obtained crude products that were used for next step without further purification. To the solution of the crude products in dry CH₂Cl₂, TFA was added dropwise over a period of times (v/v) at 0 °C and successively stirred at room temperature (r.t.) for 4 h. After the reaction completion, DCM and TFA were removed under a reduced pressure, the residue was basified by drop-wise addition of saturated NaHCO₃ solution at 0 °C and stirred for 1 hour at r.t. The crude products were extracted with CHCl₃, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on SiO₂ (CHCl₃: MeOH = 99:1 to 95: 5) to afford the corresponding amino amides **3a-d**, **8** and **12a,b**.

2.1.1 L-Pro-Ph (3a)

Colorless solid. 90% yield. m p 73 °C. $[\alpha]_D^{20} = -71.87$ (c = 0.64, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.73 (s, 1H), 7.60 (m, 2H), 7.30-7.34 (m, 2H), 7.09 (t, *J* = 7.2 Hz, 1H), 3.86 (dd, *J* = 9.0, 5.3 Hz, 1H), 3.06-3.11 (m, 1H), 2.96-3.00 (m, 1H), 2.18-2.25 (m, 1H), 2.01-2.08 (m, 1H), 1.70-1.82 (m, 2H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.5, 137.8, 128.9, 123.8, 119.2, 61.0, 47.3, 30.77, 26.3. MS (EI): m/z = 190 [M]⁺, HRMS calculated for C₁₁H₁₄N₂O₁ [M]⁺: 190.2460; found 190.1114.

2.1.2. L-Pro-1-Naph (3b)

Colorless solid. 95% yield. mp 63 °C. $[\alpha]_{D}^{20}$ = -11.11 (c = 0.81, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.59 (s, 1H), 8.24-8.32 (m, 1H), 7.83-7.90 (m, 2H), 7.63-7.68 (m, 1H), 7.47-7.55 (m, 3H), 4.02 (q, *J* = 4.8 Hz, 1H), 3.10-3.21 (m, 2H), 2.25-2.35 (m, 1H), 2.15 (m, 1H), 1.77-1.91 (m, 2H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.5, 134.0, 132.5, 128.8, 126.1, 126.0, 125.7, 124.4, 120.2, 117.7, 61.5, 47.6, 30.9, 26.5. MS (EI): m/z = 240 [M]⁺, HRMS calculated for C₁₅H₁₆N₂O [M]⁺: 240.3060; found 240.1255.

2. 1.3. L-Pro-1-Anth (3c)

Yellow solid. 85% yield. mp 91 °C. $[\alpha]_D^{20}$ = -134.95 (c = 0.45, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.75 (s, 1H), 8.42 (d, *J* = 17.2 Hz, 2H), 8.27 (d, *J* = 6.9 Hz, 1H), 7.97-8.05 (m, 2H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.45-7.54 (m, 3H), 4.08 (q, *J* = 4.8 Hz, 1H), 3.17-3.28 (m, 2H), 2.28-2.36 (m, 1H), 2.20 (m, 1H), 1.88 (m, 2H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.6, 132.2, 132.1, 131.4, 128.4, 128.0, 127.2, 125.7, 125.4, 125.3, 124.6, 118.8, 116.4, 77.3, 77.0, 76.8, 61.6, 47.6, 30.9, 26.5. MS (EI): m/z = 290 [M]⁺, HRMS calculated for C₁₉H₁₈N₂O [M]⁺: 290.3660, found 290.1414.

2.1.4. L-Pro-1-Pyr (3d)

Colorless solid. 93% yield. mp 141 °C. [α]_D²⁰ = -75.55 (c = 0.45, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.85 (s, 1H), 8.79 (d, *J* = 8.0 Hz, 1H), 8.17 (q, *J* = 7.4 Hz, 3H), 8.09 (dd, *J* = 17.2, 9.7 Hz, 2H), 8.03-7.98 (m, 3H), 4.15-4.09 (m, 1H), 3.28-3.17 (m, 2H), 2.38-2.31 (m, 1H), 2.22 (m, 1H), 1.97-1.82 (m, 2H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.7, 131.6, 131.0, 130.9, 128.3, 127.8, 127.6,

126.3, 126.2, 125.6, 125.3, 125.3, 124.9, 124.8, 121.8, 119.9, 119.7, 77.4, 77.1, 76.9, 61.7, 47.7, 31.1, 26.6. MS (EI): m/z = 314 [M]⁺, HRMS calculated for C₂₁H₁₈N₂O [M]⁺: 314.3880; found 314.1419.

2.1.5. D-Pro-1-Naph (8)

Colorless solid. 90% yield. mp 75 °C. $[\alpha]_D^{20}$ = 38.11 (c = 0.45, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.57 (s, 1H), 8.27 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.88-7.81 (m, 2H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.54-7.46 (m, 3H), 3.98 (q, *J* = 4.8 Hz, 1H), 3.17-3.06 (m, 2H), 2.29-2.22 (m, 2H), 2.13 (m, 1H), 1.87-1.74 (m, 2H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.6, 134.1, 132.7, 128.9, 126.2, 126.1, 126.1, 125.9, 124.5, 120.3, 117.8, 61.6, 47.6, 31.0, 29.8, 26.6. MS (EI): m/z = 314 [M]⁺, HRMS calculated for C₂₁H₁₈N₂O [M]⁺: 240.3060; found 240.1267.

2.1.6. L-Aze-1-Naph (12a)

Colorless solid. 60% yield. mp 110 °C. $[\alpha]_D^{20}$ = -40.62 (c = 0.45, CHCl₃). ¹HNMR (500 MHz, CDCl₃, ppm): δ 10.41 (s, 1H), 8.28 (d, *J* = 7.4 Hz, 1H), 7.98 (d, *J* = 8.6 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.57-7.48 (m, 3H), 4.60 (dd, *J* = 9.2, 8.0 Hz, 1H), 3.96-3.88 (m, 1H), 3.50 (m, 1H), 2.84-2.77 (m, 1H), 2.61-2.53 (m, 1H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 172.2, 134.1, 132.3, 128.8, 126.1, 126.0, 125.9, 124.7, 120.2, 117.9, 60.0, 43.6, 26.7. MS (EI): m/z = 226 [M]⁺, HRMS calculated for C₂₁H₁₈N₂O [M]⁺: 226.2790; found 226.1103.

2.1.7. L-Pip-1-Naph (12b)

Colorless solid. 70% yield. mp 99 °C. $[\alpha]_{D}^{20}$ = -28.96 (c = 0.45, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.61 (s, 1H), 8.17 (d, *J* = 6.9 Hz, 1H), 7.88-7.85 (m, 2H), 7.65 (d, *J* = 8.6 Hz, 1H), 7.55-7.46 (m, 3H), 3.51 (q, *J* = 4.6 Hz, 1H), 3.16 (m, 1H), 2.87-2.81 (m, 1H), 2.13-2.08 (m, 1H), 1.87-1.81 (m, 1H), 1.74-1.69 (m, 1H), 1.68-1.61 (m, 1H), 1.57-1.50 (m, 2H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 172.5, 134.1, 132.5, 128.9, 126.3, 126.2, 126.0, 126.0, 124.9, 120.4, 118.8, 60.7, 45.7, 29.8, 26.1, 23.8. MS (EI): m/z = 254 [M]⁺, HRMS calculated for C₂₁H₁₈N₂O [M]⁺: 254.3330; found 254.1423.

2.2. General procedure for the synthesis of peptide organocatalysts 5a-h, 9 and 13a,b

N-Boc- amino acids **4a-e** (4.135 mmol) were stirred with *N*, *N* '-Dicyclohexylcarbodiimide DCC (4.55 mmol) in CH₂Cl₂ (15 mL) at 0 °C for 1 h. Corresponding amino amides **3a-d**, **8 12a,b** (4.135 mmol) were added slowly and the reaction was stirred at 30 °C. After the reaction completion, as monitored by thin layer chromatography, insoluble by-product DCU was filtered off and the filtrate was evaporated to dryness. The obtained oily residue was dissolved in CH₂Cl₂, and washed sequentially with saturated aqueous NaHCO₃ solution, aqueous HCl (1.0 M), and brine. The organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated under a reduced pressure to afford the crude products that were used for next step without further purification. To the solution of the obtained crude products in dry CH₂Cl₂, TFA was added in dropwise over a period of times (2 mL) at 0 °C and successively stirred at room temperature (r.t.) for 4 h. After the reaction completion DCM and TFA were removed under a reduced pressure, the residue was basified by drop-wise addition of saturated NaHCO₃ solution at 0 °C and stirred for 1 h at r.t. The crude products were extracted with CHCl₃, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on SiO₂ (CHCl₃: MeOH = 99:1 to 95: 5) to obtain the corresponding dipeptide catalysts **5a-h**, **9** and **13a,b**.

2.2.1. L-Ala- L-Pro-1-Naph (5a)

Colorless solid. 88% yield. mp 96 °C. $[\alpha]_{D}^{20}$ = -115.6 (c = 0.50, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.93 (s, 1H), 8.15 (d, *J* = 8.6 Hz, 1H), 8.04 (d, *J* = 8.6 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.53-7.56 (m, 1H), 7.44-7.51 (m, 2H), 5.01 (d, *J* = 6.9 Hz, 1H), 3.77 (q, *J* = 6.7 Hz, 1H), 3.55-3.63 (m, 2H), 2.70-2.74 (m, 1H), 2.18-2.28 (m, 1H), 2.06-2.14 (m, 1H), 1.83-1.90 (m, 1H), 1.70 (s, 2H), 1.32 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.4, 169.2, 133.98, 133.2, 128.6, 126.2, 126.1, 125.9, 125.7, 124.8, 120.9, 118.7, 60.7, 48.6, 47.1, 25.9, 25.3, 21.6. MS (EI): m/z = 311 [M]⁺, HRMS calculated for C₁₈H₂₁N₃O₂ [M]⁺: 311.3850; found 311.1638.

2.2.2. L-Val- L-Pro-1-Naph (5b)

Colorless solid. 91% yield. mp 111 °C. [α]_D²⁰ = -84.13 (c = 0.57, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.02 (s, 1H), 8.19-8.21 (m, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 7.4 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.51-7.55 (m, 1H), 7.43-7.51 (m, 2H), 5.03 (d, *J* = 6.9 Hz, 1H), 3.58-3.64 (m, 2H), 3.40 (d, *J* = 6.3 Hz, 1H), 2.69-2.73 (m, 1H), 2.20-2.29 (m, 1H), 2.06-2.13 (m, 1H), 1.84-1.98 (m, 2H), 1.57 (s, 2H), 0.91 (q, *J* = 3.4 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 176.5, 169.2, 133.9, 133.3, 128.5, 126.1, 125.8, 125.7, 124.7, 121.0, 118.2, 60.6, 58.5, 47.5, 32.6, 25.9, 25.3, 19.9, 17.1. MS (EI): m/z = 339 [M]⁺, HRMS calculated for C₂₀H₂₅N₃O₂ [M]⁺: 339.4390; found 339.1942.

2.2.3. L-Tle- L-Pro-1-Naph (5c)

Colorless solid. 92% yield. mp 121 °C. $[\alpha]_D^{20}$ = -110 (c = 0.63, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.02 (s, 1H), 8.22 (d, *J* = 6.9 Hz, 1H), 8.16 (d, *J* = 8.6 Hz, 1H), 7.85-7.83 (m, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.54-7.47 (m, 2H), 7.44 (t, *J* = 7.7 Hz, 1H), 5.03 (dd, *J* = 8.0, 1.1 Hz, 1H), 3.69-3.65 (m, 2H), 3.41 (s, 1H), 2.73-2.68 (m, 1H), 2.30-2.20 (m, 1H), 2.12-2.05 (m, 1H), 1.93-1.86 (m, 1H), 1.66 (s, 2H), 0.97 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 175.6, 169.2, 133.9, 133.3, 128.5, 126.1, 126.0, 125.8, 125.7, 124.6, 121.1, 118.1, 60.5, 60.4, 48.5, 35.5, 26.1, 25.3. MS (EI): m/z = 353 [M]⁺, HRMS calculated for C₂₁H₂₇N₃O₂ [M]⁺: 353.4660; found 353.2097.

2.2.4. L-Phg- L-Pro-1-Naph (5d)

Colorless solid. 78% yield. mp 101 °C. [α]_D²⁰ = -29.60 (c = 0.42, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.77 (s, 1H), 8.03 (t, *J* = 8.9 Hz, 2H), 7.85-7.86 (m, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.49-7.56 (m, 2H), 7.43 (t, *J* = 8.0 Hz, 1H), 7.32-7.33 (m, 2H), 7.14-7.20 (m, 3H), 5.06 (d, *J* = 6.9 Hz, 1H), 4.70 (s, 1H), 3.58 (dd, *J* = 17.2, 9.7 Hz, 1H), 3.27-3.31 (m, 1H), 2.62-2.66 (m, 1H), 2.01-2.12 (m, 5H), 1.83-1.91 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 174.2, 169.0, 140.4, 133.9, 133.0, 129.3, 128.5, 128.2, 126.9, 126.3, 126.2, 125.8, 125.6, 125.0, 121.1, 119.0, 61.0, 58.1, 46.9, 26.2, 25.1. MS (EI): m/z = 373 [M]⁺, HRMS calculated for C₂₃H₂₃N₃O₂ [M]⁺: 373.4560; found 373.1794.

2.2.5. L-Phe- L-Pro-1-Naph (5e)

Colorless solid. 60% yield. mp 99 °C. $[\alpha]_{D}^{20}$ = -88.00 (c = 0.40, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.99 (s, 1H), 8.24 (d, *J* = 8.6 Hz, 1H), 8.16 (d, *J* = 8.6 Hz, 1H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.67 (d, *J* = 8.6 Hz, 1H), 7.58-7.62 (m, 1H), 7.44-7.53 (m, 2H), 7.02-7.05 (m, 3H), 6.96-6.98 (m, 2H), 4.99 (d, *J* = 6.9 Hz, 1H), 3.85 (t, *J* = 7.2 Hz, 1H), 3.48 (m, 1H), 3.02-3.08 (m, 1H), 2.96 (q, *J* = 6.9 Hz, 1H), 2.85 (q, *J* = 6.5 Hz, 1H), 2.64 (q, *J* = 5.9 Hz, 1H), 1.95-2.07 (m, 2H), 1.76-1.84 (m, 1H), 1.66 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 175.7, 168.6, 136.7, 134.0, 133.3, 129.1, 128.6, 128.5, 126.8, 126.3, 125.9, 125.7, 124.7, 120.9, 118.2, 60.6, 55.0, 47.1, 43.1, 25.9, 25.1. MS (EI): m/z = 387 [M]⁺, HRMS calculated for C₂₄H₂₅N₃O₂ [M]⁺: 387.4830; found 387.1950.

2.2.6. L-Tle- L-Pro-1-Ph (5f)

Colorless solid. 80% yield. mp 153 °C. $[\alpha]_D^{20}$ = -42.50 (c = 0.40, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.56 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.29 (m, 2H), 7.05 (t, *J* = 7.2 Hz, 1H), 4.86 (dd, *J* = 8.0, 1.7 Hz, 1H), 3.60-3.63 (m, 2H), 3.37 (s, 1H), 2.55-2.59 (m, 1H), 2.11-2.21 (m, 1H), 1.98-2.05 (m, 1H), 1.80-1.88 (m, 1H), 1.71 (s, 2H), 0.98 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 175.4, 168.9, 138.3, 129.0, 124.0, 119.7, 60.5, 60.5, 48.5, 35.6, 26.2, 26.0, 25.3. MS (EI): m/z = 303 [M]⁺, HRMS calculated for C₁₇H₂₅N₃O₂ [M]⁺: 303.4060; found 303.1949.

2.2.7. L-Tle- L-Pro-1-Anth (5g)

Yellow solid. 91% yield. mp 91 °C. $[\alpha]_{D}^{20}$ = -134.95 (c = 0.45, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.23 (s, 1H), 8.77 (s, 1H), 8.42 (s, 1H), 8.29 (d, *J* = 7.4 Hz, 1H), 8.11 (dd, *J* = 5.4, 3.7 Hz, 1H), 7.99 (dd, *J* = 5.7, 4.0 Hz, 1H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.41-7.50 (m, 3H), 5.09 (d, *J* = 6.9 Hz, 1H), 3.66-3.71 (m, 2H), 3.42 (s, 1H), 2.74 (m, 1H), 2.23-2.33 (m, 1H), 2.09-2.13 (m, 1H), 1.89-1.97 (m, 1H), 1.69 (s, 2H), 0.96 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 175.8, 169.3, 133.3, 132.1, 131.6, 131.4, 128.7, 127.7, 126.9, 125.7, 125.4, 125.2, 124.7, 124.7, 119.7, 116.3, 60.6, 60.4, 48.5, 35.5, 26.2, 26.1, 25.4. MS (EI): m/z = 403 [M]⁺, HRMS calculated for C₂₅H₂₉N₃O₂ [M]⁺: 403.5260; found 403.2269.

2.2.8. L-Tle- L-Pro-1-Pyr (5h)

Green solid. 91% yield. mp 95 °C. $[\alpha]_{D}^{20}$ = -151.78 (c = 0.56, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.35 (s, 1H), 8.75 (d, *J* = 8.6 Hz, 1H), 8.37 (d, *J* = 9.2 Hz, 1H), 8.14-8.18 (m, 3H), 8.11 (t, *J* = 4.6 Hz, 1H), 7.95-8.02 (m, 3H), 5.12-5.14 (m, 1H), 3.67-3.74 (m, 2H), 3.44 (s, 1H), 2.74-2.79 (m, 1H), 2.26-2.35 (m, 1H), 2.13 (m, 1H), 1.91-1.99 (m, 1H), 1.63 (s, 2H), 1.00 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 175.9, 169.2, 131.6, 131.4, 130.9, 128.2, 127.7, 127.3, 126.3, 126.0, 125.2, 125.1, 124.8, 124.7, 121.6, 120.6, 119.7, 60.6, 60.5, 48.5, 35.6, 26.2, 26.1, 25.4. MS (EI): m/z = 427 [M]⁺, HRMS calculated for C₂₇H₂₉N₃O₂ [M]⁺: 427.5480; found 427.2254.

2.2.9. L-Tle-D-Pro-1-Naph (9)

Colorless solid. 85% yield. mp 153 °C. [α]_D²⁰ = 10.96 (c = 0.40, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.07 (s, 1H), 8.16-8.10 (m, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.54-7.43 (m, 3H), 5.01 (d, *J* = 8.0 Hz, 1H), 3.73-3.59 (m, 2H), 3.40 (d, *J* = 11.5 Hz, 1H), 2.71 (q, *J* = 6.1 Hz, 1H), 2.26-2.16 (m, 1H), 2.08 (s, 1H), 1.90-1.82 (m, 1H), 1.63 (s, 2H), 1.08 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 175.6, 169.2, 133.9, 133.3, 128.5, 126.1, 126.0, 125.8, 125.7, 124.6, 121.1, 118.1, 60.5, 60.4, 48.5, 35.5, 26.1, 25.3. MS (EI): m/z = 353 [M]⁺, HRMS calculated for C₂₇H₂₉N₃O₂ [M]⁺: 353.4660; found 353.2097.

2.2.10. L-Tle- L-Aze-1-Naph (13a)

Colorless solid. 70% yield. mp 153 °C. [α]_D²⁰ = -121.06 (c = 0.40, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.32 (s, 1H), 8.28 (d, *J* = 7.4 Hz, 1H), 8.15 (d, *J* = 8.6 Hz, 1H), 7.86-7.84 (m, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.53-7.46 (m, 3H), 5.21 (dd, *J* = 9.2, 6.3 Hz, 1H), 4.29 (m, 1H), 4.17 (m, 1H), 3.12 (s, 1H), 2.97-2.91 (m, 1H), 2.58-2.51 (m, 1H), 1.60 (s, 2H), 1.00 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 177.0, 169.1, 134.0, 133.2, 128.5, 126.2, 125.9, 125.7, 124.8, 121.1, 118.3, 62.9, 58.5, 49.5, 35.2, 26.1, 18.0. MS (EI): m/z = 339 [M]⁺, HRMS calculated for C₂₇H₂₉N₃O₂ [M]⁺: 339.4390; found 339.1951.

2.2.11. L-Tle- L-Pip-1-Naph (13b)

Colorless solid. 70% yield. mp 153 °C. $[\alpha]_D^{20} = -109.72$ (c = 0.40, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.10 (s, 1H), 8.21 (d, *J* = 7.4 Hz, 1H), 7.98-7.95 (m, 1H), 7.85 (dd, *J* = 7.2, 2.6 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.53-7.48 (m, 3H), 7.47-7.44 (m, 1H), 5.50 (d, *J* = 5.2 Hz, 1H), 4.06 (d, *J* = 13.7 Hz, 1H), 3.66 (s, 1H), 3.21 (m, 1H), 2.36 (d, *J* = 13.7 Hz, 1H), 2.18-2.08 (m, 1H), 1.83-1.76 (m, 3H), 1.67 (s, 3H), 1.59 (m, 1H), 0.95 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 177.0, 169.7, 134.1, 132.9, 128.8, 126.3, 126.0, 125.9, 125.6, 124.8, 120.6, 118.2, 57.8, 52.9, 45.1, 36.0, 26.5, 25.7, 25.1, 20.3. MS (EI): m/z = 367 [M]⁺, HRMS calculated for C₂₇H₂₉N₃O₂ [M]⁺: 367.4930; found 367.2268.

2.3. General procedure for the synthesis of peptide organocatalysts 6a-j, 10 and 14a-b

To a solution of *N*, *N'*-Dicyclohexylcarbodiimide (DCC) (1.29 mmol) in dry CH₂Cl₂ (10 mL) were added *N*-Boc-L-amino acids **4'a-f** (0.86 mmol) at 0 °C and the reaction mixture was stirred for 1 hour. After 1 hour, corresponding dipeptides **5a-h**, **9** and **13a-b** (0.95 mmol) were added and the reaction was stirred for another 24 hour at rt. The insoluble by-product DCU was filtered off and the filtrate evaporated to dryness. The obtained oily residue was dissolved in CH₂Cl₂ and extracted sequentially with saturated aqueous NaHCO₃ solution, aqueous HCl (1.0 M), and brine. The organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated under a reduced pressure to afford the crude products that were used for next step without further purification. To the solution of the crude products in dry CH₂Cl₂, TFA was added in dropwise over a period of times (0.4 mL) at 0 °C and successively stirred at room temperature (r.t.) for 4 h. After the reaction completion, DCM and TFA were removed under a reduced pressure, the residue was basified by drop-wise addition of saturated NaHCO₃ solution at 0 °C and stirred for 1 h at r.t. The crude products were extracted with CHCl₃, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on SiO₂ (CHCl₃: MeOH = 99:1 to 95: 5) to obtain the corresponding tripeptide catalysts **6a-j, 10** and **14a,b**.

2.3.1. L-Ala- L-Tle- L-Pro-1-Naph (6a)

White solid. 93% yield. mp 102 °C. $[\alpha]_D^{20} = -46.59$ (c = 0.58, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.83 (s, 1H), 8.20 (d, *J* = 6.9 Hz, 1H), 8.15 (q, *J* = 4.6 Hz, 2H), 7.84-7.86 (m, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.44-7.54 (m, 3H), 4.98 (dd, *J* = 7.4, 1.7 Hz, 1H), 4.65 (d, *J* = 9.2 Hz, 1H), 3.97 (m, 1H), 3.71-3.76 (m, 1H), 3.56 (q, *J* = 6.9 Hz, 1H), 2.65-2.69 (m, 1H), 2.20-2.30 (m, 1H), 2.05-2.13 (m, 1H), 1.87-1.95 (m, 1H), 1.57 (s, 3H), 1.39 (d, *J* = 6.9 Hz, 3H), 1.01 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 175.7, 172.8, 169.1, 133.9, 133.2, 128.5, 126.1, 125.8, 125.8, 125.7, 124.7, 121.0, 118.2, 60.6, 56.5, 50.8, 48.8, 35.2, 26.3, 26.1, 25.3, 21.9. MS (EI): m/z = 424 [M]⁺, HRMS calculated for C₂₄H₃₂N₄O₃ [M]⁺: 424.5450; found 424.2467.

2.3.2. L-Val- L-Tle- L-Pro-1-Naph (6b)

White solid. 90% yield. mp 83 °C. $[\alpha]_D^{20}$ = -62.50 (c = 0.58, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.85 (s, 1H), 8.24 (d, *J* = 9.2 Hz, 1H), 8.20 (d, *J* = 8.0 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 7.83-7.87 (m, 1H), 7.64 (t, *J* = 8.3 Hz, 1H), 7.47-7.54 (m, 2H), 7.45 (t, *J* = 7.7 Hz, 1H), 4.98 (dd, *J* = 7.7, 1.4 Hz, 1H), 4.67 (d, *J* = 9.2 Hz, 1H), 4.00 (m, 1H), 3.71-3.75 (m, 1H), 3.31 (d, *J* = 4.0 Hz, 1H), 2.66 (m, 1H), 2.33-2.42 (m, 1H), 2.20-2.29 (m, 1H), 2.07-2.12 (m, 1H), 1.86-1.94 (m, 1H), 1.03 (d, *J* = 6.9 Hz, 4H), 1.01 (s, 9H), 0.87 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 172.9, 169.1, 133.9, 133.2, 128.5, 126.1, 125.8, 125.7, 124.7, 121.1, 118.2, 60.6, 60.2, 56.6, 48.8, 34.9, 30.6, 26.4, 26.1, 25.3, 19.7, 16.1. MS (EI): m/z = 452 [M]⁺, HRMS calculated for C₂₆H₃₆N₄O₃ [M]⁺: 452.5990; found 452.2781.

2.3.3. L-Tle- L-Tle- L-Pro-1-Naph (6c)

White solid. 96% yield. mp 177 °C. $[\alpha]_D^{20} = -70.31$ (c = 0.40, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 1.02 (s, 9H), 1.05 (s, 9H), 1.57 (s, 2H), 1.84-1.98 (m, 1H), 2.04-2.15 (m, 1H), 2.17-2.32 (m, 1H), 2.66 (m, 1H), 3.20 (s, 1H), 3.68-3.77 (m, 1H), 3.99 (m, 1H), 4.67 (d, *J* = 9.2 Hz, 1H), 4.97 (d, *J* = 8.0 Hz, 1H), 7.41-7.56 (m, 3H), 7.63 (d, *J* = 8.6 Hz, 1H), 7.78-7.90 (m, 2H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.20 (d, *J* = 7.4 Hz, 1H), 9.83 (s, 1H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.8, 173.0, 169.1, 133.9, 133.2, 128.5, 126.1, 125.8, 125.7, 124.7, 121.1, 118.2, 64.4, 60.5, 56.6, 48.8, 34.9, 34.2, 26.9, 26.5, 26.1, 25.3. MS (EI): m/z = 466 [M]⁺, HRMS calculated for C₂₇H₃₈N₄O₃ [M]⁺: 466.6260; found 466.2949.

2.3.4. L-Phg- L-Tle- L-Pro-1-Naph (6d)

White solid. 72% yield. mp 106 °C. $[\alpha]_D^{20}$ = +46.59 (c = 0.58, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.75 (s, 1H), 8.14 (dd, *J* = 23.8, 7.7 Hz, 2H), 7.83-7.85 (m, 1H), 7.64 (d, *J* = 8.6 Hz, 1H), 7.49-7.54 (m, 3H), 7.43-7.47 (m, 1H), 7.36-7.42 (m, 4H), 7.30-7.34 (m, 1H), 4.93 (dd, *J* = 7.7, 2.0 Hz, 1H), 4.68 (d, *J* = 9.7 Hz, 1H), 4.57 (s, 1H), 3.86 (m, 1H), 3.66-3.70 (m, 1H), 2.60-2.66 (m, 1H), 2.15-2.25 (m, 1H), 1.99-2.06 (m, 1H), 1.83-1.87 (m, 2H), 0.94 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 172.8, 172.4, 169.1, 141.1, 134.0, 133.1, 129.0, 128.5, 128.2, 126.9, 126.1, 125.9, 125.8, 125.7, 124.8, 121.0, 118.4, 60.6, 59.9, 56.8, 48.7, 35.4, 26.3, 26.2, 25.2. MS (EI): m/z = 486 [M]⁺, HRMS calculated for C₂₉H₃₄N₄O₃ [M]⁺: 486.6160; found 486.2638.

2.3.5. L-Phe- L-Tle- L-Pro-1-Naph (6e)

White solid. 85% yield. mp 93 °C. $[\alpha]_D^{20}$ = +84.63 (c = 0.58, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.79 (s, 1H), 8.12-8.19 (m, 3H), 7.82 (dd, *J* = 9.5, 8.3 Hz, 1H), 7.63 (d, *J* = 8.6 Hz, 1H), 7.42-7.53 (m, 3H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.24 (dd, *J* = 16.3, 7.2 Hz, 3H), 4.96 (dd, *J* = 8.0, 1.7 Hz, 1H), 4.61-4.67 (m, 1H), 3.99 (m, 1H), 3.71-3.76 (m, 1H), 3.67 (q, *J* = 4.4 Hz, 1H), 3.28 (dd, *J* = 13.7, 3.4 Hz, 1H), 2.75 (dd, *J* = 13.7, 9.2 Hz, 1H), 2.63-2.67 (m, 1H), 2.20-2.33 (m, 1H), 2.07-2.16 (m, 1H), 1.88-1.95 (m, 1H), 1.56 (d, *J* = 8.0 Hz, 2H), 0.93-1.02 (m, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 174.3, 172.6, 169.1, 137.6, 133.9, 133.2, 129.3, 128.7, 128.5, 126.9, 126.1, 125.8, 125.7, 124.7, 121.1, 118.3, 60.6, 56.7, 56.5, 48.8, 40.9, 35.2, 26.3, 26.2, 25.3. MS (EI): m/z = 500 [M]⁺, HRMS calculated for C₃₀H₃₆N₄O₃ [M]⁺: 500.6430; found 500.2792.

2.3.6. Gly- L-Tle- L-Pro-1-Naph (6f)

White solid. 87% yield. mp 99 °C. $[\alpha]_{D}^{20}$ = -55.00 (c = 0.4, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.81 (s, 1H), 8.17 (dd, *J* = 26.6, 7.7 Hz, 2H), 8.01 (d, *J* = 9.2 Hz, 1H), 7.84-7.85 (m, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.43-7.54 (m, 3H), 4.97 (dd, *J* = 8.0, 1.7 Hz, 1H), 4.72 (d, *J* = 9.2 Hz, 1H), 3.95 (m, 1H), 3.72-3.76 (m, 1H), 3.43 (dd, *J* = 21.8, 17.2 Hz, 2H), 2.66 (m, 1H), 2.20-2.30 (m, 1H), 2.04-2.12 (m, 1H), 1.88-1.95 (m, 1H), 1.60 (s, 2H), 1.01 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 172.6, 169.1, 133.9, 133.2, 128.5, 126.1, 125.8, 125.7, 124.7, 121.0, 118.3, 60.6, 56.5, 48.8, 44.6, 35.3, 26.3, 26.2, 25.3. MS (EI): m/z = 410 [M]⁺, HRMS calculated for C₂₃H₃₀N₄O₃ [M]⁺: 410.5180; found 410.2319.

2.3.7. L-Tle- L-Tle- L-Pro-Ph (6g)

White solid. 70% yield. mp 233 °C. [α]_D²⁰ = -71.42 (c = 0.55, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.38 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 4.62-4.70 (m, 2H), 3.88 (q, *J* = 8.4 Hz, 1H), 3.71 (m, 1H), 3.37 (s, 1H), 2.40 (q, *J* = 3.6 Hz, 1H), 2.12-2.21 (m, 1H), 1.92-2.05 (m, 2H), 1.04 (s, 9H), 0.99 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 171.8, 168.9, 138.2, 129.0, 124.1, 119.5, 64.1, 60.7, 57.3, 48.8, 35.1, 33.6, 27.1, 26.6, 26.5, 25.1. MS (EI): m/z = 416 [M]⁺, HRMS calculated for C₂₃H₃₆N₄O₃ [M]⁺: 416.5660; found 416.2853.

2.3.8. L-Tle- L-Tle- L-Pro-1-Anth (6h)

Brown solid. 80% yield. mp 105 °C. $[\alpha]_D^{20}$ = -23.45 (c = 0.60, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.04 (s, 1H), 8.74 (s, 1H), 8.43 (s, 1H), 8.27 (d, *J* = 7.4 Hz, 1H), 8.09-8.11 (m, 1H), 8.00 (dd, *J* = 5.9, 3.9 Hz, 1H), 7.90 (d, *J* = 9.2 Hz, 1H), 7.79 (d, *J* = 8.6 Hz, 1H), 7.48 (m, 2H), 7.43 (dd, *J* = 8.6, 7.4 Hz, 1H), 5.05 (dd, *J* = 7.7, 1.4 Hz, 1H), 4.69 (d, *J* = 9.7 Hz, 1H), 4.02 (m, 1H), 3.74-3.78 (m, 1H), 3.24 (s, 1H), 2.69-2.72 (m, 1H), 2.23-2.33 (m, 1H), 2.12 (m, 1H), 1.91-1.99 (m, 1H), 1.60 (s, 2H), 1.08 (s, 9H), 1.00 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.9, 173.0, 169.2, 133.1, 132.1, 131.5, 131.4, 128.6, 127.8, 127.0, 125.7, 125.5, 125.2, 124.8, 124.7, 119.6, 116.6, 77.2, 77.0, 76.7, 64.5, 60.6, 56.7, 48.8, 34.8, 34.2, 26.9, 26.5, 26.1, 25.3. MS (EI): m/z = 516 [M]⁺, HRMS calculated for C₃₁H₄₀N₄O₃ [M]⁺: 516.6860; found 516.3094.

2.3.9. L-Tle- L-Tle- L-Pro-1-Pyr (6i)

Green solid. 83% yield. mp 115 °C. $[\alpha]_D^{20} = -8.0$ (c = 0.50, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.16 (s, 1H), 8.72 (d, *J* = 8.6 Hz, 1H), 8.34 (d, *J* = 9.2 Hz, 1H), 8.14-8.16 (m, 3H), 8.10 (d, *J* = 9.2 Hz, 1H), 7.97-8.02 (m, 3H), 7.90 (d, *J* = 9.2 Hz, 1H), 5.07 (d, *J* = 8.0 Hz, 1H), 4.70 (d, *J* = 9.2 Hz, 1H), 4.02 (m, 1H), 3.74-3.79 (m, 1H), 3.22 (s, 1H), 2.72 (m, 1H), 2.24-2.34 (m, 1H), 2.09-2.17 (m, 1H), 1.92-2.00 (m, 1H), 1.58 (s, 4H), 1.06 (s, 9H), 1.04 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 174.0, 173.2, 169.3, 131.6, 131.5, 131.0, 128.4, 127.7, 127.4, 126.5, 126.1, 125.3, 125.2, 125.2, 124.9, 124.8, 121.8, 120.7, 120.0, 64.5, 60.7, 56.8, 48.9, 35.0, 34.3, 27.0, 26.6, 26.3, 25.5. MS (EI): m/z = 540 [M]⁺, HRMS calculated for C₃₃H₄₀N₄O₃ [M]⁺: 540.7080; found 540.3094.

2.3.10. D-Tle- L-Tle- L-Pro-1-Naph (6j)

White solid. 70% yield. mp 233 °C. $[\alpha]_D^{20} = 56.13$ (c = 0.45, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.82 (s, 1H), 8.20 (d, J = 7.4 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.85-7.84 (m, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.51 (m, 2H), 7.47-7.43 (m, 1H), 7.11 (d, J = 9.2 Hz, 1H), 4.96 (dd, J = 8.0, 1.7 Hz, 1H), 4.70 (d, J = 9.2 Hz, 1H), 3.96 (m, 1H), 3.74-3.70 (m, 1H), 3.12 (s, 1H), 2.69-2.66 (m, 1H), 2.29-2.20 (m, 1H), 2.10 (m, 1H), 1.94-1.87 (m, 1H), 1.55 (s, 2H), 1.03 (s, 9H), 1.01 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.8, 172.9, 169.2, 134.1, 133.3, 128.7, 126.2, 126.0, 125.9, 124.8, 121.2, 118.3, 64.8, 60.7, 56.8, 48.8, 35.2, 34.5, 26.8, 26.6, 26.3, 25.4. MS (EI): m/z = 466 [M]⁺, HRMS calculated for C₃₃H₄₀N₄O₃ [M]⁺: 466.6260; found 466.3142.

2.3.11. L-Tle- L-Tle-D-Pro-1-Naph (10)

White solid. 85% yield. mp 225 °C. $[\alpha]_D^{20} = 73.22$ (c = 0.51, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.66 (s, 1H), 8.05 (d, *J* = 8.6 Hz, 1H), 7.98 (d, *J* = 7.4 Hz, 1H), 7.82 (d, *J* = 8.6 Hz, 1H), 7.65 (d, *J* = 8.6 Hz, 1H), 7.53-7.42 (m, 3H), 4.93 (d, *J* = 8.0 Hz, 1H), 4.58 (d, *J* = 8.0 Hz, 1H), 4.15-4.11 (m, 1H), 3.74-3.65 (m, 1H), 2.77 (s, 1H), 2.64 (q, *J* = 6.3 Hz, 1H), 2.29-2.19 (m, 1H), 2.13-2.08 (m, 1H), 2.01-1.93 (m, 1H), 1.12 (s, 9H), 0.80 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 174.4, 172.3, 169.7, 134.2, 133.3, 128.5, 127.2, 126.0, 125.8, 125.4, 122.0, 120.4, 64.3, 61.1, 57.6, 48.4, 34.6, 34.0, 28.1, 26.8, 26.7, 24.8. MS (EI): m/z = 466 [M]⁺, HRMS calculated for C₃₃H₄₀N₄O₃ [M]⁺: 466.6260; found 466.4930.

2.3.12. L-Tle- L-Tle- L-Aze-1-Naph (14a)

White solid. 90% yield. mp 168 °C. $[\alpha]_D^{20} = -89.70$ (c = 0.55, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.15 (s, 1H), 8.25 (d, *J* = 6.9 Hz, 1H), 8.13-8.11 (m, 1H), 7.86-7.83 (m, 2H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.52-7.46 (m, 3H), 5.19 (dd, *J* = 9.7, 6.3 Hz, 1H), 4.60 (dd, *J* = 15.8, 8.9 Hz, 1H), 4.30 (d, *J* = 9.2 Hz, 1H), 4.21 (td, *J* = 8.6, 5.7 Hz, 1H), 3.21 (d, *J* = 16.0 Hz, 1H), 2.97-2.90 (m, 1H), 2.59-2.51 (m, 1H), 1.58 (s, 2H), 1.06 (s, 10H), 1.05 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 174.7, 174.1, 169.2, 134.1, 133.2, 128.7, 126.2, 140.1 Hz, 14

126.0, 126.0, 125.9, 125.0, 121.2, 118.6, 64.5, 63.0, 55.0, 50.0, 34.4, 34.3, 27.0, 26.6, 18.1. MS (EI): m/z = 466 [M]⁺, HRMS calculated for $C_{33}H_{40}N_4O_3$ [M]⁺: 452.5990; found 452.2785.

2.3.13. L-Tle- L-Tle- L-Pip-1-Naph (14b)

White solid. 75% yield. mp 220 °C. $[\alpha]_D^{20} = -93.81$ (c = 0.50, CHCl₃). ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.83 (s, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 7.93-7.88 (m, 1H), 7.85-7.78 (m, 2H), 7.73-7.67 (m, 2H), 7.52-7.48 (m, 2H), 5.46 (d, *J* = 4.0 Hz, 1H), 5.04 (d, *J* = 9.7 Hz, 1H), 4.63 (d, *J* = 7.4 Hz, 1H), 4.21 (d, *J* = 14.9 Hz, 1H), 3.27 (m, 1H), 3.18 (s, 1H), 2.33 (d, *J* = 13.7 Hz, 1H), 2.09-1.62 (m, 2H), 1.56 (s, 2H), 1.04 (s, 9H), 0.97 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 174.7, 174.1, 169.2, 134.1, 133.2, 128.7, 126.2, 126.0, 126.0, 125.9, 125.0, 121.2, 118.6, 64.5, 63.0, 55.0, 50.0, 34.4, 34.3, 27.0, 26.6, 18.1. MS (EI): m/z = 480.6530 [M]⁺, HRMS calculated for C₃₃H₄₀N₄O₃ [M]⁺: 480.6530; found 480.3100.

2.4. General procedure for the asymmetric aldol reaction of various ketones with aromatic aldehydes

The peptide catalyst **6c** (30 mol%) was added to a solution of ketones **15a-h** (0.4 mmol) and the aldehydes **16a-i** (0.1 mmol) under the neat reaction condition. The reaction mixture was stirred at 0 °C for appropriate time until the reaction completion, monitored by thin layer chromatography (TLC). The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture. Consequently, the reaction mixture was purified by flash column chromatography on SiO₂ (*n*-hexane/CH₃CO₂Et) to afford the corresponding aldol products **17a-p**. ^(6a-j)

Gram scale for the asymmetric aldol reaction of cyclohexanone (15a) with 4-nitrobenzaldehyde (16a)

The peptide catalyst **6c** (30 mol%) was added to a solution of cyclohexanone **15a** (2.06 ml, 19.851 mmol) and the 4nitrobenzaldehyde **16a** (1g, 6.617 mmol) under neat reaction condition. The reaction mixture was stirred at 0 °C for appropriate time until the reaction completion, monitored by thin layer chromatography (TLC). The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture. Consequently, the reaction mixture was purified by flash column chromatography on SiO₂ (*n*-hexane/CH₃CO₂Et) to afford the 2-[Hydroxy-(4-nitrophenyl)-methyl]-cyclohexan-1-one **17a**. The enantiomeric excess (*ee*) of **17a** was determined by HPLC (CHIRALPAK-AD-H hexane/i-PrOH = 90:10 1.0mL /min, λ = 254 nm) (1.65g, 98% yield, dr= 24:76 and enantiomeric excess 93 %*ee*).

2.4.1. 2-[Hydroxy-(4-nitrophenyl)-methyl]-cyclohexan-1-one (17a) [6a,9]

¹H NMR (500 MHz, CDCl₃, ppm): δ 8.21-8.19 (m, 2H), 7.51-7.46 (m, 2H), 5.47 (s, H), 4.89 (dd, *J* = 8.6, 2.9 Hz, 1H), 4.07 (d, *J* = 2.9 Hz, 1H), 3.18 (d, *J* = 2.9 Hz, H), 2.64-2.55 (m, 1H), 2.51-2.46 (m, 1H), 2.42-2.32 (m, 1H), 2.14-2.08 (m, 1H), 1.86-1.80 (m, 1H), 1.74-1.64 (m, 1H), 1.63-1.49 (m, 3H), 1.42-1.24 (m, 1H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min*, λ =254 nm): tmajor= 33.86 min, tminor= 25.58 min, *dr(syn/anti) = 20:80, 98% ee (anti)*.

2.4.2. 2-[Hydroxy-(2-nitrophenyl)-methyl]-cyclohexan-1-one (17b) [6c]

¹H NMR (500 MHz, CDCl₃, ppm): δ 7.83 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.75 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.64-7.58 (m, 1H), 7.43-7.40 (m, 1H), 5.43 (d, *J* = 6.9 Hz, 1H), 2.77-2.72 (m, 1H), 2.44 (m, 1H), 2.36-2.29 (m, 1H), 2.11-2.06 (m, 1H), 1.86-1.81 (m, 1H), 1.77-1.71 (m, 1H), 1.71-1.53 (m, 3H). The ee was determined by chiral HPLC: *AD-H column, n-hexane/iso-propanol: 90/10, flow rate = 1.0 mL/min,* λ =254 nm): tmajor= 22.84 min, tminor= 24.55 min, *dr(syn/anti) = 22:78, 99% ee (anti).*

2.4.3. 2-[Hydroxy-(3-nitrophenyl)-methyl]-cyclohexan-1-one (17c) [6a]

¹H NMR (500 MHz, CDCl₃, ppm): δ 8.22-8.11 (m, 2H), 7.68-7.66 (m, 1H), 7.53 (td, *J* = 7.7, 4.6 Hz, 1H), 5.48 (s, H), 4.90 (dd, *J* = 8.6, 2.9 Hz, 1H), 4.13 (d, *J* = 2.9 Hz, 1H), 3.20 (d, *J* = 3.4 Hz, H), 2.68-2.60 (m, 1H), 2.53-2.47 (m, 1H), 2.44-2.34 (m, 1H), 2.15-2.10 (m, 1H), 1.88-1.82 (m, 1H), 1.79-1.50 (m, 4H), 1.44-1.35 (m, 1H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso propanol = 90/10, flow rate = 1.0 mL/min,* λ =254 nm): tmajor= 21.76 min, tminor= 27.55 min, *dr(syn/anti) = 20:80, 99% ee (anti)*.

2.4.4. 2-[Hydroxy-(2-bromophenyl)-methyl]-cyclohexan-1-one (17d) [6]

¹H NMR (500 MHz, CDCl₃, ppm): δ 7.58-7.49 (m, 2H), 7.36-7.30 (m, 1H), 7.13-7.07 (m, 1H), 5.30-5.21 (m, 1H), 3.85 (brs, 1H), 2.76-2.68 (m, 1H), 2.44-2.38 (m, 2H), 2.08-2.0 (m, 1H), 1.80-1.74 (m, 1H), 1.75-1.70 (m, 2H), 1.58-1.54 (m, 2H). The ee was determined by chiral HPLC: *AD-H column, n-hexane/iso propanol = 90/10, flow rate = 1.0 mL/min, \lambda=224 nm, dr(syn/anti) = 25:75, 86% ee (anti).*

2.4.5. 2-[Hydroxy-(3-bromophenyl)-methyl]-cyclohexan-1-one (17e) [6c]

¹H NMR (500 MHz, CDCl₃, ppm): δ 7.49-7.48 (m, 1H), 7.40 (m, 1H), 7.24-7.18 (m, 2H), 5.36 (d, *J* = 1.7 Hz, H), 4.74 (d, *J* = 8.6 Hz, 1H), 4.01 (s, 1H), 3.03 (d, *J* = 45.2 Hz, 0H), 2.61-2.55 (m, 1H), 2.50-2.44 (m, 1H), 2.41-2.32 (m, 1H), 2.10 (m, 1H), 1.88-1.78 (m, 1H), 1.73-1.63 (m, 2H), 1.63-1.48 (m, 2H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min*, λ =254 nm): tmajor= 12.57 min, tminor= 14.67 min, *dr(syn/anti) =* 25:75, 93% ee (anti).

2.4.6. 2-[Hydroxy-(4-bromophenyl)-methyl]-cyclohexan-1-one (17f) [6c]

¹H NMR (500 MHz, CDCl₃, ppm): δ 7.48-7.47 (m, 2H), 7.21-7.18 (m, 2H), 5.35 (s, H), 4.75 (d, *J* = 7.4 Hz, 1H), 4.00 (d, *J* = 4.0 Hz, 1H), 3.06 (s, H), 2.56-2.47 (m, 2H), 2.37 (q, *J* = 5.5 Hz, 1H), 2.11 (d, *J* = 3.4 Hz, 1H), 1.84 (d, *J* = 24.6 Hz, 1H), 1.68 (t, *J* = 12.6 Hz, 2H), 1.56 (t, *J* = 11.5 Hz, 2H), 1.29 (t, *J* = 12.3 Hz, 1H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min*, λ =254 nm): tmajor= 18.35 min, tminor= 15.97 min, *dr(syn/anti) =* 23:77, 94% ee (anti).

2.4.7. 2-[Hydroxy-(4-chlorophenyl)-methyl]-cyclohexan-1-one (17g) [6c]

¹H NMR (500 MHz, CDCl₃, ppm): δ 7.32 (m, 2H), 7.27-7.23 (m, 3H), 5.36 (d, *J* = 2.3 Hz, H), 4.77 (dd, *J* = 8.9, 2.6 Hz, 1H), 3.99 (d, *J* = 2.9 Hz, H), 3.06 (d, *J* = 3.4 Hz, 1H), 2.58-2.53 (m, 1H), 2.51-2.44 (m, 1H), 2.41-2.32 (m, 1H), 2.10 (m, 1H), 1.88-1.79 (m, 1H), 1.72-1.47 (m, 4H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min,* λ *= 254 nm*): tmajor= 16.19 min, tminor= 14.30 min, *dr(syn/anti) = 14:86, 98% ee (anti).*

2.4.8. 2-[Hydroxy-(4-cyanophenyl)-methyl]-cyclohexan-1-one (17h) [6a]

¹H NMR (500 MHz, CDCl₃, ppm): δ 7.66-7.63 (m, 2H), 7.49-7.42 (m, 2H), 5.44 (s, H), 4.84 (dd, *J* = 8.6, 2.9 Hz, 1H), 4.07 (d, *J* = 2.9 Hz, H), 3.16 (d, *J* = 3.4 Hz, 1H), 2.62-2.55 (m, 1H), 2.52-2.46 (m, 1H), 2.43-2.33 (m, 1H), 2.12 (m, 1H), 1.88-1.81 (m, 1H), 1.76-1.65 (m, 2H), 1.64-1.48 (m, 2H), 1.45-1.19 (m, 1H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min,* λ =254 *nm*): tmajor= 30.36 min, tminor= 24.62 min, *dr(syn/anti) = 33:67, 94% ee (anti)*.

2.4.9. 2-[Hydroxy-phenyl-methyl]-cyclohexan-1-one (17i) [6c]

¹H NMR (500 MHz, CDCl₃, ppm): δ 7.35-7.26 (m, 5H), 5.37 (s, H), 4.78 (dd, *J* = 8.6, 2.3 Hz, 1H), 3.98 (d, *J* = 2.9 Hz, 1H), 2.64-2.57 (m, 1H), 2.48-2.43 (m, 1H), 2.38-2.30 (m, 1H), 2.09-2.02 (m, 1H), 1.78-1.72 (m, 1H), 1.70-1.47 (m, 3H), 1.32-1.23 (m, 1H). The ee

was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min,* λ =254 nm): tmajor= 15.9 min, tminor= 12.69 min, *dr(syn/anti) = 25:75, 60% ee (anti).*

2.4.10. 2-[Hydroxy-(4-(methoxyphenyl) methyl)-cyclopentan-1-one (17j) [8b,d]

¹H NMR (500 MHz, CDCl₃, ppm): δ 7.24 (d, *J* = 8.9 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 4.74 (dd, *J* = 8.9, 1.9 Hz, 1H), 3.93 (d, *J* = 2.4 Hz, 1H), 3.80 (s, 3H), 2.64-2.30 (m, 3H), 2.13-2.05 (m, 1H), 1.81-1.23 (m, 5H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 98/2, flow rate = 0.4 mL/min,* λ *=254 nm):* tmajor= 165.78 min, tminor= 154.72 min, *dr(syn/anti) = 26:74, 58% ee (anti).*

2.4.10. 2-[Hydroxy-(4-(nitrophenyl) methyl)-cyclopentan-1-one (17n) [8b,d]

¹H NMR (500 MHz, CDCl₃, ppm): δ 8.25-8.20 (m, 2H), 7.57-7.52 (m, 2H), 5.43 (s, 1H), 4.85 (d, *J* = 9.2 Hz, 0H), 2.84 (s, 1H), 2.50-2.36 (m, 2H), 2.33-2.11 (m, 1H), 2.06-1.94 (m, 2H), 1.81-1.68 (m, 2H). The ee was determined by chiral HPLC: (*IC column, n-hexane/iso-propanol = 85/15, flow rate = 0.8 mL/min,* λ *=254 nm*): tmajor= 29.69 min, tminor= 24.63 min, *dr(syn/anti) = 15:85, 93% ee (anti).*

2.4.11. 2-[Hydroxy(4-nitrophenyl) methyl] cycloheptan-1-one (17m) [8b,d]

¹H NMR (500 MHz, CDCl₃, ppm): δ 8.28-8.21 (m, 2H), 7.60-7.54 (m, 2H), 4.87 (dd, *J* = 9.0, 1.0 Hz, 1H), 4.77 (d, *J* = 1.0 Hz, 1H), 2.56-2.26 (m, 3H), 2.11-1.99 (m, 1H), 1.85-1.71 (m, 2H), 1.62-1.53 (m, 1H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min*, λ =254 nm): tmajor= 48.1 min, tminor= 20.70 min, *dr (syn/anti) = 15:85, 91% ee (anti)*.

2.4.12. 2-[-Hydroxy-(4-(nitrophenyl)-methyl)-4-methylcyclohexan-1-one (170) [8b]

¹H NMR (500 MHz, CDCl₃, ppm): δ 8.21 (d, *J* = 8.6 Hz, 2H), 7.51-7.46 (m, 2H), 4.89 (m, 1H), 4.00 (dd, *J* = 105.4, 2.9 Hz, 1H), 2.76-2.36 (m, 3H), 2.11-1.76 (m, 3H), 1.62-1.56 (m, 2H), 1.48-1.23 (m, 2H), 0.96 (dd, J = 81.3, 12.6 Hz, 3H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol: 90/10, flow Rate* = 1.0 mL/min, λ =254 nm): tmajor= 32.36 min, tminor= 34.44 min, *dr (syn/anti)* =21:79, 90% ee (anti).

2.4.13. 6-[Hydroxy-(4-nitro-phenyl)-methyl]-2,2-dimethyl-1,3-dioxan-5-one (17p) [8a]

¹H NMR (500 MHz, $CDCl_3$, ppm): δ 8.21 (dd, J = 8.9, 2.0 Hz, 2H), 7.61-7.55 (m, 2H), 5.00 (d, J = 8.0 Hz, 1H), 4.29 (dd, J = 17.5, 1.4 Hz, 1H), 4.22 (dd, J = 7.7, 1.4 Hz, 1H), 4.09 (dd, J = 17.5, 2.6 Hz, 1H), 1.39 (s, 3H), 1.21 (s, 3H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol: 95/05, flow Rate* = 1.0 mL/min, λ =254 nm): tmajor= 55.87 min, tminor= 42.13 min, *dr(syn/anti)* = 30:70, 68% ee (anti).

2.4.14. 3-[Hydroxy-[4-(nitrophenyl) methyl] dihydro-2H-pyran-4-one (17q) [8b]

¹H NMR (500 MHz, CDCl₃, ppm): δ 8.23 (m, 2H), 7.53-7.50 (m, 2H), 5.55 (s, H), 4.98 (d, *J* = 8.0 Hz, 1H), 4.27-4.19 (m, 1H), 3.85 (m, 1H), 3.78-3.69 (m, 2H), 3.47-3.41 (m, 1H), 2.96-2.87 (m, 1H), 2.76-2.65 (m, 1H), 2.55-2.46 (m, 1H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min,* λ =254 *nm*): tmajor= 59.75 min, tminor= 50.60 min, *dr(syn/anti) = 13:87, 94% ee (anti)*.

2.4.15. 3-Hydroxy-3-(4-nitrophenyl)-1-propan-1-one (17r) [8f]

¹H NMR (500 MHz, CDCl₃, ppm): δ 8.21 (dt, *J* = 9.0, 2.0 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H), 5.29-5.25 (m, 1H), 3.65 (d, *J* = 3.4 Hz, 1H), 2.87-2.83 (m, 2H), 2.23 (s, 3H). The ee was determined by chiral HPLC: (*AS-H column, n-hexane/iso-propanol: 90/10, flow Rate* = 1.0 mL/min, λ =254 nm): tmajor= 18.36 min, tminor= 13.9 min, *dr(syn/anti)* = *n.d*, 52% ee.

2.4.16. 3-Hydroxy-3-(4-nitrophenyl)-1-phenylpropan-1-one (17s) [8b]

¹H NMR (500 MHz, CDCl₃, ppm): δ 8.25–7.46 (m, 9H), 5.46 (d, *J* = 8.6 Hz, 1H), 3.90 (d, *J* = 2.9 Hz, 1H), 3.44–3.31 (m, 2H). The ee was determined by chiral HPLC: (*AD-H column, n-hexane/iso-propanol: 90/10, flow Rate = 1.0 mL/min*, λ =254 nm): tmajor= 34.14 min, tminor= 39.27 min, *dr(syn/anti) = n.d, 82% ee*.

3. Theoretical Calculations

The DFT method (at the B3LYP/6-31G(d) level of theory) was used to perform the conformational analysis with Gaussian 16 program package. The Gas phase geometry optimizations were performed using the B3LYP hybrid density functional and the 6-31G(d) basis set as implemented in the Gaussian 16. Vibrational mode analysis was performed for all structures to ensure that they have zero (for a ground state) or one (for a transition state) imaginary frequency.

1) Gaussian 16, Revision A.03,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Ratio I-1 : I-2 = 96.14 : 3.86

Figure S1. The coordinate scan calculations (at the B3LYP/6-31G(d) level of theory) and total energies (in hartree, calculated at the B3LYP/6-31G(d) level of theory in gas phase) of **6c** generated by varying two torsion angles (the dihedral scans showed with u-shaped arrows, as shown in the bottom structures).

Table **S1**. Cartesian coordinates (Angstroms) for **I-1** in gas phase. Point Group: C1 Imaginary Freq: 0

Total energy = -1729.297620 hartree

Symbol	Х	Y	Z
С	-4.49757	-0.46142	1.037219
С	-3.41505	-0.88272	1.860457
С	-3.61771	-1.73187	2.927445
С	-4.91203	-2.20898	3.233678
С	-5.98055	-1.8197	2.460511
С	-5.81235	-0.94465	1.353602
С	-6.92297	-0.54508	0.565208
С	-6.74187	0.303832	-0.49938
С	-5.46032	0.791319	-0.83497
С	-4.34993	0.422096	-0.09184
Ν	-3.05418	0.889281	-0.39962
С	-2.66623	1.751865	-1.39003
0	-3.40928	2.298002	-2.19775
С	-1.1338	2.008465	-1.39628
С	-0.73191	3.060562	-2.43486
С	-0.50229	2.233577	-3.7091
С	0.155118	0.943637	-3.19688
Ν	-0.37235	0.806185	-1.81639
С	-0.01448	-0.12661	-0.90364
С	0.978817	-1.22341	-1.32241
0	-0.44021	-0.08936	0.265267
С	0.36532	-2.66443	-1.30656
С	0.070519	-3.16401	0.120565
С	1.376213	-3.61478	-1.97768
С	-0.93965	-2.65885	-2.1278
Ν	2.149876	-1.08598	-0.46259
С	3.273934	-0.43955	-0.89222
0	3.474703	-0.12178	-2.06289
С	4.320738	-0.14619	0.207987
Ν	3.654384	0.083426	1.486207
С	3.081032	1.341093	1.770359
С	2.714845	1.510583	3.231157
С	1.714723	2.651951	3.457827

С	2.135781	3.901499	2.677294
С	2.169967	3.608428	1.17064
С	2.8321	2.289543	0.847939
С	5.43236	-1.24934	0.314325
С	6.543652	-0.74213	1.260567
С	4.873876	-2.58406	0.846418
С	6.062742	-1.48112	-1.07398
Н	-2.4022	-0.54559	1.667771
Н	-2.77172	-2.03523	3.538323
Н	-5.05899	-2.87835	4.077033
Н	-6.98288	-2.17685	2.685536
Н	-7.91082	-0.9201	0.820488
Н	-7.59076	0.612848	-1.10349
Н	-5.33245	1.458681	-1.67475
Н	-2.27553	0.510829	0.137428
Н	-0.81917	2.266964	-0.3798
Н	0.196225	3.548387	-2.1159
Н	-1.50872	3.816293	-2.5587
Н	0.125779	2.741375	-4.44651
Н	-1.468	2.011993	-4.17334
Н	1.24761	1.021582	-3.169
Н	-0.11375	0.07321	-3.80281
Н	1.343051	-1.03492	-2.33211
Н	-0.34853	-4.17632	0.077202
Н	-0.64318	-2.51811	0.636879
Н	0.985889	-3.21613	0.721453
Н	0.988921	-4.64036	-1.98068
Н	2.333306	-3.61827	-1.44579
Н	1.5699	-3.32558	-3.0178
Н	-1.34404	-3.67488	-2.19854
Н	-0.77056	-2.30164	-3.15163
Н	-1.71062	-2.03037	-1.66887
Н	1.998529	-1.06114	0.54121
Н	4.822879	0.770719	-0.13436
Н	4.155623	-0.29597	2.280363

Н	3.631359	1.695372	3.815079
Н	2.299461	0.565286	3.606574
Н	1.633507	2.86791	4.529957
Н	0.720207	2.330421	3.12014
Н	3.135167	4.214879	3.010734
Н	1.455321	4.735992	2.886177
Н	2.691152	4.420873	0.645036
Н	1.140331	3.61859	0.773863
Н	3.089748	2.121073	-0.1944
Н	7.365438	-1.46643	1.294361
Н	6.199094	-0.60264	2.292336
Н	6.952249	0.21381	0.912904
Н	5.680161	-3.32292	0.920909
Н	4.106245	-2.99047	0.180664
Н	4.429431	-2.48393	1.843608
Н	6.892355	-2.19247	-0.98651
Н	6.456516	-0.54894	-1.49345
Н	5.342439	-1.88199	-1.79134

Table **S2**. Cartesian coordinates (Angstroms) for **TS-1** in gas phase. Point Group: C1 Imaginary Freq: 1 Total energy = 1729 287407 bartree

Х	Y	Z
-0.00399	-0.00636	0.005573
-0.00781	-0.00926	1.42932
1.169509	-0.01472	2.146598
2.417601	-0.01743	1.484094
2.457533	-0.01665	0.109509
1.266011	-0.01241	-0.66477
1.318721	-0.01598	-2.0832
0.156552	-0.01447	-2.81542
-1.10528	-0.00603	-2.1827
-1.19929	0.000285	-0.7997
-2.44391	0.007678	-0.1342
-3.70351	-0.01238	-0.67117
	X -0.00399 -0.00781 1.169509 2.417601 2.457533 1.266011 1.318721 0.156552 -1.10528 -1.10528 -1.19929 -2.44391 -3.70351	XY-0.00399-0.00636-0.00781-0.009261.169509-0.014722.417601-0.017432.457533-0.016651.266011-0.012411.318721-0.015980.156552-0.01447-1.10528-0.00603-1.199290.00285-2.443910.007678-3.70351-0.01238

0	-3.97383	-0.05627	-1.86609
С	-4.81809	0.007488	0.411421
С	-6.21547	-0.13097	-0.2012
С	-6.61464	1.320414	-0.50823
С	-6.04929	2.116858	0.677151
Ν	-4.88324	1.310144	1.117923
С	-4.09983	1.540797	2.198007
С	-4.3668	2.800531	3.041448
0	-3.2045	0.743699	2.531851
С	-3.1759	3.817824	3.036681
С	-1.95314	3.30016	3.818365
С	-3.6696	5.129292	3.678367
С	-2.7682	4.098161	1.576117
Ν	-4.74163	2.362394	4.380832
С	-6.0486	2.229016	4.750077
0	-6.99472	2.614513	4.063936
С	-6.27656	1.562508	6.126232
Ν	-5.18585	0.630115	6.413547
С	-5.14507	-0.63911	5.732577
С	-6.44784	-1.28514	5.295012
С	-6.27349	-2.77247	4.946704
С	-5.01932	-3.0022	4.096909
С	-3.764	-2.55873	4.860248
С	-3.95486	-1.22302	5.531392
С	-6.47009	2.601661	7.288813
С	-6.90722	1.844771	8.563655
С	-5.17716	3.388181	7.579138
С	-7.59589	3.589107	6.920364
Н	-0.93899	-0.00567	1.985729
Н	1.13464	-0.0174	3.23273
Н	3.338793	-0.02132	2.060545
Н	3.410688	-0.02058	-0.41426
Н	2.289088	-0.02154	-2.57309
Н	0.194015	-0.01879	-3.90153
Н	-2.01126	-0.00559	-2.77102

Н	-2.43687	0.089447	0.881374
Н	-4.59555	-0.76746	1.152596
Н	-6.89368	-0.57167	0.538441
Н	-6.20057	-0.76051	-1.09191
Н	-7.69485	1.458908	-0.6087
Н	-6.13888	1.634389	-1.44214
Н	-6.76828	2.202595	1.498894
Н	-5.73466	3.123396	0.385016
Н	-5.24299	3.323002	2.658237
Н	-1.14798	4.043265	3.776217
Н	-1.57754	2.36129	3.405599
Н	-2.19176	3.141804	4.876686
Н	-2.86085	5.869071	3.699901
Н	-4.00488	4.967957	4.708023
Н	-4.50533	5.562023	3.114924
Н	-1.99409	4.873129	1.544307
Н	-3.61769	4.458868	0.982219
Н	-2.36095	3.207529	1.08566
Н	-4.08392	1.80578	4.917137
Н	-7.24647	1.0574	6.014455
Н	-5.03137	0.518512	7.40864
Н	-6.86378	-0.74588	4.430151
Н	-7.19501	-1.18062	6.094116
Н	-7.16865	-3.13969	4.430076
Н	-6.18629	-3.35207	5.876392
Н	-5.10051	-2.41946	3.168369
Н	-4.93687	-4.05605	3.80494
Н	-2.90806	-2.4973	4.175156
Н	-3.49076	-3.3211	5.608069
Н	-3.0609	-0.70025	5.868119
Н	-7.13915	2.560291	9.360733
Н	-6.13208	1.175802	8.956837
Н	-7.80722	1.24572	8.380206
Н	-5.33687	4.075445	8.418254
Н	-4.86985	3.983202	6.713424

Н	-4.34319	2.728519	7.842031
Н	-7.77597	4.271026	7.759853
Н	-8.53248	3.06359	6.703072
Н	-7.34684	4.186745	6.040322

Table **S3**. Cartesian coordinates (Angstroms) for **I-2** in gas phase. Point Group: C1

Imaginary Freq: 0

Total energy = -1729.294587 hartree

Symbol	Х	Y	Z
С	-4.49281	1.137375	0.376766
С	-3.3592	1.921935	0.732478
С	-3.48268	3.027202	1.547174
С	-4.74453	3.412478	2.053158
С	-5.86085	2.678786	1.726615
С	-5.77443	1.534527	0.888494
С	-6.93387	0.787645	0.552845
С	-6.83175	-0.31389	-0.26141
С	-5.58419	-0.72921	-0.775
С	-4.42825	-0.02874	-0.4676
Ν	-3.16415	-0.41685	-0.96125
С	-2.85194	-1.4527	-1.80108
0	-3.65001	-2.23931	-2.29779
С	-1.33009	-1.54391	-2.10088
С	-1.01121	-2.62796	-3.13538
С	-0.8186	-3.89047	-2.28167
С	-0.0988	-3.37834	-1.02571
Ν	-0.55734	-1.9709	-0.90768
С	-0.12623	-1.05346	-0.01268
С	0.854866	-1.49911	1.088282
0	-0.48732	0.137221	-0.0794
С	0.241624	-1.43612	2.528278
С	-0.00228	0.009066	3.005741
С	1.222906	-2.12953	3.494006
С	-1.095	-2.20514	2.534514
Ν	2.069371	-0.70517	0.961448

С	3.079873	-1.07875	0.127608
0	3.113702	-2.15965	-0.46105
С	4.219468	-0.04356	-0.018
Ν	3.744635	1.309513	0.32777
С	3.376391	2.217244	-0.70188
С	2.376693	1.705218	-1.71662
С	2.205221	2.670375	-2.89953
С	2.06252	4.115402	-2.41037
С	3.324399	4.55316	-1.6521
С	3.812741	3.488878	-0.70053
С	5.506093	-0.44169	0.794647
С	6.623469	0.583081	0.497098
С	5.228496	-0.48125	2.310962
С	6.009382	-1.82698	0.338777
Н	-2.36845	1.669451	0.369981
Н	-2.59923	3.607226	1.799971
Н	-4.82909	4.285446	2.694757
Н	-6.83902	2.965004	2.106223
Н	-7.89565	1.104173	0.948348
Н	-7.71824	-0.88608	-0.52173
Н	-5.51832	-1.59752	-1.41429
Н	-2.34929	0.092487	-0.62361
Н	-0.97356	-0.55181	-2.39599
Н	-0.08377	-2.36853	-3.65821
Н	-1.81583	-2.73216	-3.86454
Н	-0.24115	-4.66922	-2.78783
Н	-1.79822	-4.30228	-2.02086
Н	0.990577	-3.39418	-1.13666
Н	-0.37019	-3.94991	-0.13313
Н	1.16187	-2.52939	0.907542
Н	-0.44987	-0.00649	4.006437
Н	-0.67471	0.549788	2.336244
Н	0.934556	0.573827	3.08299
Н	0.827117	-2.10851	4.516083
Н	2.196789	-1.62953	3.499596

Н	1.382339	-3.17926	3.218232
Н	-1.50168	-2.24146	3.55134
Н	-0.96632	-3.24088	2.195781
Н	-1.84719	-1.72759	1.897447
Н	2.047681	0.285957	1.181402
Н	4.50593	-0.08848	-1.07611
Н	4.357597	1.764399	0.994687
Н	1.412958	1.539792	-1.21356
Н	2.68549	0.71976	-2.09122
Н	1.332305	2.371749	-3.49242
Н	3.078592	2.597751	-3.56268
Н	1.193134	4.183161	-1.74188
Н	1.871164	4.79302	-3.25132
Н	3.126367	5.483519	-1.10085
Н	4.120833	4.804528	-2.3718
Н	4.546948	3.794878	0.046514
Н	7.555968	0.263535	0.976006
Н	6.39977	1.588647	0.87074
Н	6.809484	0.6632	-0.58025
Н	6.150901	-0.71665	2.854338
Н	4.488086	-1.2477	2.562021
Н	4.859685	0.476761	2.697293
Н	6.931686	-2.07576	0.877345
Н	6.233567	-1.83316	-0.73403
Н	5.275211	-2.61321	0.52349

Table **S4**. Cartesian coordinates (Angstroms) for **TS-2** in gas phase. Point Group: C1

Imaginary Freq: 1 Total energy = -1729.285376 hartr

otal energy = -1729.285376 hartree			
Symbol	Х	Y	Z
С	-4.53233	1.041345	0.406089
С	-3.42473	1.821816	0.843175
С	-3.58989	2.859493	1.73566
С	-4.86993	3.177425	2.242724
С	-5.96206	2.445736	1.838985

С	-5.83255	1.370096	0.919471
С	-6.96725	0.624912	0.504919
С	-6.82323	-0.40955	-0.38727
С	-5.55664	-0.75687	-0.90472
С	-4.42363	-0.05592	-0.52198
N	-3.1417	-0.37726	-1.01704
С	-2.78934	-1.33883	-1.92679
0	-3.55977	-2.10175	-2.49844
С	-1.26038	-1.37385	-2.20038
С	-0.89591	-2.37096	-3.30477
С	-0.6946	-3.68941	-2.54259
С	-0.01327	-3.25818	-1.23565
N	-0.50046	-1.87081	-1.02625
С	-0.10237	-1.01092	-0.0618
С	0.873322	-1.51368	1.019951
0	-0.49434	0.17211	-0.04975
С	0.244371	-1.54342	2.454006
С	-0.01319	-0.13309	3.020298
С	1.21615	-2.29359	3.386446
С	-1.08842	-2.31722	2.395034
Ν	2.087751	-0.71271	0.954462
С	3.09529	-1.01607	0.089926
0	3.116666	-2.0367	-0.59873
С	4.252332	0.007607	0.047571
Ν	3.770251	1.3423	0.459673
С	3.325126	2.243728	-0.59488
С	1.913054	2.762043	-0.43889
С	1.400877	3.478277	-1.69839
С	2.472126	4.400704	-2.29152
С	3.722751	3.597705	-2.67874
С	4.124034	2.617053	-1.60327
С	5.496908	-0.45984	0.888644
С	6.66612	0.519911	0.642289
С	5.176915	-0.50915	2.395965
С	5.956988	-1.85689	0.423343

Н	-2.42171	1.61903	0.48333
Н	-2.72542	3.438141	2.049867
Н	-4.98746	3.997386	2.946111
Н	-6.9538	2.680657	2.218603
Н	-7.94366	0.889058	0.903028
Н	-7.69066	-0.9803	-0.70803
Н	-5.45798	-1.57266	-1.60594
Н	-2.34527	0.123138	-0.62614
Н	-0.92157	-0.35488	-2.4135
Н	0.037081	-2.05458	-3.78448
Н	-1.68185	-2.43653	-4.05843
Н	-0.08905	-4.41612	-3.09154
Н	-1.67047	-4.13944	-2.33659
Н	1.078158	-3.24577	-1.32057
Н	-0.29535	-3.89774	-0.3938
Н	1.184084	-2.53085	0.779884
Н	-0.47339	-0.21533	4.012021
Н	-0.68011	0.44557	2.377769
Н	0.918978	0.430601	3.146883
Н	0.804371	-2.3435	4.401201
Н	2.18631	-1.78957	3.441774
Н	1.387431	-3.32149	3.043741
Н	-1.50504	-2.42346	3.4029
Н	-0.95063	-3.32718	1.988778
Н	-1.83652	-1.80147	1.783609
Н	2.095189	0.244213	1.293928
Н	4.571632	0.01232	-1.00247
Н	4.481972	1.80987	1.011819
Н	1.881927	3.443695	0.426963
Н	1.243817	1.931491	-0.18512
Н	0.489362	4.04075	-1.46369
Н	1.119876	2.725682	-2.44844
Н	2.747	5.161372	-1.54737
Н	2.083209	4.938256	-3.16487
Н	4.561881	4.276393	-2.88529

Н	3.546008	3.055895	-3.62172
Н	5.129483	2.201318	-1.66795
Н	7.562409	0.168886	1.166257
Н	6.465467	1.535921	1.002745
Н	6.908408	0.585213	-0.42521
Н	6.071461	-0.7965	2.960892
Н	4.394675	-1.24348	2.613066
Н	4.840141	0.459782	2.782269
Н	6.863531	-2.14419	0.969515
Н	6.190277	-1.86259	-0.64725
Н	5.19458	-2.61955	0.593736

4. ¹H & ¹³C NMR SPECTRA L-Pro-Ph (3a) (Chemical Formula: C₁₁H₁₄N₂O) ¹H-NMR

L-Pro-1-Naph (3b) (Chemical Formula: C₁₅H₁₆N₂O) ¹H-NMR

L-Pro-1-Anth (3c) (Chemical Formula: C₁₉H₁₈N₂O) ¹H-NMR

L-Pro-1-Pyr (3d) (Chemical Formula: C₂₁H₁₈N₂O)

¹H-NMR

 $_{D}$ Pro-1-Naph (8) (Chemical Formula: $C_{15}H_{16}N_2O$) ¹H-NMR

L-Aze-1-Naph (12a) (Chemical Formula: C₁₄H₁₄N₂O) ¹H-NMR

13C-NMR

L-Pip-1-Naph (12b) (Chemical Formula: C₁₆H₁₈N₂O) ¹H-NMR

L-Ala- L-Pro-1-Naph (5a) (Chemical Formula: C₁₈H₁₈N₃O₂) ¹H-NMR

13C-NMR

L-Val- L-Pro-1-Naph (5b) (Chemical Formula: C₂₀H₂₅N₃O₂)

¹H-NMR

L-Tle- L-Pro-1-Naph (5c) (Chemical Formula: C₂₁H₂₇N₃O₂)

¹H-NMR

L-Phg- L-Pro-1-Naph (5d) (Chemical Formula: C₂₃H₂₃N₃O₂) ¹H-NMR

L-Phe- L-Pro-1-Naph (5e) (Chemical Formula: C₂₄H₂₅N₃O₂) ¹H-NMR

L-Tle- L-Pro-1-Ph (5f) (Chemical Formula: C₁₇H₂₅N₃O₂)

L-Tle- L-Pro-1-Anth (5g) (Chemical Formula: C₂₅H₂₉N₃O₂)

L-Tle- L-Pro-1-Pyr (5h) (Chemical Formula: C₂₇H₂₉N₃O₂)

L-Tle-_D**Pro-1-Naph (9)** (Chemical Formula: $C_{21}H_{27}N_3O_2$)

L-TIe- L-Aze-1-Naph (13a) (Chemical Formula: $C_{20}H_{25}N_3O_2$) ¹H-NMR

L-Tle- L-Pip-1-Naph (13b) (Chemical Formula: C₂₂H₂₉N₃O₂) ¹H-NMR

L-Ala- L-Tle- L-Pro-1-Naph (6a) (Chemical Formula: C₂₄H₃₂N₄O₃) ¹H-NMR

L-Val- L-Tle- L-Pro-1-Naph (6b) (Chemical Formula: C₂₆H₃₆N₄O₃)

L-Tel- L-Tle- L-Pro-1-Naph (6c) (Chemical Formula: $C_{27}H_{38}N_4O_3$) ¹**H-NMR**

L-Phg- L-Tie- L-Pro-1-Naph (6d) (Chemical Formula: $C_{29}H_{34}N_4O_3$) ¹**H-NMR**

L-Phe- L-Tle- L-Pro-1-Naph (6e) (Chemical Formula: C₃₀H₃₆N₄O₃) ¹H-NMR

Gly- L-Tle- L-Pro-1-Naph (6f) (Chemical Formula: C₂₃H₃₀N₄O₃)

L-Tle- L-Tle- L-Pro-Ph (6g) (Chemical Formula: C₂₃H₃₆N₄O₃)

L-Tle- L-Tle- L-Pro-1-Anth (6h) (Chemical Formula: $C_{31}H_{40}N_4O_3$)

L-Tle- L-Tle- L-Pro-1-Pyr (6i) (Chemical Formula: C₃₃H₄₀N₄O₃)

D-Tle- L-Pro-1-Naph (6j) (Chemical Formula: $C_{27}H_{38}N_4O_3$)

L-Tle- L-Tle-DPro-1-Naph (10) (Chemical Formula: C₂₇H₃₈N₄O₃)

L-Tle- L-Tle- L-Aze-1-Naph (14a) (Chemical Formula: C₂₆H₃₆N₄O₃)

L-Tle- L-Tle- L-Pip-1-Naph (14b) (Chemical Formula: C₂₆H₃₆N₄O₃)

5. HPLC SPECTRA FOR ALDOL PRODUCTS

2-[Hydroxy-(4-nitrophenyl)-methyl]-cyclohexan-1-one (**17a**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, dr(syn/anti) = 20:80, 98% ee anti. **Racemic**

2-[Hydroxy-(2-nitrophenyl)-methyl]-cyclohexan-1-one (**17b**): *AD-H column, n-hexane/iso-propanol:* 90/10, flow rate = 1.0 mL/min, λ =254 nm, dr(syn/anti) = 22:78, 99% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	13.87	7491683	31.4608	407179	12854.3	****	0.899
2	14.27	498899.6	2.0951	33153	20339.9	****	14.58
3	22.84	15692161	65.8982	537934	13554.5	1.007	2.315
4	24.55	129992.9	0.5459	4947	20103.5	1.1	****
		23812737	100	983213			

2-[Hydroxy-(3-nitrophenyl)-methyl]-cyclohexan-1-one (**17c**): *AD-H column, n-hexane/iso propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, dr(syn/anti) = 20:80, 99% ee anti. **Racemic**

2-[Hydroxy-(2-bromophenyl)-methyl]-cyclohexan-1-one (**17d**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, λ =254 nm, dr(syn/anti) = 25:75, 86% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	8.98	174521	26.4294	12623	9518.8	1.12	2.73
2	10.1	371724	56.2939	22626	8055.3	1.137	7.391
3	13.48	106086	16.0657	6163	13371.1	1.094	5.223
4	15.92	7996.8	1.211	452	18529	1.182	****
		660327.8	100	41864			

2-[Hydroxy-(3-bromophenyl)-methyl]-cyclohexan-1-one (**17e**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, λ =254 nm, dr(syn/anti) = 25:75, 93% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	10.18	18803	39.2727	1178	9001.4	1.024	2.725
2	11.25	5898.4	12.3196	454	15990.6	1.08	7.282
3	14.5	22094.8	46.2481	1093	11685.5	1.136	2.843
4	15.85	1081.8	1.7595	66	23814.8	1.191	****
		47878	100	2791			

2-[Hydroxy-(4-bromophenyl)-methyl]-cyclohexan-1-one (**17f**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, λ =254 nm, dr(syn/anti) = 23:77, 94% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	10.16	12889.3	1.1854	1064	15408.8	1.205	4.983
2	11.98	64080.1	5.8933	4345	14236.7	1.172	8.503
3	15.97	31433.2	2.8909	1596	14121.6	1.137	4.055
4	18.35	978930.6	90.0304	41703	13446.5	1.149	****
		1087333.2	100	48708			

2-[Hydroxy-(4-chlorophenyl)-methyl]-cyclohexan-1-one (**17g**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, dr(syn/anti) = 14:86, 98% ee anti. **Racemic**

No	Rt(min)		Area%	Height	NTP	Symmetr	Resolutio
110	Kummj	Area	Thea ₀	meight	1911	У	n
1	9.38	4476.2	0.6585	406	17170.7	1.23	4.591
2	10.88	75408	11.0934	5561	14065.5	1.199	8.609
3	14.3	4368.4	0.6426	285	17972.8	1.151	3.806
4	16.19	595500.9	87.6054	28552	13144.6	1.138	****

679753.5 100 34804

2-[Hydroxy-(4-cyanophenyl)-methyl]-cyclohexan-1-one (**17h**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, dr(syn/anti) = 36:67, 94% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	18.13	2393442	56.2981	86913	9005.6	1.513	3.954
2	21.26	363774	8.5566	12441	10731.6	1.467	4.019
3	24.62	45147.8	1.062	1449	13440.7	1.46	5.455
4	30.36	1449008	34.0833	32243	9325.3	1.582	****

2-[Hydroxy-phenyl-methyl]-cyclohexan-1-one (**17i**): *OD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 0.5 mL/min, λ =220 nm, dr(syn/anti) = 25:75, 60% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	9.63	1432053	25.89	47698	2260.8	0.847	1.64
2	10.92	257567.9	4.6566	8881	3240.3	0.862	1.956
3	12.69	1189169	21.4989	30971	2372.2	0.857	2.85
4	15.9	2652509	47.9545	59521	2764.3	1.01	****

2-[Hydroxy-(4-(Methoxyphenyl)-methyl]-cyclopentan-1-one (**17**): AD column, n-hexane/iso-propanol = 98/2, flow rate = 0.4 mL/min, λ =254 nm, dr(syn/anti) = 26:74, 58% ee anti.

2-[Hydroxy-(4-(nitrophenyl)-methyl]-cyclopentan-1-one (**17m**): *IC* column, n-hexane/iso-propanol = 85/15, flow rate = 0.8 mL/min, $\lambda = 254$ nm, dr(syn/anti) = 15:85, 93% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	12.64	2731639	37.8848	130327	7998.9	1.133	5.241
2	15.94	1094448	15.1788	42609	8449.1	1.088	10.577
3	24.63	119718	1.6604	3432	10795	1.032	4.611

4	29.69	3264572	45.276	71105	9074.3	1.111	* * * * *
		7210377	100	247473			

2-[Hydroxy(4-nitrophenyl)-methyl]-cycloheptan-1-one (**17n**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, (syn/anti) = 15:85, 91% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	13.49	865645.6	17.913	47269	12289.6	1.165	5.676
2	16.57	578449.8	11.97	25978	12362.9	1.175	6.258
3	20.79	154673.9	3.2007	5507	12140.8	1.037	21.068
4	48.1	3233735	66.9163	47364	10962.4	1.293	****

2-[-Hydroxy-(4-(nitrophenyl)-methyl]-4-methylcyclohexan-1-one (**17o**): *AD-H column, n-hexane/iso-propanol: 90/10, flow Rate = 1.0 mL/min,* λ =254 nm, (syn/anti) =21:79, 90% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	21.53	13881921	83.4334	447870	10875.4	1.22	2.658
2	23.75	918263.4	5.519	29761	12507.1	1.075	8.677
3	32.36	1745002	10.4878	41387	13024.4	1.145	2.126

4	34.44	93137.8	0.5598	2798	27833.2	1.164	*****
		16638324	100	521816			

6-[Hydroxy-(4-nitro-phenyl)-methyl]-2,2-dimethyl-1,3-dioxan-5-one (**17p**): *AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min,* λ =254 nm, dr(syn/anti) = 30:70, 68% ee anti. **Racemic**

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	24.36	4570692	45.6075	132166	10993.2	1.083	2.303
2	26.67	4297609	42.8826	109336	9875.9	0.928	12.319
3	42.91	584345.3	5.8307	9773	12064.8	1.025	7.85
4	56.51	569147.4	5.6791	7958	14105.4	1.092	****
		10021794	100	259233			

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	25.67	1464435	22.3966	35764	6690.1	1.445	1.965
2	27.74	522822.1	7.9959	16511	16972.3	1.06	11.415
3	42.13	731068.2	11.1807	11874	10180.2	1.08	7.594
4	55.87	3820323	58.4268	52735	13165.2	1.132	****
		6538649	100	116884			
3-[Hydroxy-[4-(nitrophenyl)-methyl]-dihydro-2H-pyran-4-one (**17q**): *AD-H* column, *n*-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min, λ =254 nm, dr(syn/anti) = 13:87, 94% ee anti. **Racemic**

Chiral

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	33.22	379003.8	4.0031	9122	13950.5	1.199	4.621
2	39.06	557366.2	5.887	10272	12404.9	1.263	7.145
3	50.6	274502.8	2.8994	3940	12280.2	1.16	4.673
4	59.75	8256819	87.2105	106565	13044.6	1.165	****
		9467691	100	129899			

3-Hydroxy-3-(4-nitrophenyl)-1-propan-1-one (**17**r): (*AS-H column, n-hexane/iso-propanol: 90/10, flow* Rate = 1.0 mL/min, λ =254 nm, dr(syn/anti) = n.d, 52% ee anti. **Racemic**

Chiral

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	13.9	1174817	23.7938	31507	3668.6	1.226	2.553
2	18.36	3762670	76.2062	39886	814.2	1.602	****
		4937487	100	71393			

3-Hydroxy-3-(4-nitrophenyl)-1-phenylpropan-1-one (**17s**): *AD-H column, n-hexane/iso-propanol: 90/10, flow Rate* = 1.0 mL/min, λ =254 nm, *dr(syn/anti)* = n.*d*, 82% ee anti. **Racemic**

Chiral

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	34.14	13262031	91.0873	213711	5836.2	2.452	3.227
2	39.27	1297658	8.9127	25604	12738.8	1.34	****
		14559689	100	239315			

2-[Hydroxy-(4-nitrophenyl)-methyl]-cyclohexan-1-one (**17a**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, dr(syn/anti) = 24:76, 93% ee anti. (**1-gram Scale**) **Racemic**

Chiral

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	23.78	6549061	27.0478	252299	18549.7	1.141	4.109
2	26.91	2508992	10.3622	82344	16947.7	1.328	3.22
3	29.64	551944.9	2.2796	17238	18626	1.171	7.52
4	37.36	14602882	60.3104	328677	15936.7	1.067	****

24212880 100 680558