Supporting Information

Facile Synthesis of Photoactivatable Adenosine Analogs

Dawanna S. White, ${ }^{1, \#}$ Daniel Mongeluzi, ${ }^{1, \#}$ Alyson M. Curry, ${ }^{1}$ Dickson Donu, ${ }^{1}$ Yana Cen ${ }^{1,2,{ }^{*}}$
${ }^{1}$ Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219
${ }^{2}$ Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219

\#These authors contributed equally to this work.
*Correspondence: ceny2@vcu.edu, phone: 804-828-7405

Figure S1. Photoaffinity labeling and affinity enrichment of recombinant EHMT1 using probe 1.

anti-biotin

Probe $1(\mu \mathrm{M}) \quad 0 \quad 250500$
EHMT1 $(\mu \mathrm{M}) \quad 10 \quad 10 \quad 10$

Synthesis of Chemical Probes

Synthesis of probe 1 (plan 1)

Synthesis of 1. To a solution of 8-bromoinosine ($1 \mathrm{~g}, 2.88 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added DMAP ($35.2 \mathrm{mg}, 0.288 \mathrm{mmol}$). The mixture was cooled down to $0^{\circ} \mathrm{C}$. To this solution was added acetic anhydride ($2.72 \mathrm{~mL}, 28.8 \mathrm{mmol}$) dropwise. The reaction mixture was then allowed to warm to room temperature and stirred overnight. Reaction was quenched with ice water, aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 5% methanol) to afford intermediate 1 ($934 \mathrm{mg}, 1.98 \mathrm{mmol}, 68.7 \%$ yield) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{dd}, J=6.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 12.41(\mathrm{~s}, 1 \mathrm{H}) \cdot{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.37$, 20.50, 20.70, 63.00, 70.33, 72.09, 80.18, 88.77, 125.82, 126.57, 145.09, 149.77, 157.44, 169.32, 169.47, 170.46. HRMS (m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{8} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 495.0122; found: 495.0099.

Synthesis of 2. To a solution of $\mathbf{1}(734 \mathrm{mg}, 1.55 \mathrm{mmol})$ in 6 mL of anhydrous DMF was added NaN_{3} (403 mg, 6.20 mmol). The reaction was heated at $80^{\circ} \mathrm{C}$ until completion. The reaction was cooled to room temperature. Solvent was evaporated under reduced pressure. The residue was dissolved in water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with sat. NaHCO_{3}, water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 5% methanol) to afford intermediate $2\left(406 \mathrm{mg}, 0.93 \mathrm{mmol}, 60.2 \%\right.$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{dd}$,
$J=3.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.09(\mathrm{~s}, 1 \mathrm{H}), 13.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.37,20.46,20.64,63.01$, $70.32,71.96,79.88,85.75,123.20,144.08,145.07,148.77,157.64,169.34,169.47,170.40$. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 458.1036; found: 458.1020.

Synthesis of 3. To a solution of $2(406 \mathrm{mg}, 0.93 \mathrm{mmol})$ and PyBOP ($729 \mathrm{mg}, 1.40 \mathrm{mmol}$) in 10 mL anhydrous acetonitrile was added DIPEA ($325 \mu \mathrm{~L}, 1.87 \mathrm{mmol}$). To the reaction mixture was then added mono- N-Boc-1,6-diaminohexane ($418 \mu \mathrm{~L}, 1.87 \mathrm{mmol}$) dropwise. The reaction was stirred at room temperature overnight. The reaction was quenched with water and the mixture was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 5% methanol) to afford intermediate 3
 2H), 1.42 (s, 9H), 1.46 (stack, 6H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 3.62$ (m, 2H), $4.30(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.42,20.48,20.64,26.43$, 26.47, 28.41, 29.78, 30.01, 30.86, 53.38, 63.04, 70.46, 71.99, 79.82, 85.42, 144.19, 155.98, 169.38, 169.48, 170.49. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{9} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 656.2763; found: 656.2735.

Synthesis of 4. Intermediate 3 ($230 \mathrm{mg}, 0.36 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}$ ($4 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=9 / 1$). The reaction mixture was stirred at room temperature for 4 h before the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 10% methanol) to afford intermediate 4 ($153 \mathrm{mg}, 0.29$ mmol, 79.5% yield) as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.36$ (stack, 4 H$), 1.62$
(stack, 4H), $2.01(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 4.28$ (m, 2H), $4.43(\mathrm{~m} \mathrm{1H}), 5.78(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.20(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.36,20.45,20.59,25.83,26.03,27.24$, $29.38,30.83,39.78,63.03,70.44,71.95,79.76,85.38,114.93,117.73,117.83,144.11,153.15$, 169.47, 169.54, 170.57. HRMS (m / z) : calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{9} \mathrm{O}_{7} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 533.2346; found: 533.2341.

Synthesis of 5. To a solution of biotin ($71 \mathrm{mg}, 0.29 \mathrm{mmol}$), EDCI ($55 \mathrm{mg}, 0.29 \mathrm{mmol}$) and DMAP ($53 \mathrm{mg}, 0.43 \mathrm{mmol}$) in 2 mL anhydrous DMF was added a solution of intermediate 4 (154 $\mathrm{mg}, 0.29 \mathrm{mmol}$) in 4 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred at room temperature overnight. The reaction was quenched with water, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 10% methanol) to afford intermediate $5(136 \mathrm{mg}, 0.18$ mmol, 62% yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.41 (stack, 6 H), 1.51 (m, 2H), 1.66 (stack, 6H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~d}, \mathrm{~J}$ $=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=5.0,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 3 \mathrm{H}), 3.54(\mathrm{~s}$, broad, 2H), 4.30 (stack, 3H), $4.45(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (s, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.38,20.44,20.61,25.57,26.42,26.52,27.99$, 28.08, 29.41, 29.57, 35.87, 39.35, 40.55, 55.64, 60.10, 61.81, 63.01, 70.42, 71.95, 79.75, 85.39, $117.73,143.94,152.39,153.28,164.02,169.39,169.47,170.47,173.07$. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{11} \mathrm{O}_{9} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})$: 782.3014; found: 782.3022.

Synthesis of probe 1. Intermediate $5(25 \mathrm{mg}, 0.033 \mathrm{mmol})$ was dissolved in 0.2 mL methanol. The solution was cooled down to $0^{\circ} \mathrm{C}$. To the reaction mixture was added 1 mL 7 N ammonia in
methanol. The reaction was stirred at $0^{\circ} \mathrm{C}$ overnight. Solvent was removed under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 20% methanol) to afford probe 1 ($21 \mathrm{mg}, 0.033 \mathrm{mmol}$, quantitatively) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.41$ (stack, 6 H$), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.66$ (stack, 6 H$), 2.17(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 H$), $2.67(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=5.0,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=3.0$, $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=2.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=4.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (dd, $J=1.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=4.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 27.07,27.75,27.86,29.65,29.91,30.50,36.96,40.43$, 41.16, $57.15,61.75,63.52,64.17,73.11,74.24,88.81,90.13,146.62,152.57,176.10$. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{11} \mathrm{O}_{6} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})$: 656.2697; found: 656.2706.

Synthesis of probe 2. Intermediate 5 ($61 \mathrm{mg}, 0.081 \mathrm{mmol}$) was dissolved in 1 mL 7 N ammonia in methanol at $-40^{\circ} \mathrm{C}$. The reaction was stirred at $-40^{\circ} \mathrm{C}$ for 2 h . Upon completion, the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 10% methanol) to afford probe $2(39 \mathrm{mg}, 0.058 \mathrm{mmol}$, 72\%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.41$ (stack, 6 H$), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.66$ (stack, 6H), $1.98(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=5.0$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~s}$, broad, 2 H$), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~m}, 2 \mathrm{H}), 4.52$ (m, 1H), $5.05(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 27.07,27.77,27.88,29.66,29.91,30.51,36.97,40.45,41.16,57.15,61.76$, $63.53,65.28,72.17,73.11,83.56,89.60,153.17,172.66,176.11$. HRMS (m / z) : calculated for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{11} \mathrm{O}_{7} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})$: 698.2803; found: 698.2789.

Synthesis of probe 1 (plan 2)

Synthesis of 6. 8-Bromoinosine ($500 \mathrm{mg}, 1.45 \mathrm{mmol}$) was dissolved in a mixture of acetone
and 2,2-dimethoxypropane ($25 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=4 / 1$). To this solution was added p - $\mathrm{TsOH}(275 \mathrm{mg}$, 1.45 mmol). The reaction was stirred at room temperature overnight. The reaction was quenched with $\mathrm{NaHCO}_{3}(121 \mathrm{mg}, 1.45 \mathrm{mmol})$ and sat. NaHCO_{3} solution (6 mL). The mixture wa stirred at room temperature for 1 h . The aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 10% methanol) to afford intermediate $6(315 \mathrm{mg}, 0.82 \mathrm{mmol}$, 56.3% yield) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$, 3.76 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ $(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 12.96(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 25.40,27.56,62.99,81.24,82.84,85.82,93.26,114.39,126.01,126.42,146.07$, 148.91, 157.27. HRMS (m / z): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrN}_{4} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})$: 387.0299; found: 387.0301.

Synthesis of 7. To a solution of intermediate 6 ($201 \mathrm{mg}, 0.52 \mathrm{mmol}$) in 5 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added TEA ($109 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$) and DMAP ($13 \mathrm{mg}, 0.10 \mathrm{mmol}$). The reaction mixture was cooled down to $0^{\circ} \mathrm{C}$. To the reaction mixture was added acetic anhydride ($54 \mu \mathrm{~L}, 0.57 \mathrm{mmol}$) dropwise. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched with ice water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 5% methanol $)$ to afford intermediate 7 ($181 \mathrm{mg}, 0.42 \mathrm{mmol}, 81.5 \%$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, 4.17 (dd, $J=7.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=4.9,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=4.3$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 13.08(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}) \delta(\mathrm{ppm}): 20.72,25.38,27.17,63.77,81.65,83.65,85.27,91.14,114.85,125.54$,
126.53, 145.86, 149.51, 170.48. HRMS (m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 451.0224; found: 451.0221 .

Synthesis of 8. To a solution of intermediate 7 ($181 \mathrm{mg}, 0.42 \mathrm{mmol}$) in 6 mL anhydrouse DMF was added $\mathrm{NaN}_{3}(110 \mathrm{mg}, 1.69 \mathrm{mmol})$. The reaction was heated at $80^{\circ} \mathrm{C}$ until completion. The reaction was cooled to room temperature. Solvent was evaporated under reduced pressure. The residue was dissolved in water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with sat. NaHCO_{3}, water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 5% methanol $)$ to afford intermediate $8(90 \mathrm{mg}, 0.23 \mathrm{mmol}, 54.6 \%$
 $3 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1$ $\mathrm{H}), 13.34(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 25.26,27.04,31.32,63.78,81.47,83.38$, 84.84, $88.36,114.69,122.88,144.77,144.84,148.40,157.85,170.38$. HRMS (m / z) : calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 414.1133; found: 414.1131.

Synthesis of 9. To a solution of 8 ($129 \mathrm{mg}, 0.33 \mathrm{mmol}$) and PyBOP ($258 \mathrm{mg}, 0.50 \mathrm{mmol}$) in 2 mL anhydrous acetonitrile was added DIPEA ($115 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$). To the reaction mixture was then added mono- N-Boc-1,6-diaminohexane ($148 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$) dropwise. The reaction was stirred at room temperature overnight. The reaction was quenched with water and the mixture was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 7% methanol $)$ to afford intermediate 9 ($169 \mathrm{mg}, 0.29 \mathrm{mmol}, 86.7 \%$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.33(\mathrm{~m}$, $2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~m}$,
$2 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{dd}, J=3.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=1.7$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.69$, $25.41,26.39,26.44,27.13,28.38,29.70,29.96,40.39,63.99,78.98,81.84,83.30,85.09,88.31$, 114.38, 117.86, 144.19, 152.15, 153.18, 155.95, 170.52. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{9} \mathrm{O}_{7} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 612.2865; found: 612.2878.

Synthesis of 10. Intermediate 9 ($143 \mathrm{mg}, 0.24 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}$ ($5 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=4 / 1$). The reaction mixture was stirred at room temperature for 4 h before the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 10% methanol) to afford intermediate $10(117 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 99.7 \%$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}$, $4 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}$, broad, 2H), $4.21(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 8.15$ (s, 1H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.70,25.66,27.28,27.50,27.56,28.62,30.50$, $40.78,65.15,83.28,84.69,86.48,89.89,115.60,146.01,153.03,154.57,172.44$. HRMS (m / z) : calculated for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{9} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H}): 490.2521$; found: 490.2504 .

Synthesis of 11. To a solution of biotin ($59 \mathrm{mg}, 0.24 \mathrm{mmol}$), EDCI ($47 \mathrm{mg}, 0.24 \mathrm{mmol}$) and DMAP ($53 \mathrm{mg}, 0.43 \mathrm{mmol}$) in 2 mL anhydrous DMF was added a solution of intermediate 10 ($119 \mathrm{mg}, 0.24 \mathrm{mmol}$) in 4 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred at room temperature overnight. The reaction was quenched with water, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 10% methanol) to afford intermediate 11 (129 mg , $0.18 \mathrm{mmol}, 75.5 \%$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.36(\mathrm{~s}, 3 \mathrm{HO}, 1.41$
$(\mathrm{m}, 6 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 6 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~d}$, $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}, 3.19(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~s}$, broad, 2 H$), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 3 \mathrm{H}), 4.47$ (m, 1H), $5.09(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~s}$, $1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.72,22.64,25.42,25.58,26.40,26.51$, $27.14,27.97,28.04,29.39,29.64,35.85,37.04,39.34,40.61,55.65,60.08,61.83,63.98,81.82$, 83.29, 85.10, $88.35,114.44,117.75,144.25,152.99,164.01,170.55,173.10$. HRMS $(m / z):$ calculated for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N}_{11} \mathrm{O}_{7} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})$: 738.3116; found: 738.3080.

Synthesis of 12. Intermediate $11(23 \mathrm{mg}, 0.032 \mathrm{mmol})$ was dissolved in 1 mL 7 N ammonia in methanol at $-40^{\circ} \mathrm{C}$. The reaction was stirred at $-40^{\circ} \mathrm{C}$ for 2 h . Upon completion, the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 10% methanol) to afford intermediate $12(17 \mathrm{mg}, 0.026 \mathrm{mmol}$, 80%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~m}$, 2 H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 6 \mathrm{H}), 2.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=$ $5.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}$, broad, 2H), $3.66(\mathrm{dd}, J=4.7,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=3.9,12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=2.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=3.4,6.1 \mathrm{~Hz}, 1 \mathrm{HO}$, $5.93(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 25.73,27.07,27.77$, $27.84,27.87,29.65,29.91,30.51,36.96,40.44,41.17,57.15,61.76,63.53,63.80,83.08,84.35$, 88.28, $91.18,115.42,146.03,153.00,176.10$. $\mathrm{HRMS}(m / z)$: calculated for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{11} \mathrm{O}_{6} \mathrm{SNa}$ $(\mathrm{M}+\mathrm{Na})$: 696.3010; found: 696.2992.

Synthesis of probe 1. Intermediate $12(17 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in $1 \mathrm{~mL} 50 \%$ TFA at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with 20% methanol) to afford probe 1 ($16 \mathrm{mg}, 0.025 \mathrm{mmol}$, quantitatively) as a yellow oil.

Figure S2. NMR spectra of the probes.

