Supporting Information

Facile Synthesis of Photoactivatable Adenosine Analogs

Dawanna S. White,^{1,#} Daniel Mongeluzi,^{1,#} Alyson M. Curry,¹ Dickson Donu,¹ Yana Cen^{1,2,*}

¹Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219

²Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth

University, Richmond, VA 23219

[#]These authors contributed equally to this work.

*Correspondence: <u>ceny2@vcu.edu</u>, phone: 804-828-7405

Figure S1. Photoaffinity labeling and affinity enrichment of recombinant EHMT1 using probe 1.

anti-biotin			-
Probe 1 (μM)	0	250	500
ΕΗΜΤ1 (μΜ)	10	10	10

Synthesis of Chemical Probes

Synthesis of probe 1 (plan 1)

Synthesis of 1. To a solution of 8-bromoinosine (1 g, 2.88 mmol) in anhydrous CH₂Cl₂ (10 mL) was added DMAP (35.2 mg, 0.288 mmol). The mixture was cooled down to 0°C. To this solution was added acetic anhydride (2.72 mL, 28.8 mmol) dropwise. The reaction mixture was then allowed to warm to room temperature and stirred overnight. Reaction was quenched with ice water, aqueous layer was extracted with CH₂Cl₂, combined organic layer was washed with brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 5% methanol) to afford intermediate **1** (934 mg, 1.98 mmol, 68.7% yield) as a pale yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.05 (s, 3H), 2.09 (s, 3H), 2.14 (s, 3H), 4.30 (dd, *J* = 6.0, 11.6 Hz, 1H), 4.37 (d, *J* = 3.1 Hz, 1H), 4.47 (d, *J* = 11.2 Hz, 1H), 5.76 (t, *J* = 5.7 Hz, 1H), 6.08 (d, *J* = 4.4 Hz, 1H), 6.20 (d, *J* = 5.5 Hz, 1H), 8.07 (s, 1H), 12.41 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.37, 20.50, 20.70, 63.00, 70.33, 72.09, 80.18, 88.77, 125.82, 126.57, 145.09, 149.77, 157.44, 169.32, 169.47, 170.46. HRMS (*m*/*z*): calculated for C₁₆H₁₇BrN₄O₈Na (M+Na): 495.0122; found: 495.0099.

Synthesis of 2. To a solution of 1 (734 mg, 1.55 mmol) in 6 mL of anhydrous DMF was added NaN₃ (403 mg, 6.20 mmol). The reaction was heated at 80°C until completion. The reaction was cooled to room temperature. Solvent was evaporated under reduced pressure. The residue was dissolved in water and extracted with CH₂Cl₂. The combined organic layer was washed with sat. NaHCO₃, water and brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 5% methanol) to afford intermediate **2** (406 mg, 0.93 mmol, 60.2% yield) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.04 (s, 3H), 2.07 (s, 3H), 2.11 (s, 3H), 4.30 (m, 2H), 4.43 (dd,

J = 3.2, 11.5 Hz, 1H), 5.67 (t, J = 5.8 Hz, 1H), 5.93 (d, J = 4.8 Hz, 1H), 6.04 (t, J = 5.6 Hz, 1H), 8.09 (s, 1H), 13.35 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.37, 20.46, 20.64, 63.01, 70.32, 71.96, 79.88, 85.75, 123.20, 144.08, 145.07, 148.77, 157.64, 169.34, 169.47, 170.40. HRMS (*m/z*): calculated for C₁₆H₁₇N₇O₈Na (M+Na): 458.1036; found: 458.1020.

Synthesis of 3. To a solution of **2** (406 mg, 0.93 mmol) and PyBOP (729 mg, 1.40 mmol) in 10 mL anhydrous acetonitrile was added DIPEA (325 μL, 1.87 mmol). To the reaction mixture was then added mono-*N*-Boc-1,6-diaminohexane (418 μL, 1.87 mmol) dropwise. The reaction was stirred at room temperature overnight. The reaction was quenched with water and the mixture was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 5% methanol) to afford intermediate **3** (324 mg, 0.51 mmol, 55% yield) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.36 (m, 2H), 1.42 (s, 9H), 1.46 (stack, 6H), 2.04 (s, 3H), 2.06 (s, 3H), 2.11 (s, 3H), 3.08 (m, 2H), 3.62 (m, 2H), 4.30 (m, 2H), 4.47 (m, 2H), 5.79 (t, *J* = 5.4 Hz, 1H), 5.96 (d, *J* = 4.6 Hz, 1H), 6.13 (t, *J* = 5.6 Hz, 1H), 8.25 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.42, 20.48, 20.64, 26.43, 26.47, 28.41, 29.78, 30.01, 30.86, 53.38, 63.04, 70.46, 71.99, 79.82, 85.42, 144.19, 155.98, 169.38, 169.48, 170.49. HRMS (*m/z*): calculated for C₂₇H₃₉N₉O₉Na (M+Na): 656.2763; found: 656.2735.

Synthesis of 4. Intermediate 3 (230 mg, 0.36 mmol) was dissolved in a mixture of CH₂Cl₂/TFA (4 mL, v/v = 9/1). The reaction mixture was stirred at room temperature for 4 h before the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (CH₂Cl₂ with 10% methanol) to afford intermediate 4 (153 mg, 0.29 mmol, 79.5% yield) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.36 (stack, 4H), 1.62

(stack, 4H), 2.01 (s, 3H), 2.04 (s, 3H), 2.09 (s, 3H), 2.89 (t, J = 7.4 Hz, 2H), 3.57 (m, 1H), 4.28 (m, 2H), 4.43 (m 1H), 5.78 (t, J = 5.6 Hz, 1H), 5.93 (d, J = 4.6 Hz, 1H), 6.13 (t, J = 5.5 Hz, 1H), 8.20 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.36, 20.45, 20.59, 25.83, 26.03, 27.24, 29.38, 30.83, 39.78, 63.03, 70.44, 71.95, 79.76, 85.38, 114.93, 117.73, 117.83, 144.11, 153.15, 169.47, 169.54, 170.57. HRMS (*m/z*): calculated for C₂₂H₃₁N₉O₇Na (M+Na): 533.2346; found: 533.2341.

Synthesis of 5. To a solution of biotin (71 mg, 0.29 mmol), EDCI (55 mg, 0.29 mmol) and DMAP (53 mg, 0.43 mmol) in 2 mL anhydrous DMF was added a solution of intermediate 4 (154 mg, 0.29 mmol) in 4 mL anhydrous CH₂Cl₂. The reaction mixture was stirred at room temperature overnight. The reaction was quenched with water, the aqueous layer was extracted with CH₂Cl₂. The combined organic layer was washed with brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 10% methanol) to afford intermediate 5 (136 mg, 0.18 mmol, 62% yield) as a yellow oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 1.41 (stack, 6H), 1.51 (m, 2H), 1.66 (stack, 6H), 2.00 (s, 3H), 2.06 (s, 3H), 2.12 (s, 3H), 2.17 (t, *J* = 7.2 Hz, 2H), 2.66 (d, *J* = 12.7 Hz, 1H), 2.87 (dd, *J* = 5.0, 12.7 Hz, 1H), 3.16 (m, 3H), 3.54 (s, broad, 2H), 4.30 (stack, 3H), 4.45 (m, 2H), 5.77 (t, *J* = 5.8 Hz, 1H), 5.97 (d, *J* = 4.7 Hz, 1H), 6.14 (t, *J* = 5. 8Hz, 1H), 8.16 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.38, 20.44, 20.61, 25.57, 26.42, 26.52, 27.99, 28.08, 29.41, 29.57, 35.87, 39.35, 40.55, 55.64, 60.10, 61.81, 63.01, 70.42, 71.95, 79.75, 85.39, 117.73, 143.94, 152.39, 153.28, 164.02, 169.39, 169.47, 170.47, 173.07. HRMS (*m*/z): calculated for C₃₂H₄₅N₁₁O₉SNa (M+Na): 782.3014; found: 782.3022.

Synthesis of probe 1. Intermediate **5** (25 mg, 0.033 mmol) was dissolved in 0.2 mL methanol. The solution was cooled down to 0°C. To the reaction mixture was added 1 mL 7N ammonia in

methanol. The reaction was stirred at 0°C overnight. Solvent was removed under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 20% methanol) to afford **probe 1** (21 mg, 0.033 mmol, quantitatively) as a yellow oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 1.41 (stack, 6H), 1.51 (m, 2H), 1.66 (stack, 6H), 2.17 (t, *J* = 7.3 Hz, 2H), 2.67 (d, *J* = 12.8 Hz, 1H), 2.88 (dd, *J* = 5.0, 12.7 Hz, 1H), 3.15 (m, 2H), 3.70 (dd, *J* = 3.0, 12.6 Hz, 1H), 3.84 (dd, *J* = 2.4, 12.6 Hz, 1H), 4.12 (m, 1H), 4.26 (dd, *J* = 4.5, 7.9 Hz, 1H), 4.30 (dd, *J* = 1.6, 5.2 Hz, 1H), 4.45 (dd, *J* = 4.9, 7.8 Hz, 1H), 5.77 (d, *J* = 7.2 Hz, 1H), 8.10 (s, 1H). ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 27.07, 27.75, 27.86, 29.65, 29.91, 30.50, 36.96, 40.43, 41.16, 57.15, 61.75, 63.52, 64.17, 73.11, 74.24, 88.81, 90.13, 146.62, 152.57, 176.10. HRMS (*m/z*): calculated for C₂₆H₃₉N₁₁O₆SNa (M+Na): 656.2697; found: 656.2706.

Synthesis of probe 2. Intermediate 5 (61 mg, 0.081 mmol) was dissolved in 1 mL 7N ammonia in methanol at -40°C. The reaction was stirred at -40°C for 2 h. Upon completion, the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (CH₂Cl₂ with 10% methanol) to afford **probe 2** (39 mg, 0.058 mmol, 72%) as a yellow oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 1.41 (stack, 6H), 1.50 (m, 2H), 1.66 (stack, 6H), 1.98 (s, 3H), 2.17 (t, *J* = 7.3 Hz, 2H), 2.66 (d, *J* = 12.7 Hz, 1H), 2.87 (dd, *J* = 5.0, 12.8 Hz,1 H), 3.16 (m, 3H), 3.55 (s, broad, 2H), 4.11 (m, 1H), 4.26 (m, 2H), 4.44 (m, 2H), 4.52 (m, 1H), 5.05 (t, *J* = 5.3 Hz, 1H), 5.81 (d, *J* = 4.9 Hz, 1H), 8.13 (s, 1H). ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 27.07, 27.77, 27.88, 29.66, 29.91, 30.51, 36.97, 40.45, 41.16, 57.15, 61.76, 63.53, 65.28, 72.17, 73.11, 83.56, 89.60, 153.17, 172.66, 176.11. HRMS (*m/z*): calculated for C₂₈H₄₁N₁₁O₇SNa (M+Na): 698.2803; found: 698.2789.

Synthesis of probe 1 (plan 2)

Synthesis of 6. 8-Bromoinosine (500 mg, 1.45 mmol) was dissolved in a mixture of acetone

and 2,2-dimethoxypropane (25 mL, v/v = 4/1). To this solution was added *p*-TsOH (275 mg, 1.45 mmol). The reaction was stirred at room temperature overnight. The reaction was quenched with NaHCO₃ (121 mg, 1.45 mmol) and sat. NaHCO₃ solution (6 mL). The mixture wa stirred at room temperature for 1 h. The aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 10% methanol) to afford intermediate **6** (315 mg, 0.82 mmol, 56.3% yield) as a pale yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ (ppm): 1.36 (s, 3H), 1.63 (s, 3H), 3.76 (d, *J* = 12.4 Hz, 1H), 3.91 (d, *J* = 12.4 Hz, 1H), 4.45 (s, 1H), 5.04 (d, *J* = 5.8 Hz, 1H), 5.22 (t, *J* = 5.4 Hz, 1 H), 6.08 (t, *J* = 4.6 Hz, 1H), 8.35 (s, 1H), 12.96 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 25.40, 27.56, 62.99, 81.24, 82.84, 85.82, 93.26, 114.39, 126.01, 126.42, 146.07, 148.91, 157.27. HRMS (*m*/z): calculated for C₁₃H₁₆BrN₄O₅ (M+H): 387.0299; found: 387.0301.

Synthesis of 7. To a solution of intermediate 6 (201 mg, 0.52 mmol) in 5 mL anhydrous CH₂Cl₂ was added TEA (109 μ L, 0.78 mmol) and DMAP (13 mg, 0.10 mmol). The reaction mixture was cooled down to 0°C. To the reaction mixture was added acetic anhydride (54 μ L, 0.57 mmol) dropwise. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched with ice water. The aqueous layer was extracted with CH₂Cl₂. The combined organic layer was washed with brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 5% methanol) to afford intermediate 7 (181 mg, 0.42 mmol, 81.5% yield) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.38 (s, 3H), 1.60 (s, 3H), 2.02 (s, 3H), 4.17 (dd, *J* = 7.2, 11.6 Hz, 1H), 4.31 (dd, *J* = 4.9, 11.6 Hz, 1H), 4.37 (m, 1H), 5.10 (dd, *J* = 4.3, 5.9 Hz, 1H), 5.52 (d, *J* = 6.4 Hz, 1H), 6.20 (s, 1H), 8.33 (s, 1H), 13.08 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.72, 25.38, 27.17, 63.77, 81.65, 83.65, 85.27, 91.14, 114.85, 125.54,

126.53, 145.86, 149.51, 170.48. HRMS (*m/z*): calculated for C₁₅H₁₇BrN₄O₆Na (M+Na): 451.0224; found: 451.0221.

Synthesis of 8. To a solution of intermediate 7 (181 mg, 0.42 mmol) in 6 mL anhydrouse DMF was added NaN₃ (110 mg, 1.69 mmol). The reaction was heated at 80°C until completion. The reaction was cooled to room temperature. Solvent was evaporated under reduced pressure. The residue was dissolved in water and extracted with CH_2Cl_2 . The combined organic layer was washed with sat. NaHCO₃, water and brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 5% methanol) to afford intermediate **8** (90 mg, 0.23 mmol, 54.6% yield) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.33 (s, 3H), 1.55 (s, 3H), 1.99 (s, 3H), 4.13 (m, 1H), 4.30 (m, 2H), 4.98 (m, 1H), 5.37 (d, *J* = 6.4 Hz, 1H), 5.99 (s, 1H), 8.24 (s, 1 H), 13.34 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 25.26, 27.04, 31.32, 63.78, 81.47, 83.38, 84.84, 88.36, 114.69, 122.88, 144.77, 144.84, 148.40, 157.85, 170.38. HRMS (*m/z*): calculated for C₁₅H₁₇N₇O₆Na (M+Na): 414.1133; found: 414.1131.

Synthesis of 9. To a solution of 8 (129 mg, 0.33 mmol) and PyBOP (258 mg, 0.50 mmol) in 2 mL anhydrous acetonitrile was added DIPEA (115 μ L, 0.66 mmol). To the reaction mixture was then added mono-*N*-Boc-1,6-diaminohexane (148 μ L, 0.66 mmol) dropwise. The reaction was stirred at room temperature overnight. The reaction was quenched with water and the mixture was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 7% methanol) to afford intermediate **9** (169 mg, 0.29 mmol, 86.7% yield) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.33 (m, 2H), 1.35 (s, 3H), 1.40 (s, 9H), 1.43 (m, 4H), 1.56 (s, 3H), 1.66 (m, 2H), 1.99 (s, 3H), 3.07 (m,

2H), 3.58 (m, 2H), 4.14 (m,1 H), 4.31 (m, 2H), 5.09 (dd, J = 3.4, 6.3 Hz, 1H), 5.51 (dd, J = 1.7, 6.4 Hz, 1H), 5.97 (d, J = 1.7 Hz,1 H), 8.22 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.69, 25.41, 26.39, 26.44, 27.13, 28.38, 29.70, 29.96, 40.39, 63.99, 78.98, 81.84, 83.30, 85.09, 88.31, 114.38, 117.86, 144.19, 152.15, 153.18, 155.95, 170.52. HRMS (*m/z*): calculated for C₂₆H₃₉N₉O₇Na (M+Na): 612.2865; found: 612.2878.

Synthesis of 10. Intermediate **9** (143 mg, 0.24 mmol) was dissolved in a mixture of CH₂Cl₂/TFA (5 mL, v/v = 4/1). The reaction mixture was stirred at room temperature for 4 h before the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (CH₂Cl₂ with 10% methanol) to afford intermediate **10** (117 mg, 0.24 mmol, 99.7% yield) as a yellow oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 1.36 (s, 3H), 1.46 (m, 4H), 1.55 (s, 3H), 1.68 (m, 4H), 1.97 (s, 3H), 2.91 (t, *J* = 7.5 Hz, 2H), 3.39 (s, 1H), 3.56 (s, broad, 2H), 4.21 (m, 2H), 4.31 (m, 1H), 5.11 (m, 1H), 5.56 (d, *J* = 6.3 Hz, 1H), 5.98 (s, 1H), 8.15 (s, 1H). ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 20.70, 25.66, 27.28, 27.50, 27.56, 28.62, 30.50, 40.78, 65.15, 83.28, 84.69, 86.48, 89.89, 115.60, 146.01, 153.03, 154.57, 172.44. HRMS (*m/z*): calculated for C₂₁H₃₂N₉O₅ (M+H): 490.2521; found: 490.2504.

Synthesis of 11. To a solution of biotin (59 mg, 0.24 mmol), EDCI (47 mg, 0.24 mmol) and DMAP (53 mg, 0.43 mmol) in 2 mL anhydrous DMF was added a solution of intermediate 10 (119 mg, 0.24 mmol) in 4 mL anhydrous CH_2Cl_2 . The reaction mixture was stirred at room temperature overnight. The reaction was quenched with water, the aqueous layer was extracted with CH_2Cl_2 . The combined organic layer was washed with brine and dried over Na_2SO_4 . Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH_2Cl_2 with 10% methanol) to afford intermediate 11 (129 mg, 0.18 mmol, 75.5% yield) as a yellow oil. ¹H NMR ($CDCl_3$, 400 MHz) δ (ppm): 1.36 (s, 3H0, 1.41

(m, 6H), 1.48 (m, 2H), 1.56 (s, 3H), 1.65 (m, 6H), 1.99 (s, 3H), 2.16 (t, J = 7.2 Hz, 2H), 2.68 (d, 12.7 Hz, 1H), 3.11 (m, 1H0, 3.19 (m, 2H), 3.58 (s, broad, 2H), 4.14 (m, 1H), 4.30 (m, 3H), 4.47 (m, 1H), 5.09 (m, 1H), 5.50 (d, J = 6.3 Hz, 1H), 5.77 (s, 1H), 5.98 (s, 1H), 6.19 (m, 1H), 6.43 (s, 1H), 8.21 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.72, 22.64, 25.42, 25.58, 26.40, 26.51, 27.14, 27.97, 28.04, 29.39, 29.64, 35.85, 37.04, 39.34, 40.61, 55.65, 60.08, 61.83, 63.98, 81.82, 83.29, 85.10, 88.35, 114.44, 117.75, 144.25, 152.99, 164.01, 170.55, 173.10. HRMS (*m/z*): calculated for C₃₁H₄₅N₁₁O₇SNa (M+Na): 738.3116; found: 738.3080.

Synthesis of 12. Intermediate **11** (23 mg, 0.032 mmol) was dissolved in 1 mL 7N ammonia in methanol at -40°C. The reaction was stirred at -40°C for 2 h. Upon completion, the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (CH₂Cl₂ with 10% methanol) to afford intermediate **12** (17 mg, 0.026 mmol, 80%) as a yellow oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 1.36 (s, 3H), 1.42 (m, 6H), 1.53 (m, 2H), 1.54 (s, 3H), 1.68 (m, 6H), 2.17 (t, *J* = 7.3 Hz, 2H), 2.67 (d, *J* = 12.7 Hz, 1H), 2.88 (dd, *J* = 5.0, 12.8 Hz, 1H), 3.56 (s, broad, 2H), 3.66 (dd, *J* = 4.7, 12.1 Hz, 1H), 3.76 (dd, *J* = 3.9, 12.1 Hz, 1H), 4.27 (m, 2H), 4.45 (m, 1H), 5.04 (dd, *J* = 2.6, 6.1 Hz, 1H), 5.38 (dd, *J* = 3.4, 6.1 Hz, 1H0, 5.93 (d, *J* = 3.4 Hz, 1H), 8.13 (s, 1H). ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 25.73, 27.07, 27.77, 27.84, 27.87, 29.65, 29.91, 30.51, 36.96, 40.44, 41.17, 57.15, 61.76, 63.53, 63.80, 83.08, 84.35, 88.28, 91.18, 115.42, 146.03, 153.00, 176.10. HRMS (*m*/*z*): calculated for C₂₉H₄₃N₁₁O₆SNa (M+Na): 696.3010; found: 696.2992.

Synthesis of probe 1. Intermediate **12** (17 mg, 0.025 mmol) was dissolved in 1 mL 50% TFA at 0°C. The reaction was stirred at 0°C for 4 h. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (CH_2Cl_2 with 20% methanol) to afford **probe 1** (16 mg, 0.025 mmol, quantitatively) as a yellow oil.

Figure S2. NMR spectra of the probes.

