Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

A benzothiazole-based new fluorogenic ratiometric chemosensor for CN⁻ and its real time application in environmental water samples and living cells

Dhanapal Jothi^a, Sathishkumar Munusamy^b, Selin Manojkumar^a, Saravanan Enbanathan^a and Sathiyanarayanan KulathuIyer^a*

^aDepartment of Chemistry, School of Advanced Sciences and Vellore Institute of Technology,

Vellore-632014, India. *E-mail: sathiya kuna@hotmail.com

^bInstitute of chemical biology and nanomedicine, State key laboratory of chemo/Bio-sensing

and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University,

Changsha 410082, P.R.China. E-mail: pra3sat@gmail.com

Table of contents

Fig S1 ¹ H NMR spectra of BID	S3
Fig S2 ¹³ C NMR spectra of BID	S 3
Fig S3 HRMS spectra of BID and BID +CN-	S4-S5
Fig S4 UV-vis absorption and photoluminescence properties of BID in toluene solvent	t;
excitation wavelength is 408nm.	S5
Fig S5 The Lippert-Mattaga plot for BID showing the Stokes shift versus orientation	
polarizability.	S6
Fig S6 Linear plot of BID + CN^{-} . The calculated limit of detection of 5.97 nM.	S6
Fig S7 The effect of salt (a, b) on the normalized fluorescence intensity of BID and	
BID+CN ⁻ .	S7
Fig S8 IR spectra of BID and BID +CN-	S7
Fig S9 The entire geometry optimizations structure of BID and BID+CN ⁻ determined b	у
DFT/B3LYP methods	S8
Table S1 Oscillator strengths of important transitions for the BID and $BID + CN^{-}$ deter	mined
by DFT/B3LYP methods.	S8

Fig S10 Quantitative calibration plot results for BID and incremental addition of CN-	(2-10
μ M) for BID-CN ⁻ samples in D ₂ O.	S9
Table S2 Results of CN ⁻ readings in DMSO samples.	S9
Fig S11 Cytotoxicity assay of sensor probe BID	S10
Table S3 Comparison of LOD of CN- detection reported in recent papers.S	510-S11

Fig S1 ¹H NMR spectra of BID.

Fig S2¹³C NMR spectra of BID.

Fig S3 HRMS spectra of BID and BID +CN-.

Fig S4 UV-vis absorption and photoluminescence properties of **BID** in toluene solvent excitation wavelength is 408nm.

Fig S5 The Lippert-Mattaga plot of BID showing the Stokes shift versus orientation polarizability.

Fig S6 Linear plot of BID + CN⁻. The calculated limit of detection of 5.97 nM.

Fig S7 The effect of salt (a, b) on the normalized fluorescence intensity of BID and BID+CN⁻.

Fig S8 IR spectra of BID and BID +CN-.

Fig S9 The entire geometry optimizations structure of **BID** and **BID**+**C**N⁻ determined by DFT/B3LYP methods.

Table S1	Oscillator s	strengths o	f important	transitions	for the B	ID and l	BID + CN-	determined
by DFT/I	B3LYP met	hods.						

	$\lambda \max(nM)$	Oscillatory	ΔE , Energy(eV)	Selected major
Entry		strength		transitions
	406.01	0.6990	18.5502	H→ L (46%)
	369.07	0.0152	18.2996	$H \longrightarrow L_1(45\%)$
BID	358.11	0.3577	18.2275	$H_1 \longrightarrow L (44\%)$
	334.77	0.3059	18.1976	$H \longrightarrow L_2(44\%)$
	293.94	0.3140	17.3404	$H_2 \longrightarrow L_2 (40\%)$
	265.85	0.1932	7.8540	H → L ₃ 16%)
	298.45	0.0034	15.8748	H₄→ L (34%)
	345.19	0.0015	6.7614	$H_3 \longrightarrow L_1(12.3\%)$
	355.94	0.0005	3.5042	$H \longrightarrow L(6.7\%)$
BID+ CN-	355.94	0.0005	8.2374	$H_2 \longrightarrow L (18.2\%)$
	360.29	0.0001	4.6482	$H_1 \longrightarrow L_1 (11.6\%)$
	599.36	0.0076	2.7380	$H_4 \longrightarrow L(4.1\%)$
	421.60	0.0005	2.9510	$H_1 \rightarrow L_4 (4.7\%)$
	415.73	0.0026	3.0509	$H_5 \rightarrow L_2(5.0\%)$

Fig S10 Quantitative calibration plot results for BID and incremental addition of CN^{-} (2-10 μ M) for BID- CN^{-} samples in DMSO.

Sample	Spiked (µM)	Found $(X^a \pm SD^b) (\mu M)$	Recovery (%)	RSD ^c (%)
DMSO	2	1.979 ± 0.007	99.3	0.17
	4	3.988 ± 0.006	99.6	0.19
	6	6.013 ± 0.004	98.4	0.29

Table S2 Results of CN⁻ readings in DMSO samples.

Fig S11 Cytotoxicity assay of sensor probe BID.

Table S3

Comparison of LOD of CN⁻ detection reported in recent papers.

S.No	Reported Probe	LOD	Reference
1	Naphthalimide based probes	1.7 µM	RSC Adv. 6 (2016) 33031-33035
2	Naphthylamide dye	7.7 µM	Scientific reports. 10 (2017) 41598-13325
3	Diethylaminosalicylaldehyde-	3.39 µM	Dyes and Pigments. 174 (2019) 108049
	Substituted based		
4	Coumarin based sensor probe	2.07 µM	NJC. 43 (2019) 16796-16800.
5	(4-(2-(4-(diethylamino)phenyl)-	3.2 µM	ACS OMEGA. 5 (2020) 32507-32514
	4-methyl-5-oxo-4,5		
	dihydrothieno pyridin-7-		
	yl)phenyl 2,4-		
	dinitrobenzenesulfonate		
6	Peptoid based	6.28 µM	ACS Applied Bio Materials. 3 (2020) 6039- 6048
7	Naphthalene based sensor probe	1.1 µM	Chemcomm. 50 (2014) 12234
8	quinoline-indolium-based sensor	3.5 µM	NJC. 42 (2018) 5367–5375
	probe		
9	Aminomalenonitrile based	7.49 nM	Org. Biomol. Chem., 12 (2014) 479
	sensor probes		
10	Copper (II) complex of azo-dye	2.5 µM	Spectrochimica Acta part A 10 (2017) 1016

19	benzothiazole-based	5.97nM	This work
18	1.3-indanedione based	1.7 µM	ACS Omega 2021, 6, 5287–5296
			(2019) 83–89
17	Azo salicylaldehyde based	1.95 µM	Inorganic Chemistry Communications 102
			118212
			Biomolecular Spectroscopy 234 (2020)
16	Imidazole based	5.3 μM	Spectrochimica Acta Part A: Molecular and
15	Disulfide Schiff base	250 μΜ	New J. Chem. 43 (2019) 13536–13544
			34
			Biomolecular Spectroscopy 217 (2019) 27-
14	Naphthoppyran based	7.56 µM	Spectrochimica Acta Part A: Molecular and
13	Phenylquinazolinone-based	40 µM	RSC Adv. 10 (2020) 44860–44875
			519
12	Indanedione based	9.4 µM	Sensors and Actuators B 233 (2016) 510-
			845-852
11	Diketodiphenylpyrrolopyrrole	171 µM	Sensors Actuators B Chem. 245 (2017)