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1. Materials and methods

1.1 General Experimental Procedures
All the chemicals and reagents employed were purchased at the highest commercial quality 
from Sigma Aldrich, except that (S)-α-acetolactic acid potassium salt was purchased from 
Toronto Research chemicals (TRC). All chemicals and reagents were used without further 
purification. Synthetic genes were provided by Genscript Biotech.

Proton nuclear magnetic resonance (1H NMR) spectra and carbon nuclear magnetic 
resonance (13C NMR) were recorded on Bruker AVANCE III HD 400 MHz (Ascend™ 9.4 
Tesla) or Bruker AVANCE III HD 600 MHz (Ascend™ 14.1 Tesla) with Prodigy TCI™ 
cryoprobe. Chemical shifts for protons are reported in parts per million scale (δ scale) 
downfield from tetramethylsilane (TMS) and are referenced to residual protium in the NMR 
solvents, CD3OD δ3.31 and CDCl3 δ7.26 (Goss Scientific). Data are presented as follows: 
chemical shift, abbreviations for NMR data multiplicity are s = singlet, d = doublet, t = triplet, q 
= quartet, m = multiplet, br = broad, integration and coupling constant in Hz. High-Resolution 
Electrospray Ionisation Mass Spectrometry (HR-ESIMS) was measured by LTQ Orbitrap 
Thermo Scientific MS system coupled to a Thermo Instrument HPLC system (Accela PDA 
detector, Accela PDA autosampler and Accela Pump). The absorbance readings were 
measured using UV-vis spectrophotometer (Jenway 6300/05/20D).

1.2 Protein expression of recombinant MtKARI-II
The synthetic pET28-mycoKARI plasmid was transformed into E. coli BL21 (DE3) competent 
cells by heat shock. Single colonies were grown overnight in Luria-Bertani (LB) broth (1% 
tryptone, 0.5% yeast extract, 1% NaCl) (5 mL) containing kanamycin (50 µg/mL). The 
overnight culture was transferred to fresh LB medium (500 mL) supplemented with kanamycin 
(50 µg/mL) and cultivated at 37 °C until the cell density reached an OD600 of 0.6. IPTG was 
added to a final concentration of 1 mM to induce protein expression. Cells were grown for 16 
hs at 16 °C and then harvested by centrifugation at 4 °C. 

1.3 Purification of His6-MtKARI-II
The cells pellets were resuspended in ice-cold lysis buffer (PBS buffer with 10 mM imidazole, 
pH 7.4), and further disrupted by Ultrasonic Homogenizer JY92-IIN. Then the supernatant of 
cell debris was loaded onto Ni-NTA-affinity column. Bound proteins were eluted with the same 
PBS buffer containing 200 mM imidazole. The desired elution fractions were combined and 
concentrated using a Centrifugal Filter Unit (Millipore). The purity and size of the proteins were 
confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 
analysis. Protein concentrations measurements were performed by the Colibri microvolume 
spectrometer (Titertek Berthold) using protein’s molecular weight and extinction coefficient. 

1.4 Enzymatic kinetic studies

1.4.1 Reductosiomerase activity
Reductoisomerase activity measurements for the enzyme were performed as described by 
Tyagi et al.1 at room temperature in 0.1 M PBS buffer (pH 7.4) containing 0.22 mM NADPH, 
10 Mm MgCl2 and various concentrations of (S)-α-acetolactic acid potassium salt 2 in a total 
volume of 250 µl. The consumption of NADPH was measured by the change in absorbance 
at 340 nm monitored by a Genova (JENWAY) spectrophotometer.
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1.4.2 Reductase activity
Reductase activity of MtKARI-II was carried out with the same procedure as for the 
reductoisomerase activity 1 except chemically synthesised 3 used as the substrate. NADPH 
consumption was measured by the changes in absorbance at 340 nm monitored by a Genova 
(JENWAY) spectrophotometer.

1.4.3 Reverse isomerase activity
Reverse isomerase activity of MtKARI-II was measured in a water bath at 37 ⁰C in 0.1 M 
potassium phosphate buffer (pH 8.0) containing 10 mM MgCl2 and 100 µM HMKB. After 30 
min, the reaction was stopped by addition of 0.5% (v ⁄ v) H2SO4 1and 2-acetolactate was 
estimated using creatine and a-naphthol method 2 by measuring the formed acetoin after one 
hour incubation at 530 nm monitored by Genova (JENWAY) spectrophotometer.

1.4.4 Kinetics calculations
Nonlinear regression of obtained absorbance data was fitted into the Michaelis–Menten 
equation, which allowed the calculation of the values for Km and Vmax values.
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2. Synthesis of sodium 3-hydroxy-3-methyl-2-oxobutanoate (HMKB) 3

2.1 Literature synthesis attempts for HMKB 3
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Scheme S1. Synthesis attempts for the synthesis of 3. (1) bromination of ethyl-3-methyl-2-oxobutyrate 
7, followed by hydrolysis to yield 3. 3 (2) estification of dichloroacetyl chloride 8, followed by 
rearrangement under basic conditions to provide 3. 4

2.2 Synthesis of isopropyl dichloroacetate 9
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Isopropyl alcohol (IPA) (20g,0.27mol, 2 eq) was added to the flask (50 ml) and CHCl2COCl 8 
(16.2g, 0.135mol, 1 eq) was added dropwise in an acetone/dry ice bath (-50⁰C). After an hour, 
the mixture was warmed to rt and left to stir for another two hrs. The solvent was washed with 
brine (25 ml) and water (25 ml). EtOAc (25 ml) were added for layer separation and compound 
extraction. The EtOAc layer was washed with 5% NaHCO3 (25 ml), and then brine (10 ml). 
The obtained organic layers were dried over MgSO4. The remaining EtOAc was distilled to 
yield the ester, 9.
1H NMR (400 MHz, DMSO-d6) δ 6.79 (s, 1H), 4.03 (m, J = 7.1 Hz, 1H), 1.27 (d, J = 6.3 Hz, 
7H). The other peaks are ethyl acetate solvent traces. 13C NMR (400 MHz, Chloroform-d) δ 
164.00, 71.90, 64.61, 21.32. IR: (C=O) 1758 cm-1. RESIMS calculated for C5H8Cl2O2

+ [M+H] + 
170.0170, found 170.0174. Yield 9: 80.30% (18.63 g)

2.4 Synthesis of 2-Chloro-3,3-dimethyloxianecarboxylic acid, 1-methylethyl ester 10

Cl

O

O

OCl

Cl

O

O
+

O K-t-amylate

Toluene -78oC,1h
rt,1h

9 10
39%

Compound 9 (2 g, 0.011 mol) was dissolved in a mixture of dry acetone (0.8ml, 0.01 mol) and 
dry toluene (0.9 ml, 0.01mol) in a three-necked flask (25 ml) under argon protection. The 
reaction mixture was then cooled to -78ᵒC in the acetone/dry ice bath. Potassium K-t-amylate 
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(1.44g, 0.011mol dissolved in 2 ml dry toluene) was slowly added under stirring. After an hour, 
the mixture was warmed to rt and left to stir for another one hr. The mixture was quenched 
with brine (2.5 ml). the organic layer was washed with 50% brine (2.5 ml) and brine (2.5 ml) 
and dried with MgSO4 before evaporation under reduced pressure.
1H NMR (400 MHz, DMSO-d6) δ 5.67 (s, 1H), 5.02 (hept, J = 6.3 Hz, 1H), 1.43 (s,6H), 1.28(d, 
J=6.3 Hz,3H),1.15(s,3H).13C NMR (400 MHz, Chloroform-d) 19.99, 21.52, 64.60, 70.83, 
80.03,164.14 .IR: (C=O) x2: 1718.7,1739.1 cm-1, (OH) 3506.1 cm-1. RESIMS calculated for 
C8H13Cl2O2

+ [M+H] + 193.0553, found: 193.0557. Yield 10: 39.11% (0.88g).

2.5 Synthesis of sodium 3-hydroxy-3-methyl-2-oxobutanoate 3
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To a solution of compound 10 (0.6 g, 0.0031 mol) in tetrahydrofuran (30 ml, 0.36mol), 1 N 
NaOH (9 ml, 0.339 mol) was added. After 1.5-hr stirring, the reaction mixture was washed with 
EtOAc (10 ml) twice. The aqueous phase was collected and freeze dried. 
1H NMR (400 MHz, DMSO-d6) δ 1.45 (s, 6H). 13C NMR (400 MHz, DMSO-d6) δ 
209.95,177.34,25.83. HRESIMS calculated for C5H8O4

- [M+H]-131.0350, found 131.0355. 
Yield 3: 72.46% (0.5g).
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3. Supplementary Figures

Figure S1. SDS-PAGE Analysis of recombinant N-His6-tagged MtKARI-II. 
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Figure S2. UHPLC-HR-ESI-MS analysis of the production of R-2,3-dihydroxyisovalerate (m/z 
133.0516 [M-H], exact mass: 133.0505) in the assay of MtKARI-II.
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Figure S3.  1H-NMR of isopropyl dichloroacetate 9 (600MHz, DMS0-d6). 
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Figure S4.  13 C-NMR of isopropyl dichloroacetate 9 (400MHz, Chloroform-d)
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Figure S5. 1H-NMR of 2-chloro 3,3 dimethyloxianecarboxylic acid, 1-methylethyl ester 10 
(600MHz, DMS0-d6) (Compound 10 was found to be sensible to water, often giving the 
hydrolysed intermediate 11. The NMR spectrum of the crude compound is shown above 
containing some unidentified impurities). 
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Figure S6.13 C-NMR of 2-chloro-3,3 dimethyloxianecarboxylic acid, 1-methylethyl ester 10 
(600MHz, DMSO-d6) (Compound 10 was found to be sensible to water, often giving the 
hydrolysed intermediate 11. The NMR spectrum of the crude compound is shown above 
containing some unidentified impurities).
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Figure S7. 1H-NMR of sodium 3-hydroxy-3-methyl-2-oxobutanoate 3 (600MHz, DMSO-d6).
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Figure S8. 13 C-NMR of sodium 3-hydroxy-3-methyl-2-oxobutanoate 3 (600MHz, DMSO-d6).
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Figure S9. UHPLC-HR-ESI-MS analysis of an ion corresponding to the chemically synthesized 3 
(m/z 131.0350 [M-H). 
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Figure S10. Derivatization of 3 using 2,4-dinitrophenylhydrazine (DNPH) as the derivative agent. 5
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Figure S11. A colorimetric assay of the presence of acetolactate. (1) Decarboxylation of 
acetolactate under the acidic conditions to form acetoin, followed by spontaneous oxidation of 
diacetyl. (2) diacetyl reacts with creatine and 1-naphtol to form the red dye which can be 
monitored at 530 nm by a UV-Vis spectrometer. 2 
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Figure S12. The calibration curve of standard acetoin using the colorimetric assay.



Supplementary material

 
Figure S13. UHPLC-HR-ESI-MS analysis of an ion (m/z 218.1146 [M-]) corresponding to the 
heterocyclic product in the acetoin colorimetric assay.
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Figure S13. (A) Sequence alignment 6 of MtKARI-II and E.coli (PDB no. 1YRL) where the 
green boxes represent the NADPH binding site (C45-Q48-R-68-R76-S78-D108-D113) and 
the red boxes represent the Acetolactate binding site (H123-K155-E213-D217-E221-E389-
E393-S414). (B) Protein modelling of MtKARI-II with NADPH and acetolactate bound for 
homology determination with E.coli (PDB no. 1YRL), showing a 100% confidence and a 86% 
identity.
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4. Supplementary table

Table S1. Steady-state parameter comparison comparison between MtKARI-II and 
other characterizated KARIs from different microorganisms. 

Microorganism NADPH kinetics NADH kinetics
MtKARI-II* kcat = 74±0.2 s-1 

KM = 59.03 ± 0.14 µM
kcat = 46.6 ± 3.8 s-1

KM = 318.72 ± 42 µM 
Escherichia coli (strain K12)* 7 kcat = 7.2 min-1

KM = 0.04 mM
kcat = 0.11 min-1

KM = 0.206 mM
Mycobacterium tuberculosis 8 KM = 7.7 µM

kcat = 1.4 s-1 
Not measured.

Slackia exigua (strain ATCC 
700122 / DSM 15923 / CIP 
105133 / JCM 11022 / KCTC 
5966 / S-7)  9

kcat = 0.8 s-1

KM = 1 µM
kcat = 0.41 s-1 
KM = 45 µM

Lactococcus lactis subsp. lactis 
(strain IL1403)  9

kcat = 0.8 s-1

KM = 13 µM
kcat = 0.1 s-1

KM = 285 µM
Metallosphaera sedula (strain 
ATCC 51363 / DSM 5348 / JCM 
9185 / NBRC 15509 / TH2)  10

kcat = 0.07 s-1

KM = 31 µM
kcat = 0.06 s-1

KM = 24 µM

Archaeoglobus fulgidus (strain 
ATCC 49558 / VC-16 / DSM 
4304 / JCM 9628 / NBRC 
100126) 10

kcat = 0.04 s-1

KM = 26 µM
kcat = 0.1 s-1

KM = 5 µM

Hydrogenobaculum sp. (strain 
Y04AAS1)  10

kcat = 0.12 s-1

KM = 46 µM
kcat = 0.12 s-1

KM = 39 µM
Syntrophomonas wolfei subsp. 
wolfei (strain DSM 2245B / 
Goettingen)  10

kcat = 0.22 s-1

KM = 44 µM
kcat = 0.28 s-1

KM = 57 µM

Thermacetogenium phaeum 
(strain ATCC BAA-254 / DSM 
26808 / PB)  10

kcat = 0.25 s-1

KM = 40 µM
kcat = 0.46 s-1

KM = 1 µM

Corynebacterium glutamicum 
11

kcat = 13.05 min-1

KM= 164 µM
kcat = 0.16 min-1

KM= 53 µM
KARI with stars (*) belong to the Class II KARIs family, the rest are from Class I KARIs.
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