Supporting Information

A mitochondria targetable near-infrared fluorescence probe for GSH visual biological detection

Mingxuan Jia ^a, Liangnian Wei ^b, Yuxun Lu ^a, Ruqiu Zhang ^{c, d}, Qiuling Chen ^a, Wenjing Xia ^{c, d}, Ye Liu ^b, Fan Li ^d and Ying Zhou ^{a*}

^a College of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.
^b Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, P. R. China.

^c School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, P. R. China.
^d Department of Pathology and Pathophysiology, Medical College, Yunnan University, Kunming 650091, P. R. China.

Email address: yingzhou@ynu.edu.cn

Table of contents

- 1. Characterization of probe JGP
- 2. ESI-MS test for mechanism of the reaction between JGP and GSH
- 3. Time-dependent fluorescence intensity test of probe JGP to GSH
- 4. pH Test
- 5. MTT Cytotoxicity Experiment

1. Characterization of probe JGP

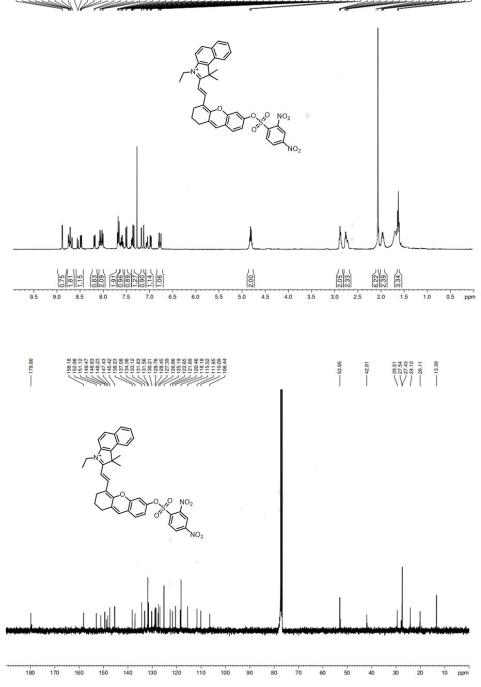


Fig. S1. ¹H NMR and ¹³C NMR spectrum of JGP (CDCl₃).

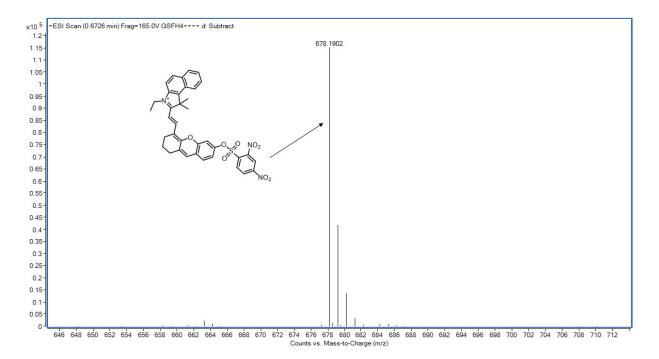


Fig. S2. HRMS-ESI spectrum of JGP.

2. ESI-MS test for mechanism of the reaction between JGP and GSH

JGP was dissolved in a phosphate buffer (CH₃CH₂OH:PBS, V:V=7.3, pH=7.4) and final concentration of JGP was 10 μ M. Glutathione solution was added in to the solvent system (final concentration of GSH was 20 μ M). After reacting for 5min, the reaction solvent was carried out for HRMS-ESI test (positive ion mode) without any further purification.

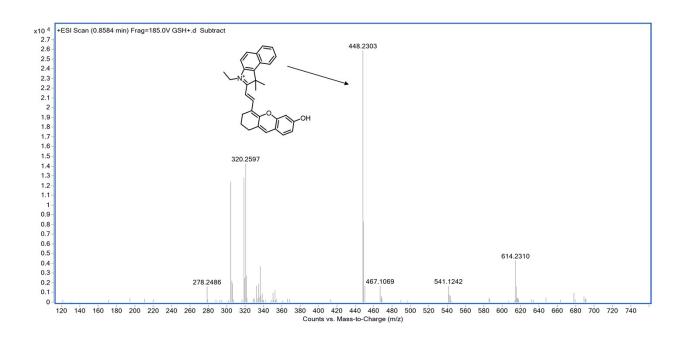
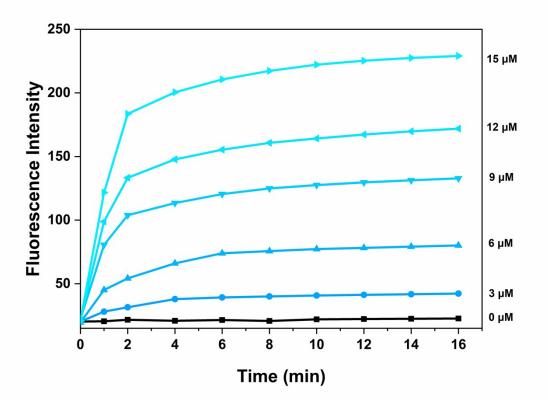



Fig. S3. HRMS-ESI spectrum of the reaction result between JGP and GSH.

3. Time-dependent fluorescence intensity test of probe JGP to GSH

Fig. S4. Time-dependent fluorescence intensity of probe **JGP** (20 μ M) after the addition of different concentration of GSH (0, 3, 6, 9, 12, and 15 μ M) in PBS buffer (5mL, pH 7.4) (λ_{ex} =680 nm, λ_{em} =730 nm).

4. pH Test

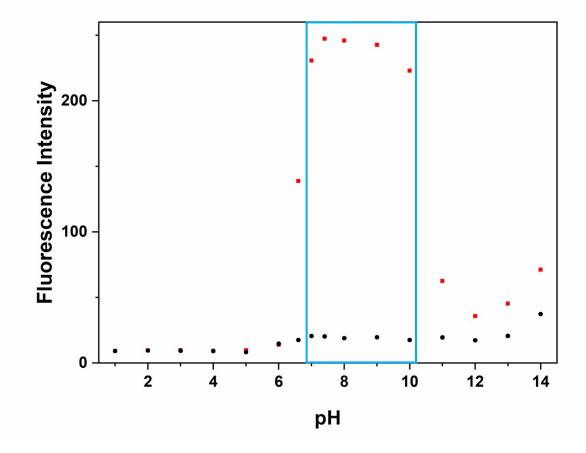


Fig. S5. pH effects on fluorescence intensity of probe JGP (dark points, 20 μ M) and probe JGP (20 μ M) + GSH (red squares, GSH concentration=15 μ M). (λ_{ex} =680 nm, λ_{em} =730 nm; reaction time: 5min).

5. MTT Cytotoxicity Experiment

HL-60 (leukemia cells) A-549 (lung cancer cells), SMMC-7721 (hepatoma cells), MCF-7 (breast cancer cells), SW-480 (human colon cancer cells), and BEAS-2B (human normal lung epithelial cells) were formulated into single-cell suspensions in culture medium (DMEM) containing 10 % fetal bovine serum. Then the prepared cell suspension was inoculated into 96 well plates at 4000 cells per well. The volume of the culture medium per well was 100 μ L. The adherent cells were inoculated for 12 to 24 h in advance. **JGP** dissolved in DMSO was added to the wells to get a concentration gradient (1.25, 2.5, 5 and 10 μ M) and a final volume of 200 μ L (three control groups for each treatment). After culturing for 24 h at 37 °C, the cultured cells adhered. Then 20 μ L of 3-(4, 5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2- (4-sulfopheny)-2H-tetrazolium (MTS) solution and 100 μ L of the culture solution were added to each well, and three blank wells were set as the control groups. In order to make the reaction complete, the plate was incubated for 2-4 h and then tested by a multifunction microplate reader (MULTISKANFC).

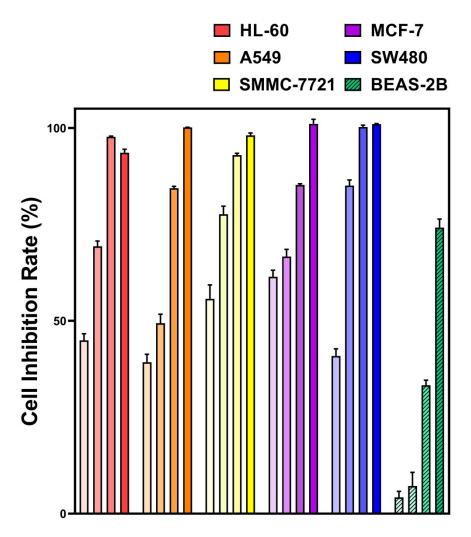


Fig. S6. Comparison of cell inhibition rates against five different tumor cells and BEAS-2B cells (concentration gradient from left to right: 1.25μ M, 2.5μ M, 5μ M, 10μ M).