Non-metal-mediated *N*-Oxyl radical (TEMPO)-induced acceptorless dehydrogenation of *N*-heterocycles via electrocatalysis

Huiqing Hou,[†]a Xinhua Ma,[†]a, Yaling Ye,^a Mei Wu,^a Sunjie Shi,^a Wenhe Zheng,^b Mei Lin,^a Weiming Sun ^{*}a and Fang Ke^{*}a

- ^{a.} Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China Tel.: +86-0591-22862016; fax: +86-0591-22862016; Email: kefang@mail.fjmu.edu.cn
- b. The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China.

Supporting information

1. General information	3
2. General procedure for the catalytic reactions	3
3. Cyclic voltammetry experiment	3
4. Characterization data	4
5. References	12
6. ¹ H NMR and ¹³ C NMR spectra for the products	13
7. Optimized Structures and Cartesian Coordinates	53
8. Computational methods	67

1. General information

All reagents were purchased from commercial sources and used without further purification. All solvents were dried in a standard manner. Reactions were monitored by TLC on silica gel plates. Column chromatography was performed over silica gel (200-300 mesh) and petroleum ether/ethyl acetate. Shanghai chenhua CHI600E electrochemical workstation was used in the standard configuration as delivered, including proprietary software. Beijing Perfectligt PCX50C Discover was used in the reaction system. All products were characterized by NMR. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 101 MHz (Bruker DPX) with CDCl₃ and DMSO-d₆ as solvent. Chemical shifts are reported in ppm using TMS as internal standard. NMR by the services provided at the Shandong Liaocheng University. HPLC were recorded on an SHIMDZU LC-20A instrument with a HP5-MS 30 m x 0.25 mm capillary apolar columns.

2. General procedure for the catalytic reactions

o-phenylenediamine **1a** (54.1 mg, 0.5 mmol), benzyl alcohol **2a** (86.5 mg, 0.8 mmol), TEMPO (0.1 mmol), TBAPF₆ (0.15 M), MeCN/H₂O (v/v=1:2, 3 ml) were added into a 25-mL three-necked flask equipped with a platinum anode and cathode (plate, 1.0 cm \times 1.0 cm). The reaction mixture were stirred for 3 h at a constant current of 80 mA at ambient temperature. After completion of the reaction (monitored by TLC), the reaction mixture was purified by column chromatography on silica gel (PE/DCM) to afford pure product **3aa**.

o-aminobenzamide **4a** (68.0 mg, 0.5 mmol), benzyl alcohol **2a** (86.5 mg, 0.8 mmol), 4-oxo-TEMPO (0.1 mmol), TBAPF₆ (0.15 M), MeCN/H₂O (v/v=1:2, 3 ml) were added into a 25-mL three-necked flask equipped with a platinum anode and cathode (plate, 1.0 cm \times 1.0 cm). The reaction mixture were stirred for 3 h at a constant current of 80 mA at ambient temperature. After completion of the reaction (monitored by TLC), the reaction mixture was purified by column chromatography on silica gel (PE/DCM) to afford pure product **5aa**.

3. Cyclic voltammetry experiment

Cyclic voltammograms were measured using Shanghai chenhua CHI600E electrochemical workstation with electrochemical analysis software, using a conventional three-electrode cell. The working electrode was a Pt disk working electrode, the counter and reference electrodes consisted of a Pt wire and a SCE, respectively. The Pt disk working electrode was polished with a polishing cloth before each measurement. The concentration of all tested compounds was 1 mmol L⁻¹. The scan rate was 0.1 V/s.

Figure1. Cyclic voltammograms

4. Characterization data

2-phenyl-1H-benzo[d]imidazole (3aa)¹

¹H NMR (400 MHz, DMSO) δ 13.10 (s, 1H), 8.21 – 8.15 (m, 2H), 7.80 – 7.45 (m, 6H), 7.23 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 153.2, 143.0, 130.7, 130.2, 129.5, 127.1, 123.0, 120.5, 118.4, 114.5, 112.1. **MS** [EI, m/z]: 194 [M⁺].

2-(p-tolyl)-1H-benzo[d]imidazole (3ab)⁴

¹H NMR (400 MHz, DMSO) δ 12.78 (s, 1H), 8.20 – 8.15 (m, 2H), 7.58 – 7.45 (m, 4H), 7.39 (s, 1H), 7.03 (dd, J = 8.1, 1.6 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 151.4, 131.8, 130.8, 130.1, 129.4, 126.8, 124.0, 21.8. **MS** [EI, m/z]: 208 [M⁺].

2-(4-methoxyphenyl)-1H-benzo[d]imidazole (3ac)¹

¹H NMR (400 MHz, DMSO) δ 12.74 (s, 1H), 8.14 (d, *J* = 8.4 Hz, 2H), 7.69 – 7.46 (m, 2H), 7.15 (dd, *J* = 24.4, 7.5 Hz, 4H), 3.85 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.1, 151.9, 144.4, 135.5, 128.5, 123.2, 122.5, 121.9, 119.0, 114.9, 111.5, 55.8. **MS** [EI, m/z]: 224 [M⁺].

2-(2-methoxyphenyl)-1H-benzo[d]imidazole (3ad)⁵

¹H NMR (400 MHz, DMSO) δ 12.52 (s, 1H), 8.17 (dd, J = 8.0, 1.6 Hz, 1H), 7.87 – 7.78 (m, 2H), 7.76 (dt, J = 5.0, 1.9 Hz, 2H), 7.53 (t, J = 1.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.17 (d, J = 1.7 Hz, 1H), 3.87 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 159.8, 152.5, 149.1, 135.1, 134.5, 130.2, 128.0, 127.1, 126.3, 121.5, 120.6, 118.1, 113.0, 55.9. **MS** [EI, m/z]: 224 [M⁺].

2-(4-fluorophenyl)-1H-benzo[d]imidazole (3ae)⁶

¹H NMR (400 MHz, DMSO) δ 12.92 (s, 1H), 8.27 – 8.20 (m, 2H), 7.71 – 7.64 (m, 1H), 7.57 – 7.50 (m, 1H), 7.45 – 7.38 (m, 2H), 7.21 (td, *J* = 7.1, 1.7 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 164.8, 162.3, 150.9, 144.2, 135.5, 129.2, 127.3, 123.0, 122.2, 119.3, 116.6, 116.4, 111.8. **MS** [EI, m/z]: 212[M⁺]. **2-(4-nitrophenyl)-1H-benzo**[*d*]imidazole (3af)²

$$\mathbb{N}$$

¹H NMR (400 MHz, DMSO) δ 13.29 (s, 1H), 8.47 – 8.36 (m, 4H), 7.73 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.27 (qd, J = 7.6, 3.6 Hz, 2H).¹³C NMR (101 MHz, DMSO) δ 149.5, 148.3, 144.3, 136.5, 135.7, 129.4, 127.9, 124.7, 124.0, 123.7, 122.8, 119.9, 112.3. **MS** [EI, m/z]: 239 [M⁺].

2-(4-chlorophenyl)-1H-benzo[d]imidazole (3ag)¹

¹H NMR (400 MHz, DMSO) δ 12.99 (s, 1H), 8.20 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 4H), 7.23 (d, *J* = 6.4 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 150.6, 144.2, 135.0, 129.5, 128.6, 123.6, 119.5, 113.7. **MS** [EI, m/z]: 228 [M⁺].

2-(4-bromophenyl)-1H-benzo[d]imidazole (3ah)³

¹H NMR (400 MHz, DMSO) δ 13.09 (d, J = 12.4 Hz, 1H), 8.21 – 8.15 (m, 2H), 7.70 (s, 1H), 7.65 – 7.49 (m, 4H), 7.35 (d, J = 7.8 Hz, 1H).¹³C NMR (101 MHz, DMSO) δ 153.1, 145.8, 143.4, 130.7, 130.2, 129.5, 127.1, 125.7, 125.2, 121.7, 121.0, 114.4, 113.6. **MS** [EI, m/z]: 272 [M⁺].

2-(2-fluorophenyl)-1H-benzo[d]imidazole (3ai)⁷

¹H NMR (400 MHz, DMSO) δ 12.58 (s, 1H), 8.26 (td, *J* = 7.8, 1.9 Hz, 1H), 7.66 (dq, *J* = 6.8, 3.4 Hz, 2H), 7.57 (dddd, *J* = 8.7, 7.2, 5.3, 1.8 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.24 (dp, *J* = 8.0, 4.0 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 161.2, 158.7, 146.9, 132.4, 130.7, 125.6, 122.8, 118.6, 117.1, 116.9. **MS** [EI, m/z]: 212 [M⁺].

2-(3-fluorophenyl)-1H-benzo[d]imidazole (3aj)⁷

¹H NMR (400 MHz, DMSO) δ 13.11 (s, 1H), 8.07 (d, J = 7.8 Hz, 1H), 8.03 – 7.99 (m, 1H), 7.64 (dt, J = 6.0, 2.9 Hz, 2H), 7.59 (dd, J = 8.0, 6.0 Hz, 1H), 7.33 (td, J = 8.6, 2.6 Hz, 1H), 7.24 (dt, J = 7.2, 3.6 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 164.17, 161.75, 150.50, 150.47, 133.05, 132.97, 131.6, 131.5, 123.0, 122.9, 117.1, 116.9, 113.7, 113.4. **MS** [EI, m/z]: 212 [M⁺].

2-(2-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (3ak)⁸

¹H NMR (400 MHz, DMSO) δ 12.81 (s, 1H), 8.10 – 8.04 (m, 2H), 7.67 – 7.60 (m, 1H), 7.51 (d, J = 7.4 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.19 (dd, J = 7.7, 4.3 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 151.3, 139.5, 129.5, 127.4, 126.4, 122.3, 118.7, 111.1, 20.9. **MS** [EI, m/z]: 262 [M⁺].

2-(pyridin-2-yl)-1H-benzo[d]imidazole (3al)³

¹H NMR (400 MHz, DMSO) δ 13.09 (s, 1H), 9.37 (dd, J = 2.4, 0.8 Hz, 1H), 8.69 (dd, J = 4.8, 1.7 Hz, 1H), 8.51 (dt, J = 8.0, 2.0 Hz, 1H), 7.72 (d, J = 7.7 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.24 (h, J = 7.0, 6.5 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 151.0, 149.3, 148.0, 144.2, 135.5, 134.2, 126.7, 124.5, 123.5, 122.4, 119.57, 112.0. **MS** [EI, m/z]: 195 [M⁺].

2-(thiophen-2-yl)-1H-benzo[d]imidazole (3am)¹

¹H NMR (400 MHz, DMSO) δ 12.93 (s, 1H), 7.84 (dd, J = 3.7, 1.2 Hz, 1H), 7.72 (dd, J = 5.0, 1.2 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.27 – 7.15 (m, 3H). ¹³C NMR (101 MHz, DMSO) δ 147.5, 144.1, 135.2, 134.2, 129.2, 128.7, 127.2, 123.1, 122.2, 119.0, 111.6. **MS** [EI, m/z]: 200 [M⁺].

2-benzyl-1H-benzo[d]imidazole (3an)²

¹H NMR (400 MHz, DMSO) δ 12.27 (s, 1H), 7.59 – 7.38 (m, 2H), 7.36 – 7.29 (m, 4H), 7.23 (ddd, J = 8.6, 5.3, 2.4 Hz, 1H), 7.15 – 7.08 (m, 2H), 4.17 (s, 2H). ¹³C NMR (101 MHz, DMSO) δ 154.0, 138.1, 129.2, 128.9, 127.0, 121.7, 35.4. **MS** [EI, m/z]: 208 [M⁺].

2-(naphthalen-2-yl)-1H-benzo[d]imidazole (3ao)³

¹H NMR (400 MHz, DMSO) δ 13.08 (s, 1H), 8.75 (d, J = 1.6 Hz, 1H), 8.33 (dd, J = 8.6, 1.8 Hz, 1H), 8.11 – 8.04 (m, 2H), 8.01 – 7.98 (m, 1H), 7.68 (s, 1H), 7.64 – 7.58 (m, 3H), 7.24 (dt, J = 6.6, 3.2 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.64 – 7.58 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 7.24 (dt, J = 6.6, 3.2 Hz), 8.01 – 7.98 (m, 2H), 8.01 – 7.98 (m

2H).¹³C NMR (101 MHz, DMSO) δ 151.7, 133.9, 133.3, 129.0, 128.9, 128.3, 128.1, 127.6, 127.4, 126.3, 124.4, 119.6. **MS** [EI, m/z]: 244[M⁺].

5-nitro-2-phenyl-1H-benzo[d]imidazole (3ap)⁹

¹H NMR (400 MHz, DMSO) δ 13.55 (s, 1H), 8.51 (s, 1H), 8.24 – 8.17 (m, 2H), 8.14 – 8.06 (m, 1H), 7.74 (d, J = 18.9 Hz, 1H), 7.64 – 7.52 (m, 3H). ¹³C NMR (101 MHz, DMSO) δ 155.9, 143.2, 140.3, 131.4, 129.6, 129.5, 127.5, 118.6, 115.3, 112.2, 108.4. **MS** [EI, m/z]: 239 [M⁺].

5-chloro-2-phenyl-1H-benzo[d]imidazole (3aq)⁵

¹H NMR (400 MHz, DMSO) δ 13.09 (s, 1H), 8.22 – 8.13 (m, 2H), 7.70 (d, J = 20.4 Hz, 1H), 7.62 – 7.46 (m, 4H), 7.23 (d, J = 8.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 153.1, 134.2, 130.7, 130.2, 129.5, 127.1, 123.2, 120.6, 118.8, 112.9, 111.5.**MS** [EI, m/z]: 228 [M⁺].

5,6-dichloro-2-phenyl-1H-benzo[d]imidazole (3ar)⁴

¹H NMR (400 MHz, DMSO) δ 13.24 (s, 1H), 8.17 (d, *J* = 7.3 Hz, 2H), 7.84 (s, 2H), 7.56 (q, *J* = 8.0, 7.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.3, 131.0, 129. 8, 129.5, 127.2, 125.0, 120.5, 113.6. **MS** [EI, m/z]: 262 [M⁺].

5-methyl-2-phenyl-1H-benzo[d]imidazole (3as)²

¹H NMR (400 MHz, DMSO) δ 12.75 (d, *J* = 13.5 Hz, 1H), 8.20 – 8.14 (m, 2H), 7.57 – 7.45 (m, 4H), 7.33 (s, 1H), 7.03 (s, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 151.6, 142.5, 135.7, 132.3, 130.8, 130.1, 129.4, 126.8, 124.4, 123.7, 119.1, 111.5, 21.8. **MS** [EI, m/z]: 208 [M⁺]. **2-phenyl-1H-imidazo[4,5-b]pyridine (3at)**¹⁰

¹H NMR (400 MHz, DMSO) δ 13.55 (s, 1H), 8.34 (s, 1H), 8.25 (d, *J* = 7.0 Hz, 2H), 8.06 (s, 1H), 7.63 – 7.50 (m, 3H), 7.25 (dd, *J* = 8.0, 4.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 152.9, 149.9, 144.3, 131.0, 130.2, 129.5, 127.2, 126.8, 119.6, 118.6. **MS** [EI, m/z]: 195 [M⁺].

2-phenylquinazolin-4(3H)-one (5aa)¹¹

¹H NMR (400 MHz, DMSO) δ 12.49 (s, 1H), 8.17 (t, J = 8.1 Hz, 3H), 7.82 (t, J = 7.6 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.55 (q, J = 11.6, 10.7 Hz, 4H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 152.8, 149.2,

135.0, 133.2, 131.8, 129.1, 128.2, 127.9, 127.9, 127.0, 126.3, 121.4. **MS** [EI, m/z]: 222 [M⁺]. **2-(p-tolyl)quinazolin-4(3H)-one (5ab)**¹¹

¹H NMR (400 MHz, DMSO) δ 12.44 (s, 1H), 8.15 (dd, J = 8.0, 1.6 Hz, 1H), 8.12 – 8.08 (m, 2H), 7.83 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.73 (dd, J = 8.3, 1.6 Hz, 1H), 7.51 (ddd, J = 8.1, 7.1, 1.3 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 162.7, 152.7, 149.3, 141.9, 135.1, 130.4, 129.7, 128.2, 127.9, 126.9, 126.3, 121.4, 21.5. **MS** [EI, m/z]: 236 [M⁺].

2-(2,4-dimethylphenyl)quinazolin-4(3H)-one (5ac)¹²

¹H NMR (400 MHz, DMSO) δ 12.36 (s, 1H), 8.17 (dd, J = 7.9, 1.7 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.68 (d, J = 7.1 Hz, 1H), 7.56 – 7.50 (m, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.15 (d, J = 13.9 Hz, 2H), 2.37 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 162.3, 154.9, 149.3, 139.9, 136.5, 134.9, 131.9, 131.7, 129.6, 127.8, 127.0, 126.7, 126.2, 121.4, 21.3, 20.1. **MS** [EI, m/z]: 250 [M⁺].

2-(3-methoxyphenyl)quinazolin-4(3H)-one (5ad)¹³

¹H NMR (400 MHz, DMSO) δ 12.52 (s, 1H), 8.17 (dd, J = 7.9, 1.6 Hz, 1H), 7.87 – 7.73 (m, 4H), 7.56 – 7.50 (m, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.16 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 162.7, 159.8, 152.5, 149.2, 135.1, 134.5, 130.2, 128.0, 127.1, 126.3, 121.5, 120.6, 118.1, 113.0, 55.9. **MS** [EI, m/z]: 252 [M⁺].

2-(4-ethylphenyl)quinazolin-4(3H)-one (5ae)14

¹H NMR (400 MHz, DMSO) δ 12.45 (s, 1H), 8.17 – 8.11 (m, 3H), 7.84 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.73 (dt, J = 7.9, 1.0 Hz, 1H), 7.52 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.42 – 7.37 (m, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H).¹³C NMR (101 MHz, DMSO) δ 162.7, 152.7, 149.3, 148.1, 135.1, 130.6, 128.5, 128.3, 127.9, 126.9, 126.3, 121.4, 28.5, 157. **MS** [EI, m/z]: 250 [M⁺].

2-(2-fluorophenyl)quinazolin-4(3H)-one (5af)¹⁵

¹H NMR (400 MHz, DMSO) δ 12.55 (s, 1H), 8.18 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.86 (ddd, *J* = 8.5, 7.1, 1.6 Hz, 1H), 7.79 (td, *J* = 7.6, 1.8 Hz, 1H), 7.74 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.66 – 7.55 (m, 2H), 7.43 – 7.35

(m, 2H). ¹³C NMR (101 MHz, DMSO) δ 162.0, 161.3, 158.8, 150.4, 149.1, 135.1, 133.4, 133.3, 131.5, 131.5, 128.0, 127.5, 126.3, 125.1, 125.1, 122.8, 122.7, 121.6, 116.8, 116.5. **MS** [EI, m/z]: 240 [M⁺].

¹H NMR (400 MHz, DMSO) δ 12.82 (s, 1H), 8.12 (d, J = 2.5 Hz, 1H), 7.89 (dd, J = 8.8, 2.5 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H), 7.71 – 7.55 (m, 4H), 7.51 (td, J = 7.4, 1.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 160.9, 153.2, 147.8, 135.2, 134.0, 132.2, 131.9, 131.8, 131.4, 130.2, 130.1, 127.7, 125.4, 123.0. **MS** [EI, m/z]: 256 [M⁺].

2-(2-bromophenyl)quinazolin-4(3H)-one (5ah)¹⁵

¹H NMR (400 MHz, DMSO) δ 12.60 (s, 1H), 8.19 (dd, J = 8.0, 1.6 Hz, 1H), 7.86 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.78 (dd, J = 7.9, 1.4 Hz, 1H), 7.72 (d, J = 7.1 Hz, 1H), 7.65 (dd, J = 7.5, 1.9 Hz, 1H), 7.53 (dqd, J = 23.3, 7.9, 1.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 161.9, 153.8, 149.0, 136.4, 135.1, 133.1, 132.1, 131.2, 128.1, 127.9, 127.5, 126.3, 121.8, 121.4. **MS** [EI, m/z]: 300 [M⁺].

2-(4-fluorophenyl)quinazolin-4(3H)-one (5ai)¹⁵

¹H NMR (400 MHz, DMSO) δ 12.55 (s, 1H), 8.29 – 8.23 (m, 2H), 8.16 (dd, J = 7.9, 1.5 Hz, 1H), 7.84 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.74 (dd, J = 8.2, 1.1 Hz, 1H), 7.53 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.43 – 7.36 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 165.8, 163.3, 162.8, 152.0, 149.1, 135.1, 130.9, 130.8, 129.8, 127.8, 127.1, 126.3, 121.4, 116.2, 116.0. **MS** [EI, m/z]: 240 [M⁺].

2-(4-nitrophenyl)quinazolin-4(3H)-one (5aj)¹⁶

¹H NMR (400 MHz, DMSO) δ 8.40 (dd, *J* = 9.1, 6.4 Hz, 4H), 8.19 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.92 – 7.86 (m, 1H), 7.81 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.59 (ddd, *J* = 8.1, 7.0, 1.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 162.5, 151.3, 149.4, 139.0, 135.2, 129.7, 128.2, 127.8, 126.3, 124.1, 121.6. **MS** [EI, m/z]: 267 [M⁺].

2-(thiophen-2-yl)quinazolin-4(3H)-one (5ak)¹⁷

¹H NMR (400 MHz, DMSO) δ 12.44 (s, 1H), 8.60 (dd, J = 2.9, 1.4 Hz, 1H), 8.14 (dd, J = 7.9, 1.7 Hz, 1H), 7.88 (dd, J = 5.1, 1.4 Hz, 1H), 7.84 – 7.78 (m, 1H), 7.73 – 7.67 (m, 2H), 7.52 – 7.47 (m, 1H). ¹³C NMR (101 MHz, DMSO) δ 162.5, 149.4, 148.8, 135.9, 135.0, 129.1, 127.8, 127.7, 127.5, 126.8, 126.3, 121.5. **MS** [EI, m/z]: 228 [M⁺].

2-(5-methylfuran-2-yl)quinazolin-4(3H)-one (5al)¹⁸

¹H NMR (400 MHz, DMSO) δ 12.35 (s, 1H), 8.11 (d, *J* = 6.3 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.69 (d, *J* = 8.3 Hz, 1H), 7.55 (d, *J* = 3.4 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 6.38 (d, *J* = 3.5 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 162.1, 156.6, 149.3, 144.9, 144.4, 135.1, 127.6, 126.7, 126.4, 121.5, 116.3, 109.4, 14.0. **MS** [EI, m/z]: 226 [M⁺].

2-(pyridin-2-yl)quinazolin-4(3H)-one (5am)¹¹

¹H NMR (400 MHz, DMSO) δ 11.56 (s, 1H), 8.74 – 8.70 (m, 1H), 8.47 (d, J = 8.0 Hz, 1H), 8.18 (dd, J = 7.9, 1.7 Hz, 1H), 8.02 (t, J = 7.8 Hz, 1H), 7.84 – 7.75 (m, 2H), 7.60 (ddd, J = 7.7, 4.7, 1.4 Hz, 1H), 7.52 (tt, J = 8.0, 1.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 161.3, 150.1, 149.2, 149.0, 148.8, 138.2, 134.9, 128.0, 127.5, 126.8, 126.5, 122.5. **MS** [EI, m/z]: 223 [M⁺].

2-pentylquinazolin-4(3H)-one (5an)¹²

¹H NMR (400 MHz, DMSO) δ 12.14 (s, 1H), 8.08 (dd, J = 8.0, 1.6 Hz, 1H), 7.77 (ddd, J = 8.4, 7.1, 1.6 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.45 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 2.62 – 2.57 (m, 2H), 1.77 – 1.69 (m, 2H), 1.31 (ddt, J = 6.3, 4.9, 2.3 Hz, 4H), 0.88 (td, J = 7.3, 1.8 Hz, 3H).¹³C NMR (101 MHz, DMSO) δ 162.3, 158.0, 149.4, 134.7, 127.3, 126.4, 126.1, 121.2, 34.9, 31.2, 26.9, 22.3, 14.3. **MS** [EI, m/z]: 216 [M⁺].

6-methoxy-2-phenylquinazolin-4(3H)-one (5ao)¹⁹

¹H NMR (400 MHz, DMSO+CDCl₃) δ 12.34 – 12.18 (m, 1H), 8.16 – 8.11 (m, 2H), 7.87 (d, *J* = 6.1 Hz, 1H), 7.63 (dd, *J* = 8.9, 5.6 Hz, 1H), 7.55 (t, *J* = 3.0 Hz, 1H), 7.46 (td, *J* = 5.4, 5.0, 1.9 Hz, 3H), 7.31 (dt, *J* = 8.9, 2.9 Hz, 1H), 3.87 (d, *J* = 5.7 Hz, 3H). ¹³C NMR (101 MHz, DMSO+CDCl₃) δ 162.8, 158.1, 150.4, 143.8, 133.3, 131.0, 129.4, 128.7, 127.7, 124.3, 122.2, 106.0, 55.8. **MS** [EI, m/z]: 252 [M⁺].

6-fluoro-2-phenylquinazolin-4(3H)-one (5ap)²⁰

¹H NMR (400 MHz, DMSO) δ 12.60 (s, 1H), 8.20 – 8.16 (m, 2H), 7.80 (dt, *J* = 8.7, 4.1 Hz, 2H), 7.68 – 7.63 (m, 1H), 7.58 – 7.49 (m, 3H). ¹³C NMR (101 MHz, DMSO+CDCl₃) δ 162.2, 161.7, 159.2, 146.1, 133.1, 131.7, 130.7, 130.6, 128.9, 128.2, 123.4, 123.2, 122.7, 122.7, 111.0, 110.8. **MS** [EI, m/z]: 240 [M⁺].

6-chloro-2-phenylquinazolin-4(3H)-one (5aq)²⁰

¹H NMR (400 MHz, DMSO) δ 12.69 (s, 1H), 8.18 (dt, J = 8.0, 1.4 Hz, 2H), 8.10 (d, J = 2.5 Hz, 1H), 7.87 (ddd, J = 8.7, 2.5, 0.9 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.63 – 7.52 (m, 3H).¹³C NMR (101 MHz, DMSO) δ 161.8, 153.4, 148.0, 135.2, 132.9, 132.1, 131.3, 130.2, 129.1, 128.3, 125.4, 122.7. **MS** [EI, m/z]: 256 [M⁺].

7-nitro-2-phenylquinazolin-4(3H)-one (5ar)²¹

¹H NMR (400 MHz, DMSO) δ 8.44 (d, J = 2.2 Hz, 1H), 8.37 (d, J = 8.7 Hz, 1H), 8.22 (ddd, J = 8.7, 5.9, 2.0 Hz, 3H), 7.65 – 7.56 (m, 3H). ¹³C NMR (101 MHz, DMSO) δ 161.9, 155.1, 151.8, 149.9, 132.6, 132.5, 129.2, 128.7, 128.5, 125.8, 122.8, 120.51. **MS** [EI, m/z]: 267 [M⁺].

6-methoxy-2-(p-tolyl)quinazolin-4(3H)-one (5as)²²

¹H NMR (400 MHz, DMSO) δ 7.80 – 7.75 (m, 2H), 7.51 (d, *J* = 8.7 Hz, 1H), 7.25 (d, *J* = 7.9 Hz, 2H), 6.98 – 6.90 (m, 2H), 3.78 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 169.2, 168.3, 158.8, 141.5, 140.5, 134.1, 132.0, 129.2, 128.0, 117.0, 114.6, 109.3, 56.1, 21.4. **MS** [EI, m/z]: 266 [M⁺]. **2-(2-methoxyphenyl)-6-methylquinazolin-4(3H)-one (5at)**²²

¹H NMR (400 MHz, DMSO) δ 12.49 (s, 1H), 8.01 (s, 1H), 7.85 – 7.78 (m, 2H), 7.71 (d, J = 1.6 Hz, 2H), 7.50 (t, J = 8.0 Hz, 1H), 7.19 (dd, J = 8.3, 3.6 Hz, 1H), 3.92 (s, 3H), 2.52 (s, 3H).¹³C NMR (101 MHz, DMSO) δ 161.6, 158.8, 150.7, 146.1, 135.8, 135.4, 133.5, 129.2, 126.9, 124.7, 120.2, 119.5, 116.9, 111.9, 54.8, 35.0, 20.3. **MS** [EI, m/z]: 266 [M⁺].

5. References

- 1 K. Chakrabarti, M. Maji and S. Kundu, *Green Chem.*, 2019, 21, 1999-2004.
- 2 T. Song, P. Ren, Z. Ma, J. Xiao and Y. Yang, ACS Sustainable Chem. Eng. 2020, 8, 267-277.
- 3 K. Das, A. Mondal and D. Srimani, J. Org. Chem., 2018, 83, 9553-9560.
- 4 W.-K. An, S.-J. Zheng, H.-X. Zhang, T.-T. Shang, H.-R. Wang, X.-J. Xu, Q. Jin, Y. Qin, Y. Ren, S. Jiang, C.-L. Xu, M.-S. Hou and Z. Pan, *Green Chem.*, 2021, **23**, 1292-1299.
- 5 P. L. Reddy, R. Arundhathi, M. Tripathi, P. Chauhan, N. Yan, D.S. Rawat, *ChemistrySelect*, 2017, **2**, 3889-3895.
- 6 C. Lin, W. Wan, X. Wei and J. Chen, ChemSusChem, 2021, 14, 709-720.
- 7 Z. Li, H. Song, R. Guo, M. Zuo, C. Hou, S. Sun, X. He, Z. Sun and W. Chu, *Green Chem.*, 2019, **21**, 3602-3605
- 8 F. Xu, W.-F. Kang, X.-N. Wang, H.-D. Kou, Z. Jin and C.-S. Liu, *RSC Adv.*, 2017,7, 51658-51662.
- 9 U. Narang, K. K. Yadav, S. Bhattacharya and S. M. S. Chauhan, *ChemistrySelect*, 2017, 2, 7135-7140.
- 10 Y. Kim, M. R. Kumar, N. Park, Y. Heo and S. Lee, J. Org. Chem., 2011, 76, 9577-9583.
- 11 Z. Xie, J. Lan, L. Yan, X. Chen, Q. Li, J. Meng and Z. Le, Org. Biomol. Chem., 2021, 19, 2436-2441.
- 12 K. R. Rao, R. Mekala, A. Raghunadh, S. B. Meruva, S. P. Kumar, D. Kalita, E. Laxminarayana, B. Prasad and M. Pal, *RSC Adv.*, 2015, **5**, 61575-61579.
- 13 N. Ghorashi, Z. Shokri, R. Moradi, A. Abdelrasoul and A. Rostami, *RSC Adv.*, 2020, **10**, 14254-14261.
- 14 A. Dandia, S. A. Indora and V. Parewa, ChemistrySelect, 2018, 3, 8285-8290.
- 15 P. R. Thorve and B. Maji, Catal. Sci. Technol., 2021, 11, 1116-1124.
- 16 1716-1719.
- 17 S. M. A. H. Siddiki, K. Kon, A. S. Touchy and K. Shimizu, *Catal. Sci. Technol.*, **2014**, *4*, 1716-1719.
- 18 G. Latha, N. Devarajan and P. Suresh, ChemistrySelect, 2020, 5, 10041-10047.
- 19 F.-C. Jia , Z.-W. Zhou, C. Xu, Y.-D. Wu and A.-X. Wu, Org. Lett., 2016, 18, 2942-2945.
- 20 J. Chen, E. Liang, J. Shi, Y. Wu, K. Wen, X. Yao and X. Tang, RSC Adv., 2021, 11, 4966-4970.
- 21 R. Cheng, L. Tang, T. Guo, D. Zhang-Negrerie, Y. Du and K. Zhao, *RSC Adv.*, 2014, 4, 26434-26438.
- 22 W. Xu, Y. Jin, H. Liu, Y. Jiang and H. Fu, Org. Lett., 2011, 13, 1274-1277.

6. ¹H NMR and ¹³C NMR spectra for the products

2-phenyl-1H-benzo[d]imidazole (3aa)

2-(p-tolyl)-1H-benzo[d]imidazole (3ab)

2-(4-methoxyphenyl)-1H-benzo[*d*]imidazole (3ac)

2-(2-methoxyphenyl)-1H-benzo[*d*]imidazole (3ad)

2-(4-fluorophenyl)-1H-benzo[d]imidazole (3ae)

2-(4-nitrophenyl)-1H-benzo[d]imidazole (3af)

160 150 140 130 120 110 100 f1 (ppm) -10

2-(2-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (3ak)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5-chloro-2-phenyl-1H-benzo[*d*]imidazole (3aq)

5-methyl-2-phenyl-1H-benzo[*d*]imidazole (3as)

2-(2,4-dimethylphenyl)quinazolin-4(3H)-one (5ac)

2-(2-fluorophenyl)quinazolin-4(3H)-one (5af)

110 100 f1 (ppm) -10 210 200 160 150 140 130 120

2-(2-bromophenyl)quinazolin-4(3H)-one (5ah)

2-(4-fluorophenyl)quinazolin-4(3H)-one (5ai)

150 140 130 120 110 100 f1 (ppm) -10

2-(thiophen-2-yl)quinazolin-4(3H)-one (5ak)

6-fluoro-2-phenylquinazolin-4(3H)-one (5ap)

7. Optimized Structures and Cartesian Coordinates

 $2a\ /\ C_6H_5CH_2OH$

С	-2.31173600	-0.31320300	-0.04210600
С	-1.37600200	-1.34799300	0.03678400
С	-0.00830200	-1.06271900	0.09262600
С	0.43851200	0.26389600	0.06579600
С	-0.50436200	1.29723800	-0.02318600
С	-1.87106000	1.01347000	-0.07171400
Н	-3.37460600	-0.53736000	-0.08587000
Н	-1.70984200	-2.38275300	0.05348500
Н	0.72000700	-1.86537100	0.14570400
Н	-0.16837500	2.33242200	-0.05809100
Н	-2.58956500	1.82650300	-0.14181500
С	1.90909900	0.60134600	0.17378100
Н	2.15189500	0.85398500	1.21897200
Н	2.12921400	1.48769900	-0.44014300
0	2.69464300	-0.51286100	-0.25182000
Н	3.62723700	-0.32444900	-0.06956600

 $A \,/ C_7 H_8 O^{\bullet +}$

Energies=-346.659827 a.u

Energies= -346.893050 a.u

С	-2.29058200	0.32512300	-0.00005200
С	-1.33448100	1.38784700	-0.00000900
С	0.01179600	1.10378700	0.00015500

С	0.43914100	-0.25619800	0.00011600
С	-0.53305200	-1.32134000	0.00001800
С	-1.87707700	-1.03019000	-0.00013500
Н	-3.35084000	0.56366400	0.00003500
H	-1.68305500	2.41611600	-0.00009200
Н	0.76099500	1.88758900	0.00023300
H	-0.18917700	-2.35270300	0.00007500
H	-2.61830900	-1.82283300	-0.00025700
С	1.87681700	-0.61839900	0.00014200
H	2.06172800	-1.27568800	-0.87732100
Н	2.06170400	-1.27509600	0.87809000
0	2.69596800	0.50752500	-0.00017100
Н	3.63383300	0.25498000	-0.00080400

TEMPO⁺

Energies= -483.691648 a.u

Ν	0.00000400	-0.80712900	0.00000000
0	0.00001800	-2.00375700	-0.00022800
С	2.33527900	-0.92047300	0.82349800
Н	1.98171100	-1.07949900	1.84743000
Н	2.52845600	-1.88966000	0.35956300
Н	3.27960500	-0.37057600	0.87315600
С	-1.77730200	-0.01731900	1.47965100
Н	-1.86122700	-1.02367600	1.89946700
Н	-1.10893700	0.58099000	2.10145400
Н	-2.76714900	0.44980700	1.50010500
С	1.34401300	-0.07491400	0.01242400
С	1.77760100	-0.01752100	-1.47953100
Н	2.76748600	0.44953200	-1.49987000
Н	1.86154800	-1.02394300	-1.89918900
Н	1.10941900	0.58073900	-2.10156600
С	-1.34400300	-0.07495600	-0.01236800
С	-2.33539300	-0.92067400	-0.82313500
Н	-2.52841700	-1.88980900	-0.35902600
Н	-3.27976100	-0.37084000	-0.87267800

H	-1.98202800	-1.07982800	-1.84711900
С	-1.13198700	1.31805500	-0.62860500
Н	-2.08850500	1.84329900	-0.53757700
Н	-0.96826300	1.19201800	-1.70432000
С	-0.00007100	2.16185900	-0.00020400
Н	-0.40453100	2.82124900	0.77355300
Н	0.40437600	2.82107400	-0.77411700
С	1.13182400	1.31817200	0.62842900
Н	2.08833300	1.84344000	0.53745800
Н	0.96795500	1.19227300	1.70414400

TEMPO

Ν	-0.00006100	-0.79299700	0.00002200
0	0.00021600	-2.07806200	-0.00033100
С	2.30313800	-0.89326200	0.86384600
Н	1.91231900	-1.03301000	1.87746900
Н	2.48482300	-1.88013500	0.43307900
Н	3.25530900	-0.35373600	0.92928100
С	-1.85443600	-0.00254000	1.44371200
Н	-1.90118400	-1.00631500	1.87872100
Н	-1.22443300	0.62072800	2.08590700
Н	-2.86566600	0.42256700	1.44645900
С	1.31927600	-0.08344600	0.00314900
С	1.85485100	-0.00335100	-1.44343500
Н	2.86610800	0.42171000	-1.44637500
Н	1.90159400	-1.00747900	-1.87761900
Н	1.22498900	0.61942100	-2.08623800
С	-1.31911200	-0.08374300	-0.00296800
С	-2.30347300	-0.89384600	-0.86290300
Н	-2.48549600	-1.88030300	-0.43132500
Н	-3.25540200	-0.35396000	-0.92861300
Н	-1.91282800	-1.03461900	-1.87645400
С	-1.12564300	1.31185800	-0.62962800
Н	-2.08132800	1.84712300	-0.56976900

Н	-0.92651900	1.17050700	-1.69894600
С	-0.00018700	2.16206600	-0.00051600
Н	-0.41070900	2.82338700	0.77185300
Н	0.41010000	2.82327900	-0.77310400
С	1.12547700	1.31239900	0.62893700
Н	2.08108900	1.84776800	0.56861700
Н	0.92657900	1.17173400	1.69838800

4-oxo-TEMPO⁺

Energies= -557.725227 a.u

Ν	0.00017700	-0.99648400	-0.07211200
0	0.00032900	-2.18894500	-0.14137800
С	-2.40802400	-1.21084200	-0.65368000
Н	-2.12694400	-1.47952100	-1.67702800
Н	-2.56842900	-2.12467600	-0.07752900
Н	-3.35447000	-0.66324800	-0.69492100
С	2.40837000	-1.20994600	-0.65392500
Н	2.56899500	-2.12397800	-0.07814600
Н	2.12738100	-1.47830000	-1.67738600
Н	3.35468500	-0.66211600	-0.69494400
С	-1.37478100	-0.28666500	-0.00336400
С	-1.68527000	-0.09935500	1.50653300
Н	-2.73091200	0.21860200	1.56836900
Н	-1.58445100	-1.04049200	2.05453800
Н	-1.07508600	0.67270200	1.97708500
С	1.37487400	-0.28628100	-0.00330700
С	1.68548800	-0.09916200	1.50656000
Н	1.58523700	-1.04051100	2.05430900
Н	2.73098200	0.21930000	1.56831800
Н	1.07499800	0.67245000	1.97743600
С	1.27177900	1.07281300	-0.73651700
Н	1.30237600	0.90449600	-1.82152700
Н	2.14395000	1.67295900	-0.46362900
С	-0.00035600	1.83245300	-0.39317900

	and the second		A CARLER OF
0	-0.00060700	2.93140500	0.11399600
Н	-1.30242600	0.90393500	-1.82170600
Н	-2.14456900	1.67216600	-0.46401800
С	-1.27213500	1.07230700	-0.73668300

4-oxo-TEMPO

Ν	0.00054000	-0.98258200	-0.15726800
0	0.00120700	-2.24413600	0.08901000
С	-2.36934900	-1.15112300	-0.77590500
Н	-2.06039200	-1.32316100	-1.81269300
Н	-2.49669700	-2.12136500	-0.29122300
Н	-3.33239000	-0.62805100	-0.78122900
С	2.37042300	-1.14830800	-0.77654200
Н	2.49865900	-2.11876700	-0.29254700
Н	2.06148300	-1.31985700	-1.81339800
Н	3.33299400	-0.62439000	-0.78162300
С	-1.33283200	-0.29526500	-0.03046100
С	-1.72821300	-0.18461000	1.45807000
Н	-2.77011800	0.14620500	1.53814100
Н	-1.63783300	-1.16316700	1.93940900
Н	-1.11037500	0.53551500	2.00268600
С	1.33321300	-0.29389200	-0.03041500
С	1.72877700	-0.18375200	1.45809300
Н	1.63977000	-1.16279300	1.93878600
Н	2.77027600	0.14836300	1.53816700
Н	1.11005900	0.53514600	2.00330900
С	1.26308700	1.11084400	-0.68165600
Н	1.27895300	0.99548200	-1.77478900
Н	2.13754800	1.69842200	-0.38785200
С	-0.00111700	1.85845200	-0.31505600
С	-1.26411400	1.10918400	-0.68245600
Н	-2.13954400	1.69579000	-0.38959200
Н	-1.27898200	0.99320400	-1.77553700
0	-0.00201300	2.95192600	0.22334300

Energies= -557.914124 a.u

Energies= -346.254893 a.u

С	-2.28190800	-0.30465100	-0.00023300
С	-1.34400200	-1.34853200	0.00006000
С	0.01980100	-1.08315700	0.00031200
С	0.49429200	0.26127800	0.00023300
С	-0.47241800	1.30991200	0.00010700
С	-1.83030600	1.02571900	-0.00014800
Н	-3.34640000	-0.52225700	-0.00060600
Н	-1.68608400	-2.38096500	0.00013900
Н	0.73872100	-1.89606400	0.00060300
Н	-0.13361800	2.34405200	0.00028800
Н	-2.54881300	1.84200300	-0.00025400
С	1.86732100	0.57140500	0.00019400
Н	2.23680500	1.59260800	0.00036600
0	2.79200800	-0.43780700	-0.00042000
Н	3.68664800	-0.06876000	-0.00033000

6a/C₆H₅CHO

С	2.22213400	-0.24368300	0.00003700
С	1.33545600	-1.32958900	-0.00005500
С	-0.03918100	-1.10745200	0.00003100
С	-0.53574200	0.20705400	-0.00000100
С	0.35571400	1.29013400	-0.00012600
С	1.73367000	1.06629100	0.00006600
Н	3.29469200	-0.42095300	0.00004500

Energies= -345.687506 a.u

Н	1.72203300	-2.34534100	-0.00009300
Н	-0.74451700	-1.93342500	0.00006200
Н	-0.03418200	2.30640400	-0.00018800
Η	2.42315100	1.90623400	0.00011600
С	-1.99351400	0.46622000	0.00003000
Н	-2.27653900	1.54138100	0.00025600
0	-2.85698300	-0.39351800	-0.00001100

 $1a/C_6H_8N_2$

Energies= -343.082718 a.u

С	0.69301300	-1.39242400	-0.01772400
С	-0.51774100	-0.69427000	-0.00199400
С	-0.50305600	0.72084400	-0.00942400
С	0.73175600	1.38589500	0.02463600
С	1.93311200	0.67475500	0.02675900
С	1.91961800	-0.72118300	-0.01225100
Н	0.67059600	-2.48118600	-0.01739100
Η	0.74246300	2.47408200	0.01528200
Η	2.87592700	1.21531700	0.04485300
Н	2.84811500	-1.28517900	-0.02356100
Ν	-1.69881500	1.43299000	-0.10648800
Н	-2.55809400	0.90333700	-0.08958900
Н	-1.74904200	2.33971500	0.33576400
Ν	-1.78084000	-1.35555700	-0.03389400
Н	-1.68117900	-2.35957000	-0.15108800
Н	-2.33141600	-1.19025600	0.80839500

Energies= -456.473590 a.u

С	2.61483200	-0.19679900	0.07833900
С	1.88412800	0.98242000	-0.02059700
С	0.47770100	0.96791900	-0.07676500
С	-0.19139800	-0.28033900	-0.01783000
С	0.57049000	-1.45984000	0.04923000
С	1.95933000	-1.43343600	0.10626600
Н	3.70021400	-0.14965600	0.12078100
Н	2.40196200	1.93877700	-0.06530000
Н	0.02977200	-2.40087400	0.06251200
Н	2.52425900	-2.35869000	0.17104600
Ν	-0.21051600	2.19110500	-0.14679900
Н	-1.05844200	2.17897600	-0.70483800
Н	0.38218600	2.97339000	-0.40178800
С	-1.68115300	-0.46525000	-0.01943300
0	-2.20509600	-1.51973500	-0.36835500
Ν	-2.45558900	0.60815800	0.38047700
Н	-3.42847000	0.37786800	0.54835800
Н	-2.05155000	1.31520100	0.98507100

$D1/C_{13}H_{12}N_2$

Energies= -612.303197 a.u

С	2.17230100	-1.38463200	-0.35333600
С	1.67364700	-0.09505800	-0.09822400
С	2.58884800	0.96287300	0.15754400
С	3.96454500	0.67627000	0.19920800
С	4.43380400	-0.61464200	-0.03120000
С	3.53927300	-1.65269800	-0.32092900
Н	1.47647000	-2.17821800	-0.61264100
Н	4.66575200	1.48414500	0.39865300
Н	5.50335000	-0.80742000	-0.00335700
Н	3.90464700	-2.65316900	-0.53501900
Ν	2.12087500	2.25781700	0.32436700
Н	1.12639400	2.34016000	0.49116900
Н	2.69236200	2.88642500	0.87235600
Ν	0.31308500	0.25126800	-0.12790600
С	-0.60486300	-0.60429700	0.14280000

Н	-0.36257500	-1.62586000	0.47150000
С	-2.03693300	-0.29448500	0.05629000
С	-2.50353700	0.93992400	-0.43472600
С	-2.97248700	-1.25816100	0.47121900
С	-3.86968200	1.20016000	-0.49751800
Н	-1.77930000	1.67661100	-0.76839500
С	-4.34221800	-0.99591600	0.40781000
Н	-2.62090700	-2.21690000	0.84760900
С	-4.79424800	0.23463200	-0.07587100
Н	-4.22035300	2.15536200	-0.88037400
Н	-5.05411900	-1.74986200	0.73374100
Н	-5.86014300	0.44132500	-0.12887400

 $D2/C_{14}H_{12}N_2O$

Energies= -725.689710 a.u

С	2.93464100	-2.41850700	-0.34218500
С	1.63325100	-1.92547200	-0.40137600
С	1.36083700	-0.55793700	-0.20185100
С	2.44009700	0.33363600	0.03293700
С	3.73820900	-0.19139900	0.10601000
С	3.99514000	-1.54840300	-0.07818300
Н	3.11757100	-3.47673100	-0.51160900
Н	0.81163200	-2.59354800	-0.64450100
Н	4.54306400	0.50728800	0.30924600
Н	5.01471300	-1.92069400	-0.02929300
Ν	0.03548700	-0.08439100	-0.29967800
С	2.34196000	1.83330700	0.23474400
0	3.33232100	2.48689400	0.56714700
Ν	1.13721400	2.42297300	0.01647600
Н	1.08256700	3.42736400	0.11730700
Н	0.33388000	1.87516800	-0.27383900
С	-0.92346000	-0.74265200	0.24301300
Н	-0.72066000	-1.62867200	0.86156500
С	-2.33615300	-0.37054300	0.10774800
С	-2.76056000	0.64748900	-0.76685600
С	-3.29517600	-1.05815200	0.87132000

С	-4.11074200	0.97314600	-0.86185000
Н	-2.02336500	1.16365400	-1.37432300
С	-4.64827600	-0.72971200	0.77621700
Н	-2.97501000	-1.85021900	1.54513200
С	-5.05810000	0.28769600	-0.08952500
Н	-4.43065200	1.75829700	-1.54188600
Н	-5.37982900	-1.26622200	1.37441100
Н	-6.11139700	0.54411400	-0.16794700

 $E1/C_{13}H_{12}N_2$

Energies= -612.288698 a.u

С	-2.99916500	-1.41915500	-0.09900300
С	-1.81974400	-0.70230500	0.06397200
С	-1.81980600	0.70235200	0.06414600
С	-2.99933500	1.41909000	-0.09864600
С	-4.19198000	0.69947300	-0.27376200
С	-4.19190100	-0.69964600	-0.27396800
Н	-2.99480700	-2.50589500	-0.09289900
Н	-2.99516800	2.50583100	-0.09226400
Н	-5.12774000	1.23817000	-0.39795900
Н	-5.12760400	-1.23841000	-0.39830100
Ν	-0.48883300	1.19847700	0.22746200
Н	-0.12580900	1.58437800	-0.64626200
С	0.27163600	0.00008100	0.67022200
Н	0.20033400	-0.00022400	1.76796500
С	1.72955200	0.00009600	0.27053500
С	2.42688400	-1.20718200	0.11132400
С	2.42687200	1.20725700	0.11083700
С	3.78284200	-1.20687500	-0.22608500
Н	1.91283400	-2.15153100	0.26791500
С	3.78286400	1.20680200	-0.22657000
Н	1.91291300	2.15173200	0.26699800
С	4.46491500	-0.00006400	-0.40129700
Н	4.30602800	-2.15201700	-0.34788400
Н	4.30605300	2.15189200	-0.34874800
Н	5.51954300	-0.00010700	-0.66432500
Ν	-0.48870200	-1.19840200	0.22715400

 $E2/C_{14}H_{12}N_2O$

Energies= -725.698012 a.u

С	3.84701200	-1.76068200	0.04379600
С	2.46588600	-1.93783900	0.07253700
С	1.61352000	-0.82098700	0.03955300
С	2.17540300	0.47419700	-0.01128600
С	3.56677700	0.63247600	-0.03788200
С	4.40778100	-0.47645400	-0.01607500
Н	4.49386700	-2.63443300	0.06387500
Н	2.04124300	-2.93846500	0.12035800
Н	3.96202100	1.64346100	-0.06591300
Н	5.48610700	-0.34937400	-0.03874100
С	1.28829100	1.66670700	0.03540000
0	1.69528900	2.82103400	0.14797400
Ν	-0.06113400	1.37377300	0.00160500
Н	-0.66965800	2.18118400	-0.07744100
С	-0.56245600	0.10320900	-0.52186200
Н	-0.41963900	0.07497300	-1.61986200
С	-2.04094400	-0.06344400	-0.22747200
С	-2.50186900	-0.11154900	1.09649700
С	-2.95907100	-0.16384300	-1.27849500
С	-3.86421600	-0.25797400	1.35997000
Н	-1.78713700	-0.03370800	1.91072300
С	-4.32523000	-0.30993300	-1.01518800
Н	-2.60627500	-0.12579400	-2.30723500
С	-4.77869200	-0.35709700	0.30457000
Н	-4.21444000	-0.29364000	2.38837400
Н	-5.02993600	-0.38573000	-1.83915600
Н	-5.83966400	-0.46987800	0.51239200
Ν	0.22591100	-0.95290200	0.11126100
Н	-0.12539800	-1.88369000	-0.08561900

 $F1/C_{13}H_{12}N_2^{\bullet+}$

Energies= -612.131995 a.u

С	-2.86411100	-0.01379900	-1.45531000
С	-1.73623900	-0.34529200	-0.68573400
С	-1.73707400	-0.17784500	0.74642000
С	-2.86587800	0.32189400	1.41736600
С	-3.96803600	0.64056000	0.64190500
С	-3.96718000	0.47497200	-0.77567600
Н	-2.86734700	-0.13864400	-2.53321000
Н	-2.87070700	0.44867500	2.49503900
Н	-4.86209000	1.02655700	1.12147900
Н	-4.86052600	0.74007800	-1.33242600
Ν	-0.52297900	-0.56331900	1.19782300
Н	-0.21066500	-0.51997200	2.16056600
С	0.35582300	-1.04142300	0.12292900
Н	0.51656700	-2.12367300	0.24929200
С	1.70355200	-0.34905700	0.04207800
С	2.86949400	-1.11911900	0.12420100
С	1.78940300	1.04299700	-0.11350800
С	4.12117900	-0.50064000	0.05116800
Н	2.80617000	-2.19857300	0.24480100
С	3.03946400	1.65566100	-0.18562400
Н	0.88717400	1.64703500	-0.17780900
С	4.20541700	0.88423100	-0.10341800
Н	5.02402000	-1.10067800	0.11530200
Н	3.10665400	2.73303400	-0.30557000
Н	5.17745300	1.36560000	-0.16003900
Ν	-0.52175300	-0.82432100	-1.03457500
Н	-0.20846000	-1.00481200	-1.98094700

 $F2/C_{14}H_{12}N_2O^{\bullet+}$

Energies= -725.500178 a.u

uu			
С	3.66562700	-1.90043100	0.21292200
С	2.31895300	-2.00370600	-0.06190200
С	1.54432100	-0.80889400	-0.20368400
С	2.15395500	0.47714300	-0.02620100
С	3.50649500	0.54952100	0.24592400
С	4.26925100	-0.62922600	0.36136200
Н	4.26779800	-2.79809100	0.31223700
Н	1.84258000	-2.97261400	-0.18631200
Н	3.95746500	1.52787900	0.38090400
Н	5.33146000	-0.56180300	0.57610700
С	1.31851700	1.71644800	-0.07378300
0	1.77922600	2.82481600	0.13197900
Ν	-0.02546200	1.48750700	-0.27958100
Н	-0.60550800	2.32164300	-0.30420100
С	-0.62888100	0.28245200	-0.81360700
Н	-0.67239400	0.32920200	-1.91640800
С	-2.03175700	0.03453000	-0.28807100
С	-2.28383200	0.03664900	1.09299500
С	-3.07122800	-0.21332700	-1.19268100
С	-3.57428700	-0.21085500	1.56070600
Н	-1.48121100	0.24639900	1.79578500
С	-4.36292500	-0.45936600	-0.71861000
Н	-2.88145600	-0.20220300	-2.26406600
С	-4.61298000	-0.45955900	0.65596100
Н	-3.77133900	-0.20472800	2.62872000
Н	-5.17033300	-0.64054600	-1.42182700
Н	-5.61774000	-0.64658700	1.02367000
Ν	0.23923700	-0.87096300	-0.51210700
Н	-0.19692700	-1.78115000	-0.64660300

3aa/ C₁₃H₁₀N₂

Energies= -611.121214 a.u

С	3.06354900	1.41212200	-0.03895800
С	1.85550700	0.71076000	-0.01737700
С	1.79550100	-0.70484600	0.01992000
С	2.98210500	-1.45248800	0.03848200
С	4.19082200	-0.76134500	0.01756600
С	4.23131600	0.64960500	-0.02093200
Н	3.10020500	2.49808500	-0.06786000
Н	2.94557100	-2.53758000	0.06786400
Н	5.12544700	-1.31573700	0.03097300
Н	5.19397700	1.15365500	-0.03652100
Ν	0.47907400	-1.12823900	0.03230200
С	-0.25128600	-0.03014400	0.00453900
С	-1.71908100	-0.00133200	0.00361600
С	-2.44912900	1.19884100	0.04744600
С	-2.42161100	-1.21927100	-0.04211600
С	-3.84486200	1.18328200	0.04213400
Н	-1.94107700	2.15924400	0.09369400
С	-3.81456800	-1.23129500	-0.04646300
Н	-1.85480900	-2.14387700	-0.07424000
С	-4.53352500	-0.03130200	-0.00535300
Н	-4.39256000	2.12141800	0.07773200
Н	-4.34258300	-2.18071200	-0.08295700
H	-5.62027600	-0.04317100	-0.00922600
Ν	0.53177100	1.11231700	-0.02437800
Н	0.20175900	2.06460600	-0.06995800

Energies= -724.504861 a.u

С	3.79661600	-1.78923600	0.16145300
С	2.41618600	-1.92819400	0.16561200
С	1.58679000	-0.79055300	0.07001600
С	2.19450400	0.48687200	-0.02860600
С	3.59342000	0.61464000	-0.03175900
С	4.39212900	-0.51649900	0.06335600
H	4.42556700	-2.67285700	0.23591700
Н	1.94402500	-2.90289500	0.24393300
Н	4.02265900	1.60884500	-0.11073400
H	5.47444500	-0.42177400	0.06266500
С	1.33649800	1.66884100	-0.14428800
0	1.70362600	2.83384200	-0.25936300
N	-0.02824300	1.35527500	-0.12712000
H	-0.64565900	2.14681900	-0.26928900
С	-0.54588500	0.07997600	-0.00655300
С	-2.02319100	-0.06331400	0.01027900
С	-2.87300700	0.98884100	0.39139800
С	-2.58946100	-1.29592700	-0.35710600
С	-4.25842100	0.81528200	0.39363100
H	-2.46705600	1.94007200	0.72674100
С	-3.97261600	-1.46437300	-0.35865500
H	-1.92865000	-2.10830300	-0.63990800
С	-4.81263900	-0.40930300	0.01379100
Н	-4.90185600	1.63541700	0.70053300
H	-4.39712800	-2.42055500	-0.65311600
H	-5.89124600	-0.54259600	0.01262300
N	0.21258000	-0.97173500	0.08571000

8. Computational methods

Density functional theory (DFT) calculations were carried out to calculate the structures and the reaction mechanisms by using Gaussian 16 program¹. All structures were optimized by using the

combination of Becke's hybrid 3-parameter exchange functional² and Lee-Yang-Parr's correlation functional³ known as B3LYP method in conjunction with 6-31+G* basis set to ensure these structure without imaginary frequencies. Then, the energy of the reaction mechanism is calculated at the B3LYP/6-311++G** level based on the optimized structures, and the solvation model based on electron density (SMD)⁴ with CH₃CN/H₂O (1:2,v:v) mixed solvent attached was used throughout. Dimensional plots of molecular configurations were generated with the GaussView program⁵.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, G. Z. J. Bloino, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, CT 2016.
- [2] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- [3] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785-789.
- [4] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- [5] R. D. Dennington II., T. A. Keith, J. M. Millam, GaussView, Version 6, Semichem Inc., Shawnee Mission, KS 2016.