Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

## **Supporting Information**



Figure S1. <sup>1</sup>H NMR (400 MHz) spectrum of PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub> 1 in CDCl<sub>3</sub>. The peak at 2.36 ppm is due to the toluene methyl group as an impurity.



Figure S2. <sup>13</sup>C NMR (125.7 MHz) spectrum of PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub> 1 in CDCl<sub>3</sub>.



Figure S3. <sup>31</sup>P NMR (161.9 MHz) spectrum of PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub> 1 in CDCl<sub>3</sub>.



Figure S4. ATR-IR spectrum of PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub> 1.



Figure S5. HRMS spectrum of PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub> 1.



Figure S6. <sup>1</sup>H NMR (400 MHz) spectrum of P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub> 2 in CDCl<sub>3</sub>.



Figure S7. <sup>13</sup>C NMR (125.7 MHz) spectrum of P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub> **2** in CDCl<sub>3</sub>.



Figure S8. <sup>31</sup>P NMR (161.9 MHz) spectrum of P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub> 2 in CDCl<sub>3</sub>.



Figure S9. HRMS spectrum of P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub> 2.



Figure S10. ATR-IR spectrum of P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub> 2.



Figure S11. <sup>1</sup>H NMR (400 MHz) spectrum of [NiCl<sub>2</sub>{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P$ ,*P*,*P*}] **3** in CDCl<sub>3</sub>.



Figure S12. <sup>13</sup>C NMR (100.6 MHz) spectrum of [NiCl<sub>2</sub>{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P,P,P$ }] **3** in CDCl<sub>3</sub>.



Figure S13. <sup>31</sup>P NMR (161.9 MHz) spectrum of [NiCl<sub>2</sub>{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P$ ,*P*,*P*}] **3** in CDCl<sub>3</sub>.



Figure S14. ATR spectrum of [NiCl<sub>2</sub>{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P,P,P$ }] 3.



**Figure S15.** HRMS spectrum of  $[NiCl{PhP(OCH_2PPh_2)_2 - \kappa^3 P, P, P}][PF_6], 4.$ 



Figure S16. <sup>1</sup>H NMR (400 MHz) spectrum of [NiCl{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P$ ,*P*,*P*}][PF<sub>6</sub>], 4 in CDCl<sub>3</sub>.



**Figure S17.** <sup>31</sup>P NMR (161.9 MHz) spectrum of [NiCl{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P$ ,*P*,*P*}][PF<sub>6</sub>], **4** in CH<sub>2</sub>Cl<sub>2</sub> with D<sub>2</sub>O external locking.



**Figure S18.** <sup>19</sup>F NMR (376.5 MHz) spectrum of [NiCl{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P$ ,*P*,*P*}][PF<sub>6</sub>], **4** in CH<sub>2</sub>Cl<sub>2</sub> with D<sub>2</sub>O external locking.



**Figure S19.** ATR spectrum of  $[NiCl{PhP(OCH_2PPh_2)_2 - \kappa^3 P, P, P}][PF_6], 4.$ 



Figure S20. HRMS spectrum of  $[NiCl{PhP(OCH_2PPh_2)_2 - \kappa^3 P, P, P}][PF_6], 4.$ 



**Figure S21.** <sup>1</sup>H NMR (400 MHz) spectrum of [NiCl{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P$ ,*P*,*P*}(XylylNC)][PF<sub>6</sub>] **5** in CDCl<sub>3</sub>.



Figure S22. <sup>13</sup>C NMR (125.7 MHz) spectrum of  $[NiCl{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(XylylNC)][PF_6]$  5 in CDCl<sub>3</sub>.



 $\kappa^{3}P,P,P$ }(XylylNC)][PF<sub>6</sub>] **5** in CDCl<sub>3</sub>.



-71.951
-73.466

**Figure S24.** <sup>19</sup>F NMR (470.6 MHz) spectrum of  $[NiCl{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(XylylNC)][PF_6]$  **5** in CDCl<sub>3</sub>.



Figure S25. ATR-IR spectrum of  $[NiCl{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(XylylNC)][PF_6]$  5.



**Figure S26.** HRMS spectrum of  $[NiCl{PhP(OCH_2PPh_2)_2 - \kappa^3 P, P, P}(XylylNC)][PF_6]$  **5**.



Figure S27. <sup>1</sup>H NMR (400 MHz) spectrum of  $[Ni{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}('BuNC)_2][PF_6]_2$  6 in DMSO- $d_6$ .



Figure S28. <sup>13</sup>C NMR (125.7 MHz) spectrum of  $[Ni{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(BuNC)_2][PF_6]_2$ 6 in DMSO-d<sub>6</sub>.



Figure S29. <sup>31</sup>P NMR (202.4 MHz) spectrum of  $[Ni{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(BuNC)_2][PF_6]_2$ 6 in DMSO- $d_6$ .



Figure S30. ATR-IR spectrum of  $[Ni \{PhP(OCH_2PPh_2)_2 - \kappa^3 P, P, P\}(BuNC)_2][PF_6]_2$  6.



Figure 31. <sup>19</sup>F NMR (470.6 MHz) spectrum of  $[Ni{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(BuNC)_2][PF_6]_2$  6 in CDCl<sub>3</sub>.



Figure S32. HRMS spectrum of  $[Ni{PhP(OCH_2PPh_2)_2 - \kappa^3 P, P, P}('BuNC)_2][PF_6]_2$  6.



Figure S33. <sup>1</sup>H NMR (400 MHz) spectrum of  $[Ni{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(^iPrNC)_2][PF_6]_2$  7 in CDCl<sub>3</sub>.



Figure S34. <sup>13</sup>C NMR (125.7 MHz) spectrum of [Ni{PhP(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>- $\kappa^{3}P$ ,*P*,*P*}(<sup>*i*</sup>PrNC)<sub>2</sub>][PF<sub>6</sub>]<sub>2</sub> 7 in CDCl<sub>3</sub>.



Figure S35. <sup>31</sup>P NMR (202.4 MHz) spectrum of  $[Ni{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(iPrNC)_2][PF_6]_2$ 7 in CDCl<sub>3</sub>.



Figure S36. ATR-IR spectrum of  $[Ni{PhP(OCH_2PPh_2)_2 - \kappa^3 P, P, P}(^{i}PrNC)_2][PF_6]_2$  7.



Figure S37. HRMS spectrum of  $[Ni{PhP(OCH_2PPh_2)_2-\kappa^3P,P,P}(iPrNC)_2][PF_6]_2$  7.



Figure S38. <sup>19</sup>F NMR (470.6 MHz) spectrum of  $[Ni{PhP(OCH_2PPh_2)_2 - \kappa^3 P, P, P}(i^PrNC)_2][PF_6]_2$ 7 in CDCl<sub>3</sub>.



Figure S39. <sup>1</sup>H NMR (500 MHz) spectrum of [NiCl{P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub>- $\kappa^4 P, P, P, P$ }][PF<sub>6</sub>], 8 in DMSO- $d_6$ .



Figure S40. <sup>13</sup>C NMR (125.7 MHz) spectrum of [NiCl{P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub>- $\kappa^4 P, P, P, P$ }][PF<sub>6</sub>], 8 in DMSO- $d_6$ .



Figure S41. <sup>31</sup>P NMR (202.4 MHz) spectrum of [NiCl{P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub>- $\kappa^4 P, P, P, P$ }][PF<sub>6</sub>], **8** in DMSO- $d_6$ .



**Figure S42.** <sup>19</sup>F NMR (470.6 MHz) spectrum of [NiCl{P(OCH<sub>2</sub>PPh<sub>2</sub>)<sub>3</sub>- $\kappa^4 P, P, P, P$ }][PF<sub>6</sub>], **8** in DMSO- $d_6$ .



**Figure S43.** ATR-IR spectrum of  $[NiCl{P(OCH_2PPh_2)_3-\kappa^4P,P,P,P}][PF_6]$ , 8.



Figure S44. HRMS spectrum of  $[NiCl{P(OCH_2PPh_2)_3-\kappa^4P,P,P,P}][PF_6], 8$ .

## **X-ray Structures**

Single crystal X-ray diffraction data collections for all complexes were performed using Bruker-APEX-II CCD or APEX3 D8 QUEST PHOTON-II diffractometer with graphite monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å). The space group for every structure was obtained by XPREP program. Using the GUI WingX, the structures were solved by SHELXT<sup>1</sup> which successfully located most of the nonhydrogen atoms. Subsequently, leastsquares refinements were carried out on  $F^2$  using SHELXL Version 2018/3<sup>2</sup> to locate the remaining nonhydrogen atoms. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to carbon atoms were fixed in calculated positions. In the case of structure 6, one of the  $PF_6^-$  anions and the solvent of crystallization CH<sub>2</sub>Cl<sub>2</sub> are disordered and they were successfully resolved using SADI, EADP and SIMU restraints. The refinement data for all the structures are summarized in Table S1. Crystallographic data were deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. These data can be obtained free of charge upon quoting the depository numbers CCDC 2112704-2112708 from web interface (at http://www.ccdc.cam.ac.uk).

|                                                               | 3                                                                                                             | 4                                                                                                               | 5                                                                                               | 6                                                                                               | 7                                                                                               | 8                                                                                |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Empirical formula                                             | $C_{33}H_{31}Cl_4NiO_2P_3$                                                                                    | C32H29ClF6NiO2P4                                                                                                | C41H38ClF6NNiO2P4                                                                               | $C_{43}H_{49}Cl_2F_{12}N_2NiO_2P_5$                                                             | $C_{41}H_{45}Cl_2F_{12}N_2NiO_2P_5$                                                             | C <sub>39</sub> H <sub>36</sub> ClF <sub>6</sub> NiO <sub>3</sub> P <sub>5</sub> |
| Formula<br>weight                                             | 753.00                                                                                                        | 777.59                                                                                                          | 908.76                                                                                          | 1138.30                                                                                         | 1110.25                                                                                         | 915.69                                                                           |
| Wavelength<br>(Å)                                             | 0.71073                                                                                                       | 0.71073                                                                                                         | 0.71073                                                                                         | 0.71073                                                                                         | 0.71073                                                                                         | 0.71073                                                                          |
| Temperature<br>(K)                                            | 296                                                                                                           | 297                                                                                                             | 296                                                                                             | 296                                                                                             | 100                                                                                             | 296                                                                              |
| Crystal<br>system                                             | Monoclinic                                                                                                    | Triclinic                                                                                                       | Monoclinic                                                                                      | Monoclinic                                                                                      | Monoclinic                                                                                      | Cubic                                                                            |
| Space group                                                   | $P2_{1}/c$                                                                                                    | <i>P</i> -1                                                                                                     | $P2_{1}/c$                                                                                      | $P2_1/n$                                                                                        | $P2_1/n$                                                                                        | P2 <sub>1</sub> 3                                                                |
| a/Å                                                           | 11.2965(8)                                                                                                    | 12.0853(7)                                                                                                      | 10.4860(7)                                                                                      | 11.235(2)                                                                                       | 10.6099(10)                                                                                     | 16.0943(9)                                                                       |
| b/Å                                                           | 23.8196(17)                                                                                                   | 12.7608(8)                                                                                                      | 13.2706(9)                                                                                      | 22.991(4)                                                                                       | 22.192(2)                                                                                       | 16.0943(9)                                                                       |
| c/Å                                                           | 12.6524(8)                                                                                                    | 12.9324(7)                                                                                                      | 29.888(2)                                                                                       | 20.206(4)                                                                                       | 20.122(2)                                                                                       | 16.0943(9)                                                                       |
| a/degree                                                      | 90                                                                                                            | 106.472(3)                                                                                                      | 90                                                                                              | 90                                                                                              | 90                                                                                              | 90                                                                               |
| $\beta$ /degree                                               | 98.894(3)                                                                                                     | 94.713(3)                                                                                                       | 91.166(3)                                                                                       | 97.139(6)                                                                                       | 91.369(3)                                                                                       | 90                                                                               |
| γ/degree                                                      | 90                                                                                                            | 115.252(2)                                                                                                      | 90                                                                                              | 90                                                                                              | 90                                                                                              | 90                                                                               |
| Vol (Å <sup>3</sup> )                                         | 3363.5(4)                                                                                                     | 1681.68(17)                                                                                                     | 4158.2(5)                                                                                       | 5178.8(16)                                                                                      | 4736.5(8)                                                                                       | 4168.8(7)                                                                        |
| Ζ                                                             | 4                                                                                                             | 2                                                                                                               | 4                                                                                               | 4                                                                                               | 4                                                                                               | 4                                                                                |
| $D_{\text{calcd}}$ , g cm <sup>-3</sup>                       | 1.487                                                                                                         | 1.536                                                                                                           | 1.452                                                                                           | 1.460                                                                                           | 1.557                                                                                           | 1.459                                                                            |
| $\mu/\text{mm}^{-1}$                                          | 1.067                                                                                                         | 0.910                                                                                                           | 0.748                                                                                           | 0.712                                                                                           | 0.777                                                                                           | 0.784                                                                            |
| F(000)                                                        | 1544                                                                                                          | 792                                                                                                             | 1864                                                                                            | 2328                                                                                            | 2264                                                                                            | 1872                                                                             |
| $\theta$ range (degree)                                       | 2.362 to 30.518                                                                                               | 2.944 to 28.315                                                                                                 | 2.350 to 27.199                                                                                 | 2.216 to 24.997                                                                                 | 1.835 to 26.413                                                                                 | 2.192 to 27.146                                                                  |
| Limiting<br>Indices                                           | $\label{eq:16} \begin{array}{l} -16 \leq h \leq 16, \\ -32 \leq k \leq 34, \\ -18 \leq l \leq 18 \end{array}$ | $\label{eq:heat} \begin{array}{l} -16 \leq h \leq 15, \\ -14 \leq k \leq 17, \\ -17 \leq l \leq 17 \end{array}$ | $\begin{array}{l} -13 \leq h \leq 13, \\ -17 \leq k \leq 16, \\ -38 \leq l \leq 38 \end{array}$ | $\begin{array}{l} -13 \leq h \leq 13, \\ -27 \leq k \leq 27, \\ -24 \leq l \leq 24 \end{array}$ | $\begin{array}{l} -13 \leq h \leq 13, \\ -24 \leq k \leq 27, \\ -24 \leq l \leq 25 \end{array}$ | -20<=h<=20<br>-20<=k<=20<br>-20<=l<=20                                           |
| Total/ unique<br>no. of reflns                                | 57694 / 10198                                                                                                 | 23584 / 8250                                                                                                    | 81157 / 9234                                                                                    | 105309 / 9088                                                                                   | 59211 / 9639                                                                                    | 62912 / 3107                                                                     |
| $R_{ m int}$                                                  | 0.0961                                                                                                        | 0.0400                                                                                                          | 0.0845                                                                                          | 0.0911                                                                                          | 0.0649                                                                                          | 0.0979                                                                           |
| Data/<br>restr./params.                                       | 10198/0/388                                                                                                   | 8250/0/415                                                                                                      | 9234/0/507                                                                                      | 9088/197/546                                                                                    | 9639/0/590                                                                                      | 3107 / 0 / 166                                                                   |
| GOF $(F^2)$                                                   | 1.041                                                                                                         | 1.044                                                                                                           | 1.068                                                                                           | 1.074                                                                                           | 1.030                                                                                           | 1.059                                                                            |
| R1, wR2                                                       | 0.0598, 0.0967                                                                                                | 0.0380, 0.0947                                                                                                  | 0.0540, 0.1319                                                                                  | 0.0658, 0.1895                                                                                  | 0.0382, 0.0928                                                                                  | 0.0630, 0.1675                                                                   |
| <i>R</i> indices (all data) <i>R1</i> , <i>wR2</i>            | 0.1490, 0.1270                                                                                                | 0.0610, 0.1034                                                                                                  | 0.1139, 0.1781                                                                                  | 0.0943, 0.2038                                                                                  | 0.0498, 0.0995                                                                                  | 0.0924, 0.1973                                                                   |
| Largest<br>different<br>peak and hole<br>(e Å <sup>-3</sup> ) | 0.581, -0.552                                                                                                 | 0.622, -0.558                                                                                                   | 1.243, -0.466                                                                                   | 1.079, -0.641                                                                                   | 0.706, -0.415                                                                                   | 0.746 and -0.594                                                                 |

## Table S1. Crystallographic data for complexes 3-7.



Figure S45. <sup>1</sup>H NMR (500 MHz) spectrum of *N*-benzyl-4-methoxyaniline in CDCl<sub>3</sub>.



**Figure S46.** <sup>13</sup>C{<sup>1</sup>H} NMR (125.7 MHz) spectrum of *N*-benzyl-4-methoxyaniline in CDCl<sub>3</sub>.



Figure S47. <sup>1</sup>H NMR (500 MHz) spectrum of *N*-benzylaniline in CDCl<sub>3</sub>.



Figure S48. <sup>13</sup>C{<sup>1</sup>H} NMR (125.7 MHz) spectrum of *N*-benzylaniline in CDCl<sub>3</sub>.



Figure S49. <sup>1</sup>H NMR (500 MHz) spectrum of *N*-benzyl-4-bromoaniline in CDCl<sub>3</sub>.



Figure S50. <sup>13</sup>C{<sup>1</sup>H} NMR (125.7 MHz) spectrum of *N*-benzyl-4-bromoaniline in CDCl<sub>3</sub>.



Figure S51. <sup>1</sup>H NMR (500 MHz) spectrum of *N*-benzyl-2,6-diisopropylaniline in CDCl<sub>3</sub>.



Figure S52. <sup>13</sup>C{<sup>1</sup>H} NMR (125.7 MHz) spectrum of *N*-benzyl-2,6-diisopropylaniline in CDCl<sub>3</sub>.



Figure S54. <sup>13</sup>C{<sup>1</sup>H} NMR (125.7 MHz) spectrum of *N*-benzylpyridin-2-amine in CDCl<sub>3</sub>.



Figure S55. <sup>1</sup>H NMR (500 MHz) spectrum of *N*-butyl-4-methoxyaniline in CDCl<sub>3</sub>.



Figure S56. <sup>13</sup>C{<sup>1</sup>H} NMR (125.7 MHz) spectrum of *N*-butyl-4-methoxyaniline in CDCl<sub>3</sub>.



Figure S57: <sup>1</sup>H NMR (400 MHz) spectrum of 4-methoxy-*N*-(4-methoxybenzyl)aniline in CDCl<sub>3</sub>.



**Figure S58:** <sup>13</sup>C{<sup>1</sup>H} NMR (125.7 MHz) spectrum of 4-methoxy-*N*-(4-methoxybenzyl)aniline in CDCl<sub>3</sub>.



Figure S59: <sup>1</sup>H NMR (400 MHz) spectrum of *N*-(4-methoxybenzyl)aniline in CDCl<sub>3</sub>.



Figure S60: <sup>13</sup>C{<sup>1</sup>H} NMR (125.7 MHz) spectrum of *N*-(4-methoxybenzyl)aniline in CDCl<sub>3</sub>.



Figure S61: <sup>1</sup>H NMR (400 MHz) spectrum of *N*-(4-methoxybenzyl)pyridin-2-amine in CDCl<sub>3</sub>.



Figure S62:  ${}^{13}C{}^{1}H$  NMR (125.7 MHz) spectrum of *N*-(4-methoxybenzyl)pyridin-2-amine in CDCl<sub>3</sub>.



Figure S63: <sup>1</sup>H NMR (500 MHz) spectrum of *N*-benzylidene-4-methoxyaniline in CDCl<sub>3</sub>.

## References

2. G. M. Sheldrick, Acta Cryst. Sect. C: Struct. Chem., 2015, 71, 3.

<sup>1.</sup> G. M. Sheldrick, Acta Cryst. Sect. A: Found. Crystallogr., 2015, 71, 3.