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S1. Grain size estimation 

S1a. Williamson-Hall plots  

Williamson–Hall method was used to measure the grain size.1–3 According to Williamson–Hall 

method, the total peak broadening is given by eqn (1) in the main text.  

𝛽!"# =
$%

&'()	(,)
+ 4𝜀	𝑡𝑎𝑛	(𝜃)                                            (1, main text) 

Where βhkl: full width at half maximum (FWHM), ε: lattice strain, and d: crystallite length in 

the direction perpendicular to set of reflecting planes, K: a constant; λ: wavelength of X rays 

and θ: diffraction angle. The X’Pert Highscore Plus has an in-built function to calculate the 

grain size using Williamson–Hall method. The in-built function uses eqn (1) (main text) with 

some rearrangement. In the rearranged equation, eqn (1) is multiplied by 𝑐𝑜𝑠	(𝜃). Then, for all 

the peaks, (𝛽!"#𝑐𝑜𝑠	(𝜃)) is plotted as a function of sin(𝜃). Linear regression was then carried 

out for this data set. The crystallite length (d) was calculated from the intercept of the best fit 

line obtained from linear regression. The peaks were fitted with Pseudo-Voigt function to 

obtain correct FWHM. For the peak fitting, background, specimen displacement, peak position, 

Cagliotti parameters, and peak shape parameters were refined up to convergence. 

The instrument contribution to peak broadening was calculated from the profile fitting of XRD 

profile of SRM-640 (silicon, shown in Fig. S1).4 The peak broadening of SRM-640 was 

entirely attributed to the instrument contribution. The Cagliotti coefficients and Gauss – 

Lorentzian coefficients, which were calculated from SRM-640, were used as instrument 

parameters during the profile fitting of other nickel oxide powders. Pseudo-Voigt profile shape 

was used to model the peaks in diffractogram of SRM-640. The polynomial background 

function was used for modelling the background. Fig. S1 shows the diffractogram for the 

SRM-640. 



 

 

Fig. S1 Powder XRD pattern of SRM-640 

The agreement indices for the peak fitting are shown in Table S1. 

Table S1: Agreement indices for profile fitting of different nickel oxide powders. 
   

Sample code Goodness of Fit Weighted R profile 
NiO620 1.11 2.23 
NiO720 1.10 2.25 
NiO820 1.16 2.36 
NiO920 1.19 2.63 

 

Following are the images of Williamson–Hall plots for all the nickel oxide powders generated 

by the X’pert Highscore software. 



 

Fig. S2 Williamson-Hall plots for (a) NiO620 (b) NiO720, and (c) NiO920. 

 

S1b. Grain size stability analysis 

For checking the grain size stability of the synthesized nickel oxide, X-Ray Diffraction (XRD) 

was conducted (i) during temperature ramping while reaching the desired temperatures of 620, 

720 and 920 ᵒC and (ii) while isothermal annealing at these temperatures for various durations 

(5, 10 and 15 h). The XRD patterns during temperature ramping are shown in Fig. S3 and those 

while isothermal annealing are shown in Fig. S4. The estimated grain sizes during temperature 

ramping and while isothermal annealing are plotted in Fig. S5.  

 
(i) During temperature ramping 

During temperature ramping at 5 ᵒC/min, detectable nickel oxide starts to form at 

~400 ᵒC. However, the grain size has been estimated through the XRD patterns from 

500 ᵒC onwards, because the patterns at these temperatures show four distinctly 

visible peaks of nickel oxide which are necessary for using Williamson-Hall method 



(see S1a†).  The phase evolution and grain coarsening in the nickel oxide can be seen 

from Figs. S3 and S5. The issue of stability is not relevant for this part of the synthesis 

as the nickel oxide is being formed in this part. 

 

(ii) While Isothermal annealing 

From Fig. S5 it can be noticed that the grain size is almost stable while isothermally 

annealing up to 15 hours at these synthesis temperatures. Since all the studies 

conducted in this work are on the samples which are annealed for 5 hours, the effect 

of time is almost negligible on the grain size and the phase evolution. Further, the 

charge storge experiments were conducted at room temperature. Since the changes 

in the grain size or phase evolution are negligible while annealing at such high 

temperatures up to 15 hours, it can be safely assumed that the grain size would be 

stable even at room temperature. 

From the above discussion, the synthesized nickel oxide is considered to be stable 

in terms of the phase evolution and grain size. 

 

Fig. S3 X-ray diffraction patterns of nickel oxide at different temperatures during synthesis. 



 

Fig. S4 X-ray diffraction patterns of nickel oxide synthesized at (a) 620, (b) 720 and (c) 920 ᵒC 

after annealed for 5, 10 and 15 h. 

 

 

 

Fig. S5 Grain size variation during temperature ramping while synthesizing nickel oxide and 

during isothermal annealing at the synthesis temperatures of 620, 720 and 920 ᵒC. 



 

S2. Calculation of mole fraction of Ni2+ from x-ray photoelectron spectroscopy5–7 

The intensity of XPS spectrum for a given sample in the absence of an elastic scattering event 

is shown in eqn (S1).  

𝐼 = 𝐽	𝑐	𝛼.' 	𝐾/𝜆0123                                                                            (S1) 

 

Where J is X-ray flux illuminating the sample, c is concentration of electron emitted from the 

sample volume at fixed binding energy, αpc is photoelectron cross section, Kf is a factor to 

account for all instrumental effects and λIMPS is elastic mean free path. I (intensity) in eqn (S1) 

is the area encapsulated between background and peak under consideration. The product of αpc, 

Kf and λIMPS is called relative sensitivity factor (RSF).  

Therefore, the ratio 
4!"#
4$%

 using following equation 

4!"#
4$%

=	
0!

562!7
0$%

562$%7
	                                                          (S2) 

The Instrument factor and the amount of flux will cancel out of the equation.  

The total yield of photoelectrons from nickel, when its 2p orbital perturbed by photoelectron, is 

divided into Ni 2p3/2 and Ni 2p1/2. Therefore, complete Ni 2p peak is used to calculate 𝐼48. 

While 𝐼9 was calculated from area under main line in O 1s. 

S2a. Calculation of 
𝑵𝑵𝒊𝟐)
𝑵𝑵𝒊

 from 
𝑵𝑶𝟐#
𝑵𝑵𝒊

 : 

On dividing eqn (3) (main text), by 𝑁48 we get eqn (S3).  

2	
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4$%

= 2	
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4$%

                                             (S3) 



By definition of 𝑁48,  

4$%+)
4$%

= 1 −	
4$%")
4$%

                                                     (S4) 

On substituting eqn (S4) in eqn (S3), followed by rearrangement eqn (4) (main text) is 

obtained. 

4$%")
4$%

= 3 − 2 ×
4!"#
4$%

                                     (4, main text) 

S2b. Calculation of error in 
𝑵𝑵𝒊𝟐)
𝑵𝑵𝒊

 ratio: 

The error in calculation of 
4!"#
4$%

 is given by eqn (S5). 
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On substituting values from eqn 2 (main manuscript) we get eqn (S6). 
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(S6) 

As no tolerance in RSF values were provided by Kratos, the error in both RSF values was 

assumed to be 0.05. The area under the O 1s and Ni 2p spectra was calculated by trapezoidal 

rule. The formula for the trapezoidal rule is shown in eqn (S7). 

𝐴 = 	∑ (0,@0,)-)
>

	(𝑒𝑉A@B − 𝑒𝑉A)4CB
ADB                                           (S7) 



Here 𝐼A represents the intensity of photoelectrons at binding energy 𝑒𝑉A. N is total number of 

points recorded. In this case each intensity (𝐼A) and binding energy value (𝑒𝑉A) act as a variable. 

Therefore the total error in calculated area is given by eqn (S8). 

𝛿𝐴 = 	G∑ ;E
;FG,

	𝛿𝑒𝑉A + 	∑
;E
;0,
	𝛿𝐼AHCB

ADB
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ADB                                        (S8) 

There are six types of terms present in eqn (S8) which are given in eqn (S9). 
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On substituting corresponding values in eqn (S9a)-(S9f), the error in the area under XPS 

spectra was calculated. The error 
4!"#
4$%

 in was estimated by estimating the error in 𝐼9 and 𝐼48 by 

employing eqn (S8) and (S9). 

Error in 
4!"#
4$%

 can be used to estimate the error in 
4$%")
4$%

 by using condition of global charge 

neutrality (eqn (4), main text) as shown in eqn (S10).  

𝛿 ?
4$%")
4$%

@ = 2 × 𝛿 ?
4!"#
4$%

@	                                                  (S10) 

The derivation of the eqn (S10) is as follows 



𝛿 ?
4$%")
4$%

@ = 𝛿 ?3 − 2 ×
4!"#
4$%

@                                              (S11) 

The right-hand side of eqn (S11) reduces to eqn (S12). 

𝛿 ?
4$%")
4$%

@ = 𝛿(3) − 	2 × 𝛿 ?2 ×
4!"#
4$%

@                                              (S12) 

In eqn (S12), the error in constant is zero. The error in the ratio has to be absolute, therefore the 

negative sign is dropped. 

S2c. Comparison of O 1s spectrum between freshly synthesized samples and old samples: 

 

Fig. S6 O 1s XPS spectrum recorded for (a) NiO620 sample synthesized two days prior to XPS 
scan (b) NiO620 synthesized just before XPS scan. 

 

 

 

 

 



S3. Cyclic voltammograms of nickel oxide samples 

The cyclic voltammetry of nickel oxide was performed in potential range of −0.05 to 0.60 V 

with respect to Hg/Hg2Cl2 reference electrode in 2 M KOH solution. The cyclic voltammetry 

was performed at different scan rates: 5, 10, 20, 35, 50, 80, 100 mV s−1. Fig. S7 shows the CVs 

acquired at various scan rates. 

 

Fig. S7 Cyclic voltammograms of (a) NiO620, (b) NiO720, and (c) NiO920 recorded at 

different scan rates. 

From Fig. S7, both charging and discharging curves exhibit peaks. With an increase in the scan 

rate, the peak current density increases, and peaks shift towards higher potential in anodic side. 

This behaviour is a result of the diffusion limited nature of the given redox reaction. With an 

increase in the scan rate the ion diffusion cannot keep pace with charge transfer. 

The specific capacitance was estimated by considering the charging segment of the CV (Fig. 

4a, main text). It was assumed that only non-Faradaic processes contributed to current from 0 

to +0.25 V. This contribution is almost linear in terms of current density and applied potential, 



as can be seen from Fig. 4a (main text). Beyond this potential both non-Faradaic and Faradaic 

processes contribute to charge storage. The contribution of non-Faradaic processes towards 

current density beyond +0.25 V followed the same linear relation between current density and 

applied potential as that up to +0.25 V. The slope and intercept of the line of non-Faradaic 

current were calculated by linear least-square fitting of CV data from 0 to +0.25 V. Beyond 

+0.25 V, the current due to the non-Faradic processes was then subtracted from the total 

current in the CV to obtain the current exclusively from the Faradaic processes. Within this 

Faradaic segment of the area under CV, the contribution from OH− adsorption was estimated 

by truncating the Faradaic segment at ~+0.50 V where the current due to OH− adsorption is 

minimal. The remaining part of the Faradaic segment is attributed to the oxygen evolution 

reaction and is discarded in the present study. The specific capacitance was then calculated 

mathematically integrating the current density pertaining to the Faradaic part pertaining to OH− 

adsorption (i.e. by fixing 𝑉8 and 𝑉/ in eqn (3) as +0.25 and +0.50, respectively) with respect to 

time. 

 

Fig. S8 Schematic representation of division of area under cyclic voltammograms of nickel 

oxide powders to calculate the contribution of three electrochemical processes in specific 

capacitance. 



 

Fig. S9 Contribution of oxygen evolution process, non-Faradaic processes and OH adsorption 

to total estimated charge as function of scan rate for (a) NiO620, (b) NiO720, and (c) NiO920. 

 



S4. Uncertainty in calculation of specific capacitance and Faradaic contribution 

The uncertainties or sources of error in the measurement of specific capacitance can be divided 

into two subclasses: (i) uncertainty in measurement – random errors because of potentiostat 

during measurement; (ii) variation in the coating. 

The first source of the errors arises from the uncertainty in measuring the current and voltage 

during cyclic voltammetry. The error in the measurement of each parameter will propagate in 

the calculation of the specific capacitance. The formula for the specific capacitance is  

𝐶). =	
B

I	J	KG
	∫ 𝑖	𝑑𝑉G/
G%

                                       (6, main text) 

Where w is weight if the active material, ν is the scan rate and ΔV is voltage window. The 

uncertainties during measurement incurred due to the least counts of the parameters are listed 

in Table S2. 

Table S2: Least count for different measured entities in eqn 6 
  

Quantity Measured Uncertainty 
Current 1 x 10−5 A 
Voltage 0.001 V 
Weight 0.0001 g 

Scan Rate 0.0001 V/s 
 

The error propagated while computing a function q(x,y,z,…)  with δx, δy, δz … as independent 

and random uncertainties in parameters x,y,z… is given by eqn (S13). 

𝛿𝑞 = 	G?;L
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	𝛿𝑥@

>
+	?;L

;N
	𝛿𝑦@

>
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>
+⋯                                              (S13) 

To simplify the calculation of uncertainty in specific capacitance, eqn (6) (main text) can be 

rewritten as eqn (S14). 

𝐶63 = 	 B
P	J	QG

	𝐴RG                                                            (S14) 



Therefore, the uncertainty in calculation can be calculated using eqn (S15). 
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Where, 𝐴RG is the term in integration. The ‘𝐴RG’ was calculated from the discrete numbers of 

current and voltage values using trapezoidal method for integration. Equation (S16) shows the 

formula used for computing ‘𝐴RG’. 

𝐴RG = 	∑ (R%)-@R%)
>

	(𝑉8@B − 𝑉8)HCB
8DB                                                                       (S16) 

The same sum can be rewritten in following two ways as shown in eqn (S17) and (S18), when 

the terms are rearranged. 

𝐴RG = 	 B
>
	(𝐶B(𝑉>	 − 	𝑉B) + 𝐶H(𝑉H	 − 	𝑉HCB) + 	 ∑ 𝐶8(𝑉8@B	 − 	𝑉8CB)HCB

8D> )                    (S17)  

𝐴RG 	 = 	 B
>
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8D> )                  (S18) 

The uncertainty in ‘𝐴RG’ is given by eqn (S19). 

𝛿𝐴RG = 	GB
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H
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The terms in eqn (S19) can be divided into the following six types of terms, as shown in eqn (S 

20). In the following equations, the subscript denotes the order of the terms. Subscript 1 

indicates the first data point (i.e. beginning of the scan), ‘n’ indicates the data point 

corresponding to the highest voltage in the scan, and ‘i’ subscript represents the rest of the data 

points.  

;E01
;R-

= 	(𝑉> − 𝑉B)	 = 𝑑𝑉                                                  (S20a) 



;E01
;R.

= 	(𝑉H − 𝑉HCB)	 = 𝑑𝑉                                              (S20b) 

;E01
;R%

= 	(𝑉8@B − 𝑉8CB)	 = 2	𝑑𝑉                                               (S20c) 

;E01
;G-

= 	(𝐶> − 𝐶B)																																																																	(S20d)	

;E01
;G-

= 	(𝐶> − 𝐶B)                                                          (S20e) 

;E01
;G%

= 	(𝐶8CB − 𝐶8@B)                                                     (S20f) 

where dV is voltage step during the scan. On calculating terms given in eqn (S20) and then 

substituting in eqn (S12) the error in 𝐴RG can be obtained. The uncertainty in specific 

capacitance is shown in Fig. S10. The uncertainty in specific capacitance in percentage was 

calculated using eqn (S18). 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦	𝑖𝑛	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒	(%) = 	 S(R23)
R23

	× 100                        (S21) 

To calculate the uncertainty in faradaic contribution, eqn (S13) is used.  

𝛿(%𝐹) = 	G?SE-
E+
× 100@

>
+ 	 ?E-

E+
× 100 × 	𝛿𝐴T@

>
                            (S22) 

Where (%F) is the uncertainty in contribution of faradaic process in percentage. The 

uncertainty in A3 can be calculated directly from CV curve using eqn (S20). 

𝛿𝐴T = 	G?C	E01
J"

	𝛿𝜈@
>
+ 	 ?SE01

J
@
>
                                              (S23) 

The uncertainty in A1 was calculated with same approach directly from equivalent area in the 

CV curve (𝑨𝒈𝒂𝒖𝒔𝒔). The uncertainty in 𝑨𝒈𝒂𝒖𝒔𝒔 was calculated by same approach as that used 

for the calculation of Acv in eqn (S11). In the case of  𝑨𝒈𝒂𝒖𝒔𝒔 , the uncertainty in the current was 

calculated by adding uncertainty due to instrument precision, and error in fitting of Gaussian 

peak as well as that in the straight line of non-Faradaic current. Errors in the least square fitting 



were calculated by computing average of differences between experimental data and fitted 

curves at each data point. The total uncertainty in current was then calculated by eqn (S24). 

𝛿𝐼 = 	𝛿𝐼8H)YAZPFHY +	𝛿𝐼[\Z)) +	𝛿𝐼H(HC/\A\&\8'                                       (S24) 

Where 𝛿𝐼[\Z)) and 𝛿𝐼H(HC/\A\&\8' are the average errors calculated for Gaussian peak fit and 

straight line of non-Faradaic current respectively.  

 

Fig. S10 Propagation error in calculation of the specific capacitance as a function of the 

synthesis temperature as absolute value and as percentage of estimated value. 

 

S5. Porosity estimation  

The porosity was estimated electrochemically from CVs by a method proposed by Trasatti and 

his co-worker.8 To measure the porosity, the charge under non-Faradaic portion (+0.25 V) was 

calculated from the CVs at different scan rates (𝜈) mentioned in S3†. From these estimated 

charges (q) and the scan rates two quantities q∞ and q0 were obtained by linear regression using 

eqn (S25). 



𝑞(𝜈) = 	𝑞] +	𝑘B	d1 𝜈⁄                                                            (S25a) 

1/𝑞(𝜈) = 	1 𝑞^⁄ +	𝑘>√𝜈                                                            (S25b) 

Where k1 and k2 are constants obtained by regression. The electrochemical porosity (𝑥F') is 

then given by eqn 26. 

𝑥F' =	
L4

L5@	L4
                                                                     (S26) 

 

S6. Electrical conductivity estimation 

To estimate the electrical conductivity of the samples the nickel oxide powders synthesized at 

620, 720 and 920 ᵒC were pelletized (diameter: 11.5 nm, thickness: 0.4 mm) by compressing 

them at 8-ton force in hydraulic press followed by annealing at 600 ᵒC. Electrochemical 

Impedance Spectroscopy (EIS) was performed on these pelletized powders by employing 

broadband dielectric analyzer (Concept 80, Novocontrol GmbH, Germany). Prior to 

performing EIS, silver electrode paste prepared from silver ink mixed with N-butyl acetate was 

applied on both sides of each pellet. The ink was dried in infra-red lamp for 15 min. A 

frequency range of 10 to 107 Hz was used to record Nyquist plots on these pellets. The Nyquist 

plots, as shown in Fig. S11, exhibit distorted semicircle features. The Nyquist plots were used 

to construct equivalent circuits from which the conductivities of grain and grain boundaries 

were estimated.  

 

 

 



 

Fig S11. Nyquist plots of the pelletized nickel oxide samples for conductivity estimation.  

The corresponding equivalent circuit used for the interpretation of the EIS data is shown in the  

inset of Fig. S11. In the equivalent circuit Rel, RBulk, and RGB correspond to the resistances 

offered from the electrode (silver paste), bulk and grain boundary in nickel oxide. The CPEel, 

CPEBulk, and CPEGB are the corresponding constant phase elements. Here, CPEs were taken in 

lieu of pure capacitors as these locally charged regions cannot be modelled as ideal 

capacitors.9–12 Values of the various parameters from the equivalent circuit are tabulated in 

Table S3. 

 

 



Table S3: The optimized values of various parameters obtained from the equivalent circuit 

(Fig. S11) 

Parameters NiO620 NiO720 NiO920 

Rel (ohm-mm) 1.61×10−3 1.63−3 9.1×10−3 

Yel (S/mm) 1.57×10-8 3.71×10−8 1.51×10−8 

nel 0.99 0.94 0.894 

RBulk (ohm-mm) 5.04×107 3.95×107 9.87×1010 

YBulk (S/mm) 2.31×106  3.66×106 1.24×106 

nBulk 5.70×10−1 5.77×10−1 5.20×10−1 

RGB (ohm-mm) 0.097 0.33 2.79×10−5 

YGB (S/mm) 3.81×109 4.53×109 1.47×109 

nGB 1 1 0.93 

 

To estimate the conductivity values of grain boundary and bulk region, the conductivity value 

of any entire sample (i.e. ‘global conductivity’, here) was estimated from the overall resistance 

obtained from the equivalent circuit. The global conductivity is plotted as function of synthesis 

temperature in Fig. S12a. The estimated global conductivities (sGlobal, Fig. S12a) of the 

samples prepared in the present study match with those reported in literature.13,14 The nominal 

conductivities of  grain boundary and bulk (i.e. sGB and sBulk) were estimated from their 

respective, estimated resistance values (i.e. RGB, and RBulk) and the sample dimensions. These 

values are plotted in Fig. S12b. However, to eliminate dimensional effects from the estimation 

of conductivities, these nominal conductivities of grain boundary and bulk are divided by the 



global value. Such normalized conductivities of grain boundary and bulk (i.e. sGB/sGlobal and 

sBulk//sGlobal) are plotted in Fig. S12c. From Fig. S12b and c, the nominal and the normalized 

conductivities of the Bulk are almost constant, indicating that the nature of the bulk region of 

nickel oxide does not change with the synthesis temperature (or stoichiometry, i.e. Ni2+). The 

nominal and the normalized conductivities of the grain boundary are higher than those of Bulk. 

This shows that the grain boundaries are more conductive than bulk. Further, the nominal and 

the normalized conductivities of the grain boundary decrease with synthesis temperature and 

thus with Ni2+ mole fraction. Hence, the higher conductivity near the grain boundaries is a 

result of the presence of nickel vacancies, and thus, of Ni3+ (holes), being consistent with 

literature.13,14 Both nickel vacancies and Ni3+ provide different conduction mechanisms which 

are absent in pure nickel oxide containing only Ni2+.13,14 Such a reduction in the grain boundary 

conductivity can arise from a decrease in (i) the total grain boundary fraction and/or (ii) Ni3+ 

mole fraction (Fig. 3a) with an increase in synthesis temperature.  

 

 

 



 

Fig S12. Estimated (a) global conductivity of the entire sample, (b) nominal and (c) normalized 

conductivities of grain boundary and bulk in nickel oxide synthesized at 620, 720 and 920 ᵒC.  

 

 

 



S7. Thermodynamic Model 

S7a. Derivation of Poisson’s equation (Eqn (13) in main text) 

A set of one grain (Bulk) and one grain boundary (GB) is defined as the system in this model. 

The location where Bulk and GB join is considered as the interface. The model uses 

appropriate GB and Bulk sizes as adjustable parameters. The assumptions of the model are: (a) 

The defects do not interact with each other.15,16 (b) Formation energy of a given defect is the 

same everywhere in a given region.15–17 That is, the likelihood for the presence of the defects is 

the same everywhere within GB or Bulk, separately. (c) GB and Bulk regions are considered as 

two separate phases of nickel oxide.18 (d) The system is treated as thermodynamically open and 

the exchange of oxygen atoms is allowed between the system and surroundings (eqn (7), main 

text). 

The Gibbs free energy of the system at constant temperature and pressure is given by eqn 

(S27). 17,19  

𝐺 = 	∑ 𝜇._Z#"𝑛._Z#". +	∑ 𝜇.`_𝑛.`_.                                                           (S27) 

where, p represents 𝑉48aa , 𝑉9•• and ℎ; 𝜇.
L: chemical potential of p in region q: Bulk or GB; and n: 

number of defects in q. The differential change in G is given in eqn (S28). 

𝑑𝐺 = 	∑ 𝜇.	_Z#". 𝑑𝑛._Z#" +	∑ 𝜇.`_𝑑𝑛.`_.                                                      (S28) 

At equilibrium,  

𝑑𝐺 = 0                                                                           (S29) 

For the open system (assumption (d)), for eqn (S29) to hold true for any arbitrary change in the 

number of defects (𝑑𝑛.
L) 17,18, the chemical potential of every defect should be equal to zero 

(eqn (S30)).  

𝜇.
L = 0                                                                            (S30) 



The chemical potential, 𝜇.
L, as shown in eqn (S31), is the sum of the formation energy of given 

defect (𝑈.
L), electrostatic energy ?𝑧.𝑄𝜙(𝑥)@ and configurational entropy n𝑘𝑇	log	(𝑛.

L 𝑁⁄ )s. 17,20  

𝜇.
L = n𝑈.

Ls + ?𝑧.𝑄𝜙(𝑥)@ + n𝑘𝑇	log	(𝑛.
L 𝑁⁄ )s                                            (S31) 

where, 𝑧.: net charge on defect, 𝑄: charge on proton, 𝑛.
L: number of p defects per unit volume 

in q, 𝜙(𝑥): electrostatic potential, and N: number of available sites for defects under 

consideration in a unit volume. By substitution of 𝜇.
L from eqn (S31) in eqn (S30) followed by 

rearrangement, the equation for 𝑛.
L as a function of spatial coordinates (x) in a given region of 

material (eqn (S32), same as eqn(10) in main text) is obtained. 

𝑛.
L = 	𝑁	exp	 X−	

c6
7@	O6de(M)

"f
Y                                    (S32) 

In eqn (S32), only electrostatic potential 𝜙(𝑥) is unknown and is calculated by solving 

Poisson’s equation (eqn (S33), same as eqn (11) in main text). Since, eqn (S33) is applicable to 

both Bulk and GB, the superscript q is omitted.  

∇>𝜙 =	 1
𝜀0
	x2	𝑁	𝑒

gC	
81!

••)"	;	<(>)

@A h
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iC	
8C)	;	<(>)

@A j 	− 	2	𝑁	𝑒
kC	

8
1$%
BB #"	;	<(>)

@A l
	y	              

(S33) 

where, 𝜀^: permittivity of vacuum; 𝑘: Boltzmann’s constant. 

 

S7b. Solution of Poisson’s equation (Eqn (S33) or Eqn (11) in main text) 

In eqn (S33) N is the total number of lattice sites available per unit volume. In order to solve 

eqn (S33), iterative procedure was employed. One dimensional Poisson’s equation was solved 

separately in bulk and in grain boundary. The sum of the lengths of bulk and grain boundary 

was maintained equal to the grain size. Potential as a function of distance from GB/Bulk was 



found for different initial conditions. Finally, pairs of potential curves, each consisting of 

potential curves from GB and another potential curve from bulk, were identified such that the 

overall charge neutrality was maintained according to eqn (S34). 

𝑄f(`_) + 𝑄f(_Z#") = 0                                                         (S34) 

Where QT refers to total charge in region that is mentioned in superscript. The value of 

potential is maximum at GB/Bulk interface which would then approach to the value 

corresponding to charge neutrality (𝜙]) in bulk. The condition of charge neutrality (eqn (S34)) 

was used to find out 𝜙] in GB and in Bulk. The parameter 𝜙] was calculated using eqn (S32). 

The charge neutrality in any given region as given in eqn (8) in main text is expanded as eqn 

(S35). 

(𝑁 − 𝑁G$%BB ) ∗ exp ?−1 ∗
cC@de∞

"f
@ + 2𝑁 ∗ exp X−1 ∗

c1!
••@>de∞

"f
Y = 𝑁 ∗ exp X−1 ∗

c1$%
BB C>de∞

"f
Y 

(S35) 

As the first step of computation, Poisson’s equation was written in 1 dimension as shown in 

eqn (S36). 
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(S36) 

By using substitution ?𝜓 = 𝑑𝜙
𝑑𝑥| @, eqn (S36) can be reduced to variable separable form  

𝜓	𝑑𝜓 = 𝑓(𝜙)	𝑑𝜙                                                                     (S37) 

On integrating eqn (S37) and further rearrangement eqn (S38) can be obtained. 
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Equation (S38) is a first order autonomous differential equation. Therefore, the slope of the 

solution is only dependent on potential value at the position.  Since the potential has to be 

constant once it reaches its 𝜙], the constant was calculated such that  𝑑𝜙 𝑑𝑥| = 0 when 𝜙 =

	𝜙]. The constants of integrations are different for Bulk and GB regions. Since GB is 

negatively charged and space charge zone has net positive charge, the right hand side of eqn 

(S38) is negative for GB region and positive for bulk region. The equations were solved for a 

range of starting potentials (initial conditions) 𝜙].  

 

S7c. Formation Energies 

The formation energy of point defects in nickel oxide were calculated by several research 

groups. Duffy and Tasker calculated the energy of the vacancy by considering the nickel oxide 

crystal without any defects as the reference state. Other researchers have calculated the 

formation energy of nickel vacancy with Fermi level as the reference.21–27 The formation 

energy values with respect to the pure crystal was used to calculate the concentration of the 

defects.28 In nickel oxide, the nickel vacancies have higher formation energy in bulk when 

compared to different the grain boundaries.29 However, the values of the formation energy 

calculated by Duffy and Tasker are higher than 22 eV.29 These values result in zero vacancy 

concentration (~10CTp^ m−3). The experiments carried out by Haugsrud et al. show that the 

concentration of the nickel vacancies as fraction of total number of nickel ions is 3	 ×	10Cq at 



1200 ᵒC.30 The calculation of formation energy using eqn (S39) gives the formation energy 

value to be 1.09 eV.  

𝑛&F/F'Y =	𝑁&F/F'Y	𝑒
C<

∆FGH/HIJ
"@A =	                                                      (S39) 

Bruemmer et al. also reported experimental values of nickel vacancy to be near 1.5 eV.24 Both 

these observations suggest that the formation energy of the nickel vacancy is between 1 – 2 eV. 

The formation energy of holes as calculated by Duffy and Tasker is more than 30 eV 29, which 

results in the concentration of holes as zero. Their calculation showed that the formation energy 

of the holes is less in bulk than that in the grain boundary. Duffy and Tasker have not 

considered oxygen vacancies for the analysis.29 The formation energy of oxygen vacancy is 

reported by Bruemmer et al. as 2.5 eV.24 Due to the unavailability of the formation energies of 

the defects, here we considered the general relation between the formation energies of the three 

defects in the range of 0 – 2 eV.: 1) in bulk – (𝑈! < 𝑈G$% < 𝑈G!)  2) in grain boundary – 

(𝑈G$% <	𝑈! < 𝑈G!). 

Table S4: Formation Energies of Defects24 

Region Defect Formation Energy (eV) 

Grain Boundary 

Nickel Vacancy 1.0 

Oxygen Vacancy 2.5 

Hole 1.5 

Bulk 

Nickel Vacancy 1.5 

Oxygen Vacancy 2.5 

Hole 1.0 
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