Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Support Information

Single-layer Membranes for Organic Solvent Nanofiltration : A

Molecular Dynamics Simulation Study and Comparative Experimental

Xuejian Li^a, Yue Liu^a, Qiaohong Liu^{b,}*, Zilong Zheng^a, Hongxia Guo^{a,*}

^a Xuejian Li, Yue Liu, Prof. Zilong Zheng, Prof. Hongxia Guo

Key Laboratory of Advanced Functional Materials of the Ministry of Education, College of Materials Science and Engineering

Beijing University of Technology, 100124 Beijing, P. R. China

Email: liuqiaohong@bjut.edu.cn

^b Dr.Qiaohong Liu Beijing Key Laboratory for Green Catalysis and Separation College of Environmental and Chemical Engineering

Beijing University of Technology, 100124 Beijing, P. R. China

Email: liuqiaohong@bjut.edu.cn

Ato	Atom c			σ/Å	$\epsilon/(kJ mol^{-1})$
М	Mo 0.76		4.43		0.485
S	S 0.38		3.34		2.085
	bonds Mo-S angles S-Mo-S Mo-S-Mo		$r_0/Å$		$k_r/(kJ mol^{-1} Å^{-2})$
			2.41	2.41 430	
			θ_0/deg		$k_{\theta}/(kJ mol^{-1} rad^{-2})$
			83.8		1187.7
			83.8		2050.0

Table S1. Force field parameters of MoS₂¹⁻³

 Table S2. Solvents and solute.

Solvent	Mw	Density	diameter	Viscosity	Hansen Solubility
	(g / mol)	(kg / L)	$d_{kinetic} (\text{\AA})^{4,5}$	μ (MPa · s)	parameter δ (MPa ^{1/2}) ³
Acetonitrile	41.05	0.757	3.4	0.32 ^{5,6}	24.6
Methanol	32.04	0.778	3.8	0.494,7	29.7
Hexane	86.18	0.653	4.3	0.296	14.9
Ethanol	46.07	0.794	4.5	$1.17^{4,7}$	26.6
Acetone	58.08	0.797	4.7	0.297	20.1
Propanol	60.10	0.80	6.3	2.27 ^{7,8}	23.4

Figure. S1 Pore size distribution of MoS2 nanosheets in experiment

In this study, the pore size distribution of MoS_2 nano sheets prepared by hydrothermal method was tested and analyzed by autosorb IQ N₂ adsorption desorption instrument (Beijing jinepu Technology Co. Ltd.). The measured aperture range is full hole. Prepare the sample in situ at about 80.9h under the condition of MoS_2 , and put it into the nano tube for degassing.

Fig. S2 SEM of the cross-sectional of MoS2 membranes

(Preparation conditions: reaction temperature, 220°C; reaction time, 30h)

Scanning electron microscopy (SEM) was used to characterize the cross-sectional micro morphology of MoS2 tubular ceramic film. The results are shown in Figure S3. It can be seen from the figure that the thickness of MoS2 thin layer is about 200nm,

Fig. S3 XRD characterization of MoS2 nanosheets (reaction time 30 h; reaction temperature 220 °C)

It can be seen from figure S3 that during hydrothermal reaction, the hydrothermal products are θ MoS₂ characteristic peaks appeared at about 14 °, 32 °, 39 ° and 58 °, indicating that MoS2 nanosheets were prepared in hydrothermal solvent. According to the Bragg equation, the spacing of MoS₂ nano flakes is 0.76 nm. The thickness of each molybdenum disulfide molecular layer is about 0.626 nm. Therefore, the layer spacing of MoS₂ is 1.4nm

			charge	sigma	epsilon
Methanol	С	opls_157	+0.145	0.350	0.276
	Н	Opls_140	+0.040	0.250	0.126
		Opls_155	+0.418	0.000	0.000
	Ο	Opls_154	-0.683	0.312	0.711
	С	Opls_157	+0.145	0.35	0.276
		Opls_135	-0.180	0.350	0.276
Ethanol	Н	Opls_155	+0.418	0.00	0.000
		Opls_140	+0.040	0.25	0.126
	0	Opls_154	-0.683	0.312	0.711
	С	Opls_157	+0.145	0.350	0.276
		Opls_136	-0.120	0.3500	0.276
Drananal		Opls_135	-0.180	0.3500	0.276
Topanor	Н	Opls_155	+0.418	0.000	0.000
		Opls_140	+0.040	0.250	0.126
	0	Opls_154	-0.683	0.3120	0.711
	С	Opls_754	+0.460	0.3300	0.276
acetonitrile		Opls_755	-0.080	0.3300	0.276
	Н	Opls_140	+0.040	0.250	0.126
	Ν	Opls_753	-0.560	0.3200	0.711
N-hexane	С	Opls_135	-0.180	0.3500	0.276

Table S3. force field parameters of solvents

		Opls_136	-0.120	0.3500	0.276
	Н	Opls_140	+0.040	0.250	0.126
acetone	С	Opls_455	-0.500	0.350	0.276
		Opls_623	+0.732	0.355	0.293
	Н	Opls_376	+0.139	0.2500	0.209
	0	Opls_771	-0.566	0.296	0.879

References

- Reid RC, Sherwood TK, Street RE. The Properties of Gases and Liquids. *Phys Today* 1959;12:38-40. Doi:10.1063/1.3060771.
- 2. Vikas V. Soumya S. MD simulations of molybdenum disulphide (MoS₂): Force-field parameterization and thermal transport behavior. *Computational Materials Science* 2010:48;101–108. doi:10.1016/j.commatsci.2009.12.009.
- Sresht V, Govind Rajan A, Bordes E, Strano MS, Pádua AAH, Blankschtein D. Quantitative Modeling of MoS₂ - Solvent Interfaces: Predicting Contact Angles and Exfoliation Performance using Molecular Dynamics. *The Journal of Physical Chemistry C* 2017;**121**:9022-31. Doi:10.1021/acs.jpcc.7b00484.
- Liang T, Phillpot SR, Sinnott SB. Parametrization of a reactive many-body potential for Mo S systems. *Physical review. B, Condensed matter and materials physics* 2009;79. Doi:10.1103/PhysRevB.79.245110.
- Karan S, Jiang Z, Livingston AG. Sub 10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. *Science (American Association for the Advancement of Science)* 2015;**348**:1347-51. Doi:10.1126/science.aaa5058.
- Van der Perre S, Van Assche T, Bozbiyik B, Lannoeye J, De Vos DE, Baron GV *et al.* Adsorptive Characterization of the ZIF-68 Metal-Organic Framework: A Complex Structure with Amphiphilic Properties. *Langmuir* 2014;**30**:8416-24. Doi:10.1021/la501594t.
- Michailidou EK, Assael MJ, Huber ML, Abdulagatov IM, Perkins RA. Reference Correlation of the Viscosity ofn - Heptane from the Triple Point to 600 K and up to 248 MPa. J Phys Chem Ref Data

2014;43:23103. Doi:10.1063/1.4875930.

 Xu Y, Lin J, Gao C, Van der Bruggen B, Shen Q, Shao H *et al.* Preparation of High-Flux Nanoporous Solvent Resistant Polyacrylonitrile Membrane with Potential Fractionation of Dyes and Na2 SO4. *Ind Eng Chem Res* 2017;56:11967-76. Doi:10.1021/acs.iecr.7b03409.