## **Supplementary Information**

## Surfactant-Free Synthesis of Fluorescent Platinum Nanocluster Using HEPES

## **Buffer for Hypochlorous Acid Sensing and Imaging**

Xiaoying Wang<sup>b</sup>, Yusong Wang<sup>a</sup>, Liping Yin<sup>a</sup>, Qiang Zhang<sup>\*b</sup> and Shaozhen Wang<sup>\*a</sup>

[\*] X. Wang, Y. Wang, L. Yin, Q. Zhang, and Prof. Dr. S. Wang

<sup>a</sup>Anhui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China.

<sup>b</sup>Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

\*Corresponding

author.

E-mail:

wangshaozhen@wnmc.edu.cn.

NaCl (AR,  $\geq$ 99.5%), KCl (AR,  $\geq$ 99.5%), AgNO<sub>3</sub> (AR,  $\geq$ 99.8%), CuCl<sub>2</sub>·2H<sub>2</sub>O (AR,  $\geq$ 99.0%), ZnSO<sub>4</sub>·7H<sub>2</sub>O (AR,  $\geq$ 99.5%), CaCl<sub>2</sub>·2H<sub>2</sub>O (AR), MnSO<sub>4</sub>·H<sub>2</sub>O (AR,  $\geq$ 99.0%), MgSO<sub>4</sub> (AR,  $\geq$ 98.0%), AlCl<sub>3</sub>·6H<sub>2</sub>O (AR,  $\geq$ 97.0%), CoSO<sub>4</sub>·7H<sub>2</sub>O (AR,  $\geq$ 99.5%), FeSO<sub>4</sub>·7H<sub>2</sub>O (AR), FeCl<sub>3</sub>·6H<sub>2</sub>O (AR) and H<sub>2</sub>O<sub>2</sub> (AR,  $\geq$ 30%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (China). Glutathione (GSH), cysteine (Cys), homocysteine (Hcy), glucose, sodium hypochlorite solution (reagent grade, available chlorine 4.00-4.99%), chloroplatinic acid hexahydrate (ACS reagent), Phorbol 12-myristate 13-acetate (PMA), *N*-acetyl-L-cysteine (NAC) and lipopolysaccharide (LPS) were purchased from Sigma-Aldrich Co. Ltd. (U.S.A.). HEPES buffer (1 M, pH 7.2- 7.4) was purchased from Beijing Soleibao Technology Co., Ltd. All aqueous solutions were prepared by deionized water (18.25 MΩ·cm).

TEM (Transmission electron microscopic) images were obtained with a Hitachi HT 7700 TEM instrument. The fluorescence and UV absorption spectra were acquired by a Hitachi F-2500 fluorescence spectrophotometer and Hitachi U-3900 spectrophotometer, respectively. The zeta potential was obtained with a Malvern Zetasizer Nano. The representative fluorescence images were in bottles were acquired by a Fusion FX7 imaging instrument (VILBER). The confocal fluorescence images were carried out on a confocal laser scanning microscope (TCS SP8, Leica, Germany).

| Nanoprobes                                             | Surface group              | Linear<br>Range (µM) | Synthesis<br>steps                 | Application      | References                                         |
|--------------------------------------------------------|----------------------------|----------------------|------------------------------------|------------------|----------------------------------------------------|
| CdSe-ZnS quantum<br>dots                               | Poly-NHMe                  | 0-0.83               | Three steps                        | Cells imaging    | Anal. Chem. 2010, <b>82</b> ,<br>9775–9781.        |
| N-doped carbon dots                                    | GSH                        | 60-150               | One step                           | Cells imaging    | Analyst, 2018, <b>143</b> , 5834-<br>5840.         |
| Cu NCs                                                 | PVP                        | 0-6                  | Two steps                          | Tap water sample | ACS Appl. Nano Mater.<br>2020, <b>3</b> , 312-318. |
| Au NCs                                                 | BSA                        | 0.8-800              | One step                           | Tap water sample | <i>Talanta</i> , 2015, <b>132</b> , 790-795.       |
| CD/CCM@ZIF-8                                           |                            | 0.1-50               | Two steps                          | Serum sample     | Anal. Chem. <b>2020</b> , 92,<br>3447-3454.        |
| PFOBT <sub>36</sub> SeTBT <sub>5</sub><br>Polymer dots | PEG                        | 0-250                | Multi-step<br>organic<br>synthesis | Cell imaging     | J. Am. Chem. Soc. <b>2017</b> ,<br>139, 6911-6918. |
| $MoS_2$ quantum dots                                   | GSH                        | 5-500                | One step                           | Tap water sample | <i>Microchimica Acta</i> , 2018, <b>185</b> , 233. |
| Pt NCs                                                 | Hepes<br>(Surfactant-free) | 5-160                | One step                           | Cell imaging     | This work.                                         |

## Table S1. Comparison of other nanoprobes for sensing of ClO<sup>-</sup>.



Figure S1. The absorption spectrum (A) and fluorescence spectrum (B) at 0 h reaction time.



**Figure S2.** The relationship between the fluorescence intensity and pH value in 10 mM PBS buffer. The inset is the pH-dependent fluorescence spectra of Pt NCs.



Figure S3. The dependence of ionic strength (1) on the fluorescence intensity of Pt NCs.



**Figure S4.** Photostability experiment of the Pt NCs in PBS buffer (10 mM, pH= 7.4). Voltage of xenon lamp: 700 V, slit:  $15 \times 15$ . Ex=405 nm. The concentration of Pt NCs is 10 µg/ mL.