Supporting Information

Controlled Supramolecular Interaction to Enhance the Bioavailability of Hesperetin on Targeted Cancer Cells Through Graphyne: A Comprehensive in *Silico study*

Maroof Ahmad Khan^a, Javed Iqbal^{*b}, Mubashar Ilyas^b, Ali Raza Ayub^a, Yanhong Zhu^a, Hui Li^{*a}

^aKey Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R.China.

^bDepartment of Chemistry, University of Agriculture, Faisalabad-38000, Pakistan.

Figure S1. The optimized structure of GRP and HPT@GRP-complex in the aqueous phase.

Figure S2. The HOMO-LUMO diagram of HPT, GRP, and HPT@GRP-complex in the gas phase.

Figure S3. The HOMO-LUMO diagram of HPT, GRP, and HPT@GRP-complex in the aqueous phase.

Figure S4. The MEP diagram of HPT@GRP-complex in an aqueous phase.

Figure S5. 3D color-filled iso-surface image of HPT@GRP complex.

Figure S6. Electron-density plots (A) ELF image for the GRP present in the HPT@GRP complex (B) ELF image for GRP.

Figure S7. The ADCH charges for *HPT@GRP*^{-1/+1} complexes.

Figure S8. The optimized structure of HPT@GRP⁺¹complex and HPT@GRP⁻¹complex.

Table S1. The HOMO-LUMO and chemical descriptors include vertical ionization energy, vertical electron affinity, and dipole moment in the aqueous phase.

 Table S2.
 The I.R. spectrum information of HPT, GRP, and HPT@GRP-complex.

Table S3. ELF (electron-localization function) and NBO analysis.

Figure S1. The optimized structure of GRP and HPT@GRP-complex in the aqueous phase.

Figure S2. The HOMO-LUMO diagram of HPT, GRP and HPT@GRP-complex.

Figure S3. The HOMO-LUMO diagram of HPT, GRP and HPT@GRP-complex.

Figure S4. The MEP diagram of HPT@GRP-complex in an aqueous phase.

Figure S5. 3D color-filled iso-surface image of HPT@GRP complex.

Figure S6. Electron-density plots (A) ELF image for the GRP present in the HPT@GRP complex (B) ELF image for GRP.

Figure S7. The ADCH charges for *HPT@GRP*^{-1/+1} complexes.

Figure S8. The optimized structure of HPT@GRP⁺¹complex and HPT@GRP⁻¹complex.

Parameters	HPT	GRP	HPT@GRP
Е _{номо} (eV)	-5.74	-5.80	-5.58
E _{LUMO} (eV)	-1.29	-3.24	-3.07
ΔE (eV)	4.447	2.56	2.51
VIP (eV)	5.74	5.80	5.58
VEA (eV)	1.29	3.24	3.07
η (eV)	2.223	1.28	1.25
μ (eV)	-3.51	-4.52	-4.32
X (eV)	3.51	4.52	4.32
σ	0.224	0.39	0.40
ω (eV)	2.77	7.98	7.46
Dipole moment	4.13D	0.47D	3.55D
λmax	200.14	520.96	525.93

Table S1. The HOMO-LUMO and chemical descriptors include vertical ionization energy, vertical electron affinity, and dipole moment in the aqueous phase.

Table S2. The I.R. spectrum information of HPT, GRP, and HPT@GRP-complex.

HPT@GRP	HPT	GRP	vibration	Effects	Comments
3839.87	3821.84	х	<i>v</i> _s O5-H32	Blueshift	Hydrogen bonding
3184.01	3011.76	x	<i>v₅</i> C22-H36	Blueshift	Hydrogen bonding
3259.21	x	3259.21	<i>v</i> _s C15-H18	No shift	No significant effect observed
2401.10	x	2401.21	<i>v</i> _s C29-C28	No shift	No significant effect observed
3257.04	x	3256.95	<i>v</i> _s C15-H18	Blueshift	Van der Waals forces
3058.25	3012.53	x	<i>vs</i> C22-H36	Blueshift	Van der Waals forces
3175.56	3073.38	x	<i>vs</i> C8-H25	Blueshift	Van der Waals forces
779.32	752.51	x	β _{as} C12-O1-C7	Blueshift	Week forces + Hydrogen bonding
952.36	x	953.48	<i>β</i> _s C56-C57-C58	redshift	Van der Waals forces
981.58	x	1023.82	β _{as} C95-C96-C71	redshift	Van der Waals forces

Table S3. ELF (electron-localization function) and NBO analysis

GRP → GRP				
Mode of Transition	kcal/mol			
$\pi_{C66-C67 \rightarrow} \sigma^*_{C126-C137}$	0.15			
$\pi_{\text{C101-C102}} \rightarrow \pi^*_{\text{C126-C127}}$	0.13			
$\pi_{\text{C50-C51}} \rightarrow \pi^*_{\text{C118-C123}}$	0.12			
$\pi_{C64\text{-}C65} \rightarrow \sigma^*_{\text{C116-C132}}$	0.12			
$\pi_{C66-C67} \rightarrow \pi^*_{C126-C127}$	0.11			
$\pi_{C66-C67} \rightarrow \sigma^*_{C111-C139}$	0.09			
$\pi_{\text{C105-C106}} \rightarrow \sigma^*_{\text{C121-C134}}$	0.08			
$\pi_{\text{C50-C51}} \rightarrow \pi^* _{\text{C126-C127}}$	0.06			
HPT →	GRP			

Mode of Transition	kcal/mol
LP (2) $_{0114} \rightarrow \pi^*_{C101-C102}$	0.15
$\pi_{\text{C126-C127}} \rightarrow \pi^*_{\text{C101-C102}}$	0.07
LP (2) ₀₁₁₁ $\rightarrow \pi^*_{C52-C53}$	0.07
LP (2) ₀₁₁₃ $\rightarrow \pi^*_{C105-C106}$	0.06
$\pi_{C126-C127} \rightarrow \pi^* _{C66-C67}$	0.05

Energy change before and after adsorption

Mode of Transition	Before kcal/mol	After kcal/mol
$\pi_{\text{C22-C23}} \rightarrow \pi^*_{\text{C20-C21}}$	20.67	20.88
$\pi_{\text{C57-C58}} \rightarrow \pi^*_{\text{C55-C56}}$	20.7	20.88
$\pi_{C45-C46} \rightarrow \pi^*_{C43-C44}$	20.24	20.76
$\pi_{C82-C83} \rightarrow \pi^*_{C80-C81}$	20.23	20.4
$\pi_{C4\text{-}C5} \rightarrow \pi^*_{C1\text{-}C6}$	19.5	19.46
$\pi_{C1-C6} \rightarrow \pi^*_{C2-C3}$	19.42	19.4
$\pi_{C66-C67} \rightarrow \pi^*_{C59-C60}$	13.13	13.06
$\pi_{C28-C29} \rightarrow \pi^*_{C2-C3}$	12.58	12.65
$\pi_{C97-C98} \rightarrow \pi^*_{C70-C71}$	12.39	12.58
$\pi_{C412\text{-}C59} \rightarrow \pi^* _{C40\text{-}C41}$	11.82	11.76