Improving EMI shielding of graphene oxide (GNO) coated glassfiber-GNO-MA-grafted Polypropylene composites, and Nylon-1D, 2D composite foams.

Supplementary

1. Schemes

Nylon based composites preparation

2.1.5. Preparation of nylon-graphene-copper nanoplate composite (NGCu)

The graphene and Cu nanoplate were added together into a Teflon bottle and shake well by hand and then filled into the mold which already consist of 40 g of nylon-carbon fiber composition. Finally, the composition was pressed for 5 min and heated at 290°C for 2 h. The cooled composite used for further analysis.

Scheme S1. Preparation of NGCu

2.1.6. Preparation of nylon-graphene-CNT NGT

The graphene and CNT were added together into a Teflon bottle and shake well by hand and then filled into the mold which already consist of 40 g of nylon-carbon fiber composition. Finally, the composition was pressed for 5 min and heated at 290°C for 2 h. The cooled composite used for further analysis.

2.1.7. Preparation of nylon-CF-graphene-CNT composite (NFGT).

The graphene and Cu nanoplate were added together into a Teflon bottle. The 40 g of nyloncarbon fiber composition, and Graphene-CNT mixture were equally divided into three portions. Then one portion of nylon-carbon fiber composition, and Graphene-CNT mixture was filled into the mold and then placed one layer of carbon fabric. This process was repeated one more time and \sim 2 mm gab was maintained between each carbon fabric. Finally, the composition was pressed for 5 min and heated at 290°C for 2 h. The cooled composite used for further analysis.

Scheme S3. Preparation of NFGT

2.1.8. Preparation of Nylon-CF-cobalt nanoplate coated CF-CNT composite (NFCoT)

The 40 g of nylon-carbon fiber composition, and Graphene were equally divided into four portions. Then one portion of nylon-carbon fiber composition, and Graphene was filled into the mold and then placed one layer of carbon fabric. This process was repeated two more time and \sim 1 mm gab was maintained between each carbon fabric (Co coated carbon fabric placed between 2 carbon fabric). Finally, the composition was pressed for 5 min and heated at 290°C for 2 h. The cooled composite used for further analysis.

Scheme S4. Preparation of NFCoT

2.2.1. Surface modification of glass fiber (GF)

Scheme S5. The schematic representation of GF-NH₂ synthesis

Scheme S6. The schematic representation of GNO coated GF synthesis.

2.2.4.2. GGF-maleic anhydride grafted polypropylene graphene oxide composite (GFGMAPP) (model 1)

Scheme S7. Schematic representation of model 1.

2.2.4.3. GGF-CF-maleic anhydride grafted polypropylene graphene oxide composite (GFCFGMAPP) (model 2)

Scheme S8. Schematic representation of model 2.

2.2.4.4. GGF-CF-Fe-maleic anhydride grafted polypropylene graphene oxide nanoplate composite (GFCFFeGMAPP) (model 3)

Scheme S9. Schematic representation of model 3.

2. Figure

Mold structure

The mold has been designed by us for the composite preparation shown in figure 3a-b. The inner diameter of the mold 8 cm and height is 6 cm. The metal block A set in one side and the composite was filled via other-side and finally pressed. The metal ring D is used to remove the A after the heating process.

Figure S1. The structure of the mold used

Model 3

Model 2

Model 1

Composite with 4.5 g of graphene oxide-MXene Coated glass fiber

Composite with 1 g of graphene oxide-MXene Coated glass fiber

Figure S2. The photography of the composites.

3.1.3. XPS analysis

Figure S3. XPS fitting curve of PP composites

Figure S4. XPS fitting curve of nylon-based composite.

EMI shielding of the composites

Figure S5. Polypropylene GGF composite

Figure S6. EMI-SE of Polypropylene GGF composite

Figure S7. EMI shielding of nylon composite without fillers

Figure S8. EMI-SE of nylon composite (One time pressed)

Figure S9. EMI-SE cover for automobile parts.

Figure S10. EMI- SE of composites with 5 mm thickness (a) NFCoT, (b) NFGT, (c) NGT, and (d) NGCu

Figure S11. EMI- SE of composites with 4 mm thickness (a) NFCoT, (b) NFGT, (c) NGT, and (d) NGCu

Figure S12. EMI- SE of composites with 3 mm thickness (a) NFCoT, (b) NFGT, (c) NGT, and (d) NGCu

3. Tables

SET	GFGM	GFCFG	GFCFFe	GFCFGMAPP+GF	GFGMAPP+GFCFGMAP
	APP	MAPP	GMAPP	CFFeGMAPP	P+GFCFFeGMAPP
	(1)	(2)	(3)	(2+3)	(1+2+3)
Max	75.18	65.08	72.18	120.11	120.55
Ave	72.757	61.89	68.938	101.27	102.97
	69076				
Mini	71.715	59.99	66.29	91.97	94.53
Effici	99.999	99.9999	99.99999	~100	~100
ency	99697	689	395		
(%)					
Thick	4.06	4.67	2.56	7.23	11.29
ness					
(mm)					
Mini Effici ency (%) Thick ness (mm)	69076 71.715 99.999 99697 4.06	59.99 99.9999 689 4.67	66.29 99.99999 395 2.56	91.97 ~100 7.23	94.53 ~100 11.29

Table S1. Comparison of total EMI shielding of PP composites (SE_T)

Table S2. Comparisor	$n \text{ of } SE_A \text{ of } PP$	composites
----------------------	-------------------------------------	------------

SEA	GFGM	GFCFGM	GFCFFe	GFGMAPP+GF	GFGMAPP+GFCFGMAPP
	APP (1)	APP (2)	GMAPP	CFGMAPP (1+2)	+GFCFFeGMAPP (1+2+3)
			(3)		
Max	69.97	62.19	67.39	113.36	113.52
Ave	67.05	58.28	63.95	94.8	96.49
Min	65.10	55.22	61.08	84.59	88.17

Table S3. Comparison of SE_R of PP composites

SE _R	GFGM	GFCFG	GFCFFeG	GFGMAPP+GF	GFGMAPP+GFCFGMAPP+
	APP (1)	MAPP	MAPP (3)	CFGMAPP	GFCFFeGMAPP (1+2+3)
		(2)		(1+2)	
Max	6.68	4.79	5.73	7.38	7.40
Ave	5.71	3.63	4.99	6.47	6.47
Min	5.19	2.88	4.78	5.60	5.59

Total EMI-SE (SE)

Comp		SE										
0	Thickness											
sites		6 mm			5 mm			4 mm		3 mm		
	max	Ave	Mini	max	Ave	Min	max	Ave	Min	ma	Av	Min
						i			i	X	e	i
NFCo	132.	108.	99.8	123.	107.	97.1	101.	91.8	85.5	70.	66.	63.9
Т	9	4		9	5		4			7	8	
NFGT	132.	108.	97.0	139.	107.	95.8	111.	95	88.5	76.	72.	68.8
	4	9	5	1	7		4	3		3	2	
NGT	129.	108.	98.9	132.	107.	96.7	114.	95.2	88.4	81.	77.	74.1
	4	7		6	1		1			2	2	
NGCu	138.	108.	97.9	136	108.	99.1	106.	95.4	89.8	66.	63.	61.4
	8	2			4		5			1	4	

Table S4. Comparison of SE_T of Nylon composites

Table S5. Comparison of SE_R of Nylon composites

Compo		SE _R										
sites	Thickness											
	6 mm 5 mm						4 mm			3 mm		
	max	Ave	Mini	max	Ave	Mini	max	Av	Mini	max	Av	Mini
								e			e	
NFCoT	9.7	8.4	7.5	9.5	7.2	6.4	9.4	8.1	7.3	7.9	6.8	6.1
NFGT	9.7	8.3	7.6	9.4	8.3	7.6	7.6	6.6	5.9	9.5	8.4	7.5
NGT	7.9	6.8	6.1	8.2	6.9	6.2	9.1	7.8	6.9	8.8	7.5	6.7
NGCu	9.9	7.7	6.9	8.1	6.82	6.1	8.1	6.9	6.1	7.9	6.8	6.1

Table S6. Comparison of $\ensuremath{\mathsf{SE}}_A$ of Nylon composites

Comp		SEA										
0		Thickness										
sites		6 mm			5 mm		4 mm			3 mm		
	max	Ave	Min	max	Ave	Min	max	Av	Min	ma	Av	Min
			i			i		e	i	X	e	i
NFCo	123.	99.9	91.3	117.	100.	89.8	94.1	83.	76.2	64.	59.	56.2
Т	5			3	3			7		6	9	
NFGT	124.	100.	87.9	130.	99.4	88.0	105.	88.	81.1	68.	63.	59.4
	8	6		8			4	7		8	8	
NGT	122.	101.	92.4	126.	100.	88.8	107.	87.	79.4	74.	69.	65.4
	5	9		1	2		1	4		5	6	
NGCu	131.	100.	90.9	129.	101.	91.9	100.	88.	81.7	60	56.	53.5
	6	5		3	5		3	5			6	

No	Composition	Filler	Thickness	EMI-SE	SE/d	Ref.
	_	(%)	(mm)	(dB)	(dB/mm)	
1	Segregated Graphene/	10	0.9 mm	19.3	21.44	1
	Polypropylene					
2	Polypropylene/conductive fiber	20	2 mm	43	21.50	2
3	Carbon black/polypropylene (PP)	10	2.8 mm	42.7	15.25	3
4	RGO/PP	1.83	0.7 mm	29.3	41.86	4
5	Carbon fiber/PP	10	3.2 mm	25	7.81	5
6	Ti ₃ C ₂ T _x /PP	2.12	1.93 mm	66	34.19	5
7	Ti ₃ C ₂ T _x /PP	1.78	1.93 mm	55	28.50	5
8	Ti ₃ C ₂ Tx/wax	90	1 mm	32	32	5
9	CNT/PU	20	2 mm	17	8.5	5
10	Segregated CNT/PP	3.5	2 mm	32	16	6
11	Epoxy Cu-nanowires/ GN	7.2	2 mm	47	23.5	7
	aerogel					
12	GN foam/acrylonitrile butadiene	50	1.6 mm	42.4	26.5	8
	styrene					
13	poly(ɛ-caprolactone)/MWCNT	50	2.4 mm	44	18.34	9
14	Recyclable conductive	1	1.8 mm	22	12.23	10
	epoxy/CNT					
15	PP/carbon black foam	30	60 mm	41	0.68	11
16	Microwires-graphene/Silicone	0.0193	2 mm	18	9	12
	elastomer (M/G/S)					
17	Bucky-paper/polyethylene	38	0.025 mm	20	800	12
18	PP/carbon fiber	20	2 mm	-32.92	-16.46	13
19	PAN@SiO2-4wt%Ag-30min	4	0.05 mm	22.68	533.6	14
20	PAN@SiO ₂ -4wt%Ag-12h-PFDT	4	0.05	81	1620	14
	film					
21	Ni@nylon mesh/PP	3.07	2.5 mm	50.6	20.24	15
22	Porous POM/MWCNT	10	2 mm	58.5	29.3	16
23	Water-based Conductive Ink	80	0.01 mm	74.5	7450	17
24	GFGMAPP(1)	13	4.06 mm	75.18	18.52	
25	GFCFGMAPP (2)	13	4.67 mm	65.08	13.94	
26	GFCFFeGMAPP (3)	13	2.56 mm	72.18	28.20	
27	1+2	13	7.23	120.11	16.61	
28	1+2+3	13	11.29	120.55	10.68	This
29	NFCoT	13	6 mm	132.9	22.15	work
30	NFGT	13	6 mm	132.4	22.07	1
31	NGT	13	6 mm	129.4	21.57	1
32	NGCu	13	6 mm	138.8	23.14	

Table S7. Comparison of EMI shielding of the composites

References

- 1. Alam, F.E., Yu, J., Shen, D., Dai, W., Li, H., Zeng, X., Yao, Y., Du, S., Jiang, N. and Lin, C.T., 2017. Highly conductive 3D segregated graphene architecture in polypropylene composite with efficient EMI shielding. Polymers, 9(12), p.662.
- 2. Lee PC, Kim BR, Jeoung SK, Kim YK. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites. InAIP Conference Proceedings 2016 Mar 9 (Vol. 1713, No. 1, p. 120015). AIP Publishing LLC.
- 3. Al-Saleh, M.H. and Sundararaj, U., 2012. X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. Journal of Physics D: Applied Physics, 46(3), p.035304.
- Sun, T., Luo, W., Luo, Y., Wang, Y., Zhou, S., Liang, M., Chen, Y. and Zou, H., 2020. Self-Reinforced Polypropylene/Graphene Composite with Segregated Structures To Achieve Balanced Electrical and Mechanical Properties. Industrial & Engineering Chemistry Research, 59(24), pp.11206-11218.
- Xu, M.K., Liu, J., Zhang, H.B., Zhang, Y., Wu, X., Deng, Z. and Yu, Z.Z., 2021. Electrically Conductive Ti3C2T x MXene/Polypropylene Nanocomposites with an Ultralow Percolation Threshold for Efficient Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 60(11), pp.4342-4350.
- Zhang, Y.P., Zhou, C.G., Sun, W.J., Wang, T., Jia, L.C., Yan, D.X. and Li, Z.M., 2020. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Composites Science and Technology, 197, p.108253.
- Yang, X., Fan, S., Li, Y., Guo, Y., Li, Y., Ruan, K., Zhang, S., Zhang, J., Kong, J. and Gu, J., 2020. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composites Part A: Applied Science and Manufacturing, 128, p.105670.
- Wang, L., Wu, Y., Wang, Y., Li, H., Jiang, N. and Niu, K., 2020. Laterally compressed graphene foam/acrylonitrile butadiene styrene composites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 133, p.105887.
- Tang, X.H., Li, J., Tan, Y.J., Cai, J.H., Liu, J.H. and Wang, M., 2020. Achieve high performance microwave shielding in poly (ε-caprolactone)/multi-wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces. Applied Surface Science, 508, p.145178.
- Yuan, D., Guo, H., Ke, K. and Manas-Zloczower, I., 2020. Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing. Composites Part A: Applied Science and Manufacturing, 132, p.105837.
- Li, Y., Lan, X., Wu, F., Liu, J., Huang, P., Chong, Y., Luo, H., Shen, B. and Zheng, W., 2020. Steam-chest molding of polypropylene/carbon black composite foams as broadband EMI shields with high absorptivity. Composites Communications, 22,

p.100508.

- 12. Xu, Y.L., Uddin, A., Estevez, D., Luo, Y., Peng, H.X. and Qin, F.X., 2020. Lightweight microwire/graphene/silicone rubber composites for efficient electromagnetic interference shielding and low microwave reflectivity. Composites Science and Technology, 189, p.108022.
- Kaushal, A. and Singh, V., 2020. Development of lightweight polypropylene/carbon fiber composites for its application in shielding of electromagnetic interference in Xband. Journal of Materials Science: Materials in Electronics, 31(17), pp.14088-14100.
- 14. Li, T.T., Wang, Y., Peng, H.K., Zhang, X., Shiu, B.C., Lin, J.H. and Lou, C.W., 2020. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 128, p.105685.
- 15. Li, S., Xu, Z., Dong, Y., Liu, D. and Sui, G., 2020. Ni@ nylon mesh/PP composites with a novel tree-ring structure for enhancing electromagnetic shielding. Composites Part A: Applied Science and Manufacturing, 131, p.105798.
- 16. Li, J., Chen, J.L., Tang, X.H., Cai, J.H., Liu, J.H. and Wang, M., 2020. Constructing nanopores in poly (oxymethylene)/multi-wall carbon nanotube nanocomposites via poly (l-lactide) assisting for improving electromagnetic interference shielding. Journal of colloid and interface science, 565, pp.536-545.
- 17. Jia, L.C., Zhou, C.G., Sun, W.J., Xu, L., Yan, D.X. and Li, Z.M., 2020. Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chemical Engineering Journal, 384, p.123368.