Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Pen-writing high-quality perovskite films and degradable optoelectronic devices

Ting Zhang^a, Shasha Zhang^a, Zhenkun Gu^{*a}, Rudai Zhao^a, Shiheng Wang^a, Lutong Guo^{b,c}, Tiesheng Li^a, Yiqiang Zhang^a, Yanlin Song^{*b,c}

^a Green Catalysis Center, and College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450051, China.

^b Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^c University of Chinese Academy of Sciences, Beijing 100049, China.

*Corresponding authors.

E-mail addresses: ylsong@iccas.ac.cn, guzhenkun@zzu.edu.cn

Supplementary Materials:

Supplementary Figure 1-7 Supplementary Table 1-2 Supplementary Movie 1

Fig. S1 Visible absorption and photoluminescence (PL) spectra of the prepared CH₃NH₃PbBr₃ films by spin-coating.

Fig. S2 PL time decay trace of the CH₃NH₃PbBr₃ films by spin-coating at 405 nm showing a fast component ($\tau'_1 = 3.7$ ns) and a slow component ($\tau'_2 = 14.83$ ns).

Fig. S3 In-situ growth process of the pen-written $CH_3NH_3PbBr_3$ films at different writing cycles. a) 3 times. b) 6 times. c) 9 times. d) 12 times. Circles of the same color represent the crystal of different times. The film coverage and crystal size are positively related with writing times. As the writing times increase, the coverage and crystal size increase.

Fig. S4 SEM image of the CH₃NH₃PbBr₃ perovskite films by spin-coating.

Fig. S5 The resistivity of pencil-drawn graphite electrodes on papers as a function of writing cycles.

Fig. S6 Responsivity of the pen-written photodetectors (bias, 4 V; $\lambda = 405$ nm).

Fig. S7 Photoswitching behavior of the photodetector.

Device type	Wavelength	On/off	Responsivity	References
	(nm)	current	[mA/W]	
		ration		
Cs ₂ NaBiCl ₆ /ITO	365	25	67.98@1.5V	J. Phys. Chem.
				Lett. 2021, 12,
				5682-5688.
Au/Cs ₃ Cu ₂ I ₅ /SiO ₂	265	22	22.1@3V	J. Phys. Chem.
				Lett. 2020, 11, 16,
				6880–6886.
MAPbBr ₃ /InGa/SiO ₂	532	100	0.45×10^{3} @2V	ACS Appl. Mater.
				Interfaces 2018,
				10, 25763-25769.
MAPbI ₃ /graphite/paper	633	32	4.4@5V	ACS Appl. Mater.
				Interfaces, 2017, 9,
				10921-10928.
Au/CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBM/Au		100	23@5V	ACS Appl. Mater.
				Interfaces, 2017, 9,
				15638–15643.
MAPbBr ₃ / graphite /paper	405	10 ²	4.2@3 V	This work

 Table S1 Device performance of perovskite-based photodetectors.

Perovskite films	$\tau_1(ns)$	$\tau_2(ns)$	A ₁	A ₂	A ₀	χ^2
CH ₃ NH ₃ PbBr ₃	29.02	186.65	3580.94	299.77	0.75	1.094
films by pen-	(65.00%)	(35.00%)				
writing						
CH ₃ NH ₃ PbBr ₃	3.7	14.83	2617.4	333.04	1.201	0.864
films by spin-	(66.22%)	(33.78%)				
coating						

Table S2 The parameters for fluorescence lifetime of CH₃NH₃PbBr₃ films. The photoluminescence decay graph is fitted by a bi-exponential function " $F(t) = A_0 + A_1 e^{(-t/\tau 1)} + A_2 e^{(-t/\tau 1)}$ ", where F(t) is the decay model; A_0 , A_1 , and A_2 are constants; τ_1 and τ_2 are the lifetime components.