Supporting Information

A resin containing pH-responsive chelating residues of aspartic and maleic acids for mitigation of toxic metal ions and methylene blue

Shaikh A. Ali^{*a,b}, Shuaib A. Mubarak^a, Ibrahim Y. Yaagoob^a, Zeeshan Arshad^a, and Mohammad A. J. Mazumder^{* a,b}

^aChemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

^bInterdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Second-order										
Temp	$q_{\rm e}, _{\rm exp}$	k_2	h^b	$q_{\rm e}, _{\rm calc}$	D 2	E_{a}				
(K)	(mg g ⁻¹)	$(h^{-1}g mg^{-1})$	$(h^{-1}mg g^{-1})$	(mg g ⁻¹)	<i>K</i> ²	(kJ mol ⁻¹)				
298	79.49	1.812	11469	79.56	0.9999	40.7				
313	79.72	4.184	26610	79.75	1.0000					
328	79.83	8.126	51814	79.85	0.9999					
First-order										
Temp	$q_{\rm e}, \exp$	k_1		$q_{\rm e}$, calc	R^2					
298	79.49	3.023		6.378	0.9928					
313	79.72	8.546		5.384	0.9980					
328	79.83	9.656		3.877	0.9654					
Intraparticle diffusion										
Temp (K)	$k_{ m p} \ m mg \ g^{-1} \ h^{-1/2}$	$\begin{array}{c} x_{i} \\ (\text{mg g}^{-1}) \end{array}$		$R_{ m i}$	R^2					
298	9.090	72.01		0.0941	0.9955					
313	10.41	73.54		0.0775	0.9934					
328	11.64	74.50		0.0668	0.9973					

0.0668

0.9973

Table S1. Kinetics of the adsorption of Pb(II)^a on CPZA 7.

^aAdsorption of Pb(II) (200 ppm, 100 mL) by CPZA 7 (250 mg) (final pH: 6.0). ^{*b*}Initial adsorption rate $h = k_2 q_e^2$.

11.64

Temperature	$K_{ m L}{}^a$	$K_e^{o b}$	$\Delta G^{ m o\ }c$	ΔH^{o}	ΔS^{o}	R^2
(K)	$(L mg^{-1})$	(unit less)	(kJ mol ⁻¹)	(kJ mol ⁻¹)	(J mol ⁻¹ K ⁻¹)	
298	0.072	14918	(-) 23.8	(+) 27.8	(+)173	0.9909
313	0.1246	25817	(-) 26.4			
328	0.2012	41689	(-) 29.0			

Table S2. Thermodynamic parameters for the adsorption Pb(II) by CPZA 7.

^{*a*}From Langmuir nonlinear isotherms. ^{*b*}Using Eq (10). ^{*c*} ΔG^{o} = - R*T* Ln $K_{e^{o}}$

Figure S1. Kinetics of removal of Pb(II) by CPZA 7 at •298, •313, and •328 K: Kinetic plots of (**a**) percent Pb(II) uptake by CPZA 7; (**b**) First-order, (**c**) Second-order, and (**d**) Intraparticle diffusion. [Experimental conditions: CPZA 7 (250 mg), 200 ppm MB (100 mL), pH 6.0]

Figure S2. (a) Changes of adsorption capacity, q_t of Pb(II) over time; (b) Plot of Elovich kinetic model. [Experimental conditions: 250 mg CPZA 7, 100 mL 200 ppm Pb(II), pH 6.0];

Figure S3. a) Arrhenius plot and (b) dependency of q_e of CPZA 7 on the initial Pb(II) concentrations (C_o) at 298, 313, and 328 K

Figure S4. The removal of Pb(II) by CPZA 7: Nonlinear Langmuir Isotherms at (a) 298 K, (b) 313 K and (c) 328 K. [Resin (50 mg), 20 mL Pb(II) having C_0 50, 100, 150, 200, 300, 400, 600, 800, 1000, and 2000 ppm, final pH: 6.0].

Figure S5. (a) Dependency of Pb(II) adsorption capacity, q_e on temperature [50 mg CPZA 7, 20 mL 200 ppm Pb(II) (C_o), pH 6.0)] and (b) Van't Hoff plot.