Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting information

Diastereoselective synthesis of new zwitterionic bicyclic lactams, scaffolds for construction of 2-substituted-4-hydroxy piperidine and its pipecolic acid derivatives.

Enrique Reyes-Bravo,^a Dino Gnecco,^a Jorge R. Juárez,^a María L. Orea,^a Sylvain Bernès,^b David M. Aparicio^{*a} and Joel L. Terán^{*a}.

^aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. IC-9 Complejo de Ciencias C.U. 72570 Puebla, México

^bInstituto de Física, Benemérita Universidad Autónoma de Puebla, 11F2(aka 110-B), Lab. 102, C.U., 72570 Puebla, México

Table of Contents

1. General Information	
2. General Procedures	
3. Characterization of Starting Materials and Products	
4. ¹ H and ¹³ C NMR Spectra	S17
5. HRMS spectra	S76

General Information

All reagents and solvents were purchased from commercial sources. The ¹H and ¹³C spectra were determined with a Bruker Avance III Spectrometer (CDCl₃ or CD₃OD solvents) operating at 500 and 125 MHz, respectively. The chemical shifts were reported in parts per million (ppm), downfield from SiMe4 (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet). Multiplicities were afforded as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublet of doublets of doublets); or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants were reported as a *J* value in Hz. Thin layer chromatography (TLC) was used to monitor the reaction on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Optical rotations were determined at room temperature with a Perkin-Elmer 341 polarimeter, using a 1 dm cell with a total volume of 1mL, and are referenced to the D-line of sodium. Mass spectra were recorded with a JEOL Station JMS-700 instrument at a voltage of 70 eV. X-Ray Diffraction analysis was performed on a diffractometer STOE Stadivari using Ag-K α radiation ($\lambda = 0.56083$ Å, AXO micro-source) and equipped with a Dectris Pilatus-100 K detector. Intensities were collected at 295 K, and structures were refined using the current release of SHELXL (2018/3). The products were purified by column chromatography on silica gel 60 (63-200nm).

General procedures

General procedure for the synthesis of β-enaminoesters.

The synthesis of the β -enaminoesters was carried out according to methods A, B, or C.

Method A.

Synthesis of 1. To a solution of (*R*)-(-)-2-amino-phenylglycinol (0.5 g, 3.649 mmol) in MeOH (HPLC, 5 mL) at 0 °C in a flask sealed with septum rubber was added dropwise methyl propiolate (0.36 g, 4.380 mmol). The reaction was stirred for 4 h at room temperature and the solvent was eliminated by distillation under reduced pressure. The isomeric E/Z mixture (72:28 ratio) was obtained in a 98% combined yield.

Methyl (R, E/Z)-3-((2-hydroxy-1-phenylethyl)amino)acrylate, 1

Yellow oil, 98% yield. (*E*/*Z* ratio, 72:28); Major isomer: ¹H NMR (500 MHz, CDCl₃) δ 8.34 (dd, *J* = 13.3, 7.2 Hz, 1H), 7.31-7.23 (m, 5H), 6.66 (dd, 13.1, 8.0 Hz, 1H), 4.56 (d, *J* = 8.08 Hz, 1H), 4.36 (m, 1H), 3.85 (m, 1H), 3.75 (m, 1H), 3.64 (s, 3H), 3.02 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 151.6, 138.9, 128.9, 128.0, 126. 8, 83.3, 66. 7, 63.8, 50.4. Minor isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, J = 13.3, 8.25 Hz, 1H), 7.37-7.33 (m, 5H), 5.81 (t, J = 7.1 Hz, 1H), 4.58 (d, J = 2.5 Hz, 1H), 4.38 (m, 1H), 3.85 (m, 1H), 3.68 (m, 1H), 3.56 (s, 3H), 3.01 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) & 170.3, 151.6, 138.1, 128.8, 127.9, 126.6, 87.2, 66.2, 63.8, 50.6. HRMS(ESI): Calcd for C₁₂H₁₅NO₃: 221.1051 Found: 221.1049.

Method B.

Synthesis of 2, 3, and 4. To a stirred solution of (R)-(-)-2-phenylglycinol (1 equiv.) in methanol at room temperature was added the corresponding β-ketoester (1.1 equiv.). After 4 h the solvent was eliminated by distillation under reduced pressure, and the compound was purified by chromatographic column on silica gel with petroleum ether/ethyl acetate (1:1).

Ethyl (*R*,*E*/*Z*)-3-((2-hydroxy-1-phenylethyl)amino)but-2-enoate, 2

Yellow oil, 99 % yield. (*E*/*Z* ratio, 98:2); Major isomer: ¹H NMR (500 MHz, CDCl₃) δ 9.18 (d, *J* = 8.5 Hz, 1H), 7.37-7.26 (m, 5H), 4.69 (ddd, J = 8.6, 7.2, 4.4 Hz, 1H), 4.54 (s, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.86 (dd, J = 11.3, 4.4 Hz, 1H), 4.54 (s, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.86 (dd, J = 11.3, 4.4 Hz, 1H), 4.54 (s, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.86 (dd, J = 11.3, 4.4 Hz, 1H), 4.54 (s, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.86 (dd, J = 11.3, 4.4 Hz, 1H), 4.54 (s,

Methyl (*R*,*E*/*Z*)-3-((2-hydroxy-1-phenylethyl)amino)pent-2-enoate, 3.

Method C. Synthesis of β-enaminoesters 5, 6 and 7

To a stirred solution of (*R*)-(-)-2-phenylglycinol (1 equiv.) and the corresponding β -ketoester (1 equiv.) in ethanol was added AcOH (10% w). The mixture was heated at reflux temperature for three hours. Subsequently, the solvent was eliminated by distillation under reduced pressure, and the product was extracted with brine solution and EtOAc (3x10). The compound was purified by chromatographic column on silica gel with petroleum ether/ethyl acetate (1:1).

Methyl (*R,E/Z*)-3-((2-hydroxy-1-phenylethyl)amino)-3-phenylacrylate, 5

Yellow oil, 80% yield. (*E*/*Z* ratio, up to 99); ¹H NMR (500 MHz, CDCl₃) δ 9.10 (d, *J* = 10.0 Hz, 1H), 7.36-7.33 (m, 10H), 4.73 (s, 1H), 4.45 (ddd, *J* = 10.2, 6.8, 4.8 Hz, 1H), 3.76 (m, 2H), 3.71 (s, 3H), 2.33 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 164.9, 140.0, 135.8, 129.3, 128.6, 128.2, 127.8, 127.5, 126.4, 87.3, 67.2, 60.2, 50.4, HRMS(ESI): Calcd for C₁₈H₁₉NO₃: 297.1364: found 297.1362.

Ethyl (R,E/Z)-3-((2-hydroxy-1-phenylethyl)amino)-3-(naphthalen-2-yl)acrylate, 6

Yellow oil, 80% yield. (*E/Z* ratio, up to 99);. ¹H NMR (500 MHz, CDCl₃) δ 9.17 (d, *J* = 10.0 Hz, 1H), 7.79 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.69 (m, 2H), 7.46 (m, 2H), 7.30 (m, 1H), 7.24 (m, 3H), 7.11 (m, 2H), 4.84 (s, 1H), 4.49 (ddd, *J* = 10.1, 6.7, 4.8 Hz, 1H), 4.19 (q, *J* = 7.16 Hz, 2H), 3.75 (m, 2H), 2.69 (s, 1H), 1.29 (t, *J* = 7.13 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 170.5, 164.8, 140.1, 133.4, 133.4, 132.7, 128.6, 128.3, 127.9, 127.6, 127.5, 127.4, 126.8, 126.5, 125.2, 88.1, 67.2, 60.5, 59.0, 14.5. HRMS(ESI): Calcd for C₂₃H₂₃NO₃: 361.1677 found: 361.1675.

Ethyl (R,E/Z)-3-((2-hydroxy-1-phenylethyl)amino)-3-(4-nitrophenyl)acrylate, 7

Yellow oil, 80% yield. (*E/Z* ratio, up to 99); ¹H NMR (500 MHz, CDCl₃) δ 9.0 (d, *J* = 9.6 Hz, 1H), 8.1 (d, *J* = 8.4, 2H), 7.36 (d, *J*= 8.3 Hz, 2H), 7.23-7.29 (m, 3H), 7.08 (d, *J* = 7.4 Hz, 2H), 4.70 (s, 1H), 4.31 (m, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.78 (qd, *J* = 11.4, 5.8 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 170.1, 162.0, 148.2, 142.4, 139.7, 129.0, 128.8, 127.8, 126.4, 123.5, 89.1, 67.1, 60.0, 59.4, 14.5. HRMS(ESI): Calcd for C₁₉H₂₀N₂O₅: 356.1372 found: C₁₉H₂₀N₂O₅: 356.1370.

General procedure for the synthesis of oxazolidine amidoesters.

To a stirred mixture of corresponding β -aminoester (1 equiv.) in 15 mL of CH₂Cl₂ and 15 mL of an aqueous solution of K₂CO₃ at 0 °C was added bromo acetyl bromide (1.3 equiv.). The mixture was allowed to warm to room temperature and after 3.5 h the mixture was extracted and the organic phase was separated and dried over anhydrous Na₂SO₄, filtered and the solvent was eliminated by distillation under reduced pressure. The product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (7:3).

Methyl 2-((4R)-3-(2-bromoacetyl)-4-phenyloxazolidin-2-yl)acetate, 8

Colorless oil, inseparable diastereomeric mixture 70% yield. (dr = 88:12). ¹H NMR (500 MHz, CDCl₃) (major diastereoisomer) δ 7.43-7.31 (m, 5H), 5.82 (dd, J = 8.5, 3.0 Hz, 1H), 5.14 (m, 1H), 4.39 (dd, J = 9.1, 6.7 Hz, 1H), 4.07 (dd, J = 9.1, 4.4 Hz, 1H), 3.93 (m, 2H), 3.75 (s, 3H), 3.41 (dd, J = 15.8, 3.3 Hz, 1H), 2.77 (dd, J = 15.6, 8.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 165.2, 138.6, 129.4, 129.0, 128.7, 88.3, 74.1, 60.6, 51.9, 38.4, 29.0. HRMS(ESI): Calcd for C₁₄H₁₆BrNO₄: 341.0262 found: 341.0260.

Ethyl 2-((2R,4R)-3-(2-bromoacetyl)-2-methyl-4-phenyloxazolidin-2-yl)acetate, 9.

Colorless oil, 80% yield. (dr = 97:3). ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.31 (m, 5H), 5.08 (dd, J = 6.9, 3.7 Hz, 1H), 4.44 (dd, J = 9.2, 6.9 Hz, 1H), 4.15 (m, 2H), 4.00 (dd, J = 9.2, 3.6 Hz, 1H), 3.54 (m, 2H), 3.43 (d, J = 11.0 Hz, 1H), 2.97 (d, J = 14.4 Hz, 1H), 1.78 (s, 3H), 1.25 (t, J = 7.10 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 169.5, 164.6, 139.6, 129.4, 128.6, 126.1, 96.2, 72.2, 60.9, 60.8, 43.4, 29.2, 20.7, 14.2. HRMS(ESI): Calcd for C₁₅H₁₈BrNO₄: 355.0419 found: 355.0417.

Methyl 2-((2R,4R)-3-(2-bromoacetyl)-2-ethyl-4-phenyloxazolidin-2-yl)acetate, 10.

Colorless oil, 80% yield. (dr > 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.27 (m, 5H), 5.00 (m, 1H), 4.41 (dd, J = 9.2, 7.3 Hz, 1H), 3.87 (dd, J = 9.2, 7.9 Hz, 1H), 3.64 (s, 3H), 3.28 (m, 2H), 3.20 (d, J = 13.7 Hz, 1H), 3.06 (d, J = 13.7 Hz, 1H), 2.48 (m, 1H), 2.08 (m, 1H), 0.86 (t, J = 7.3 Hz, 3H) ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 164.8, 138.2, 129.6, 128.9, 126.4, 99.1, 73.4, 62.3, 51.9, 42.4, 29.1, 27.9, 7.1. HRMS(ESI): Calcd for C₁₆H₂₀BrNO₄: 369.0576 found: 369.2182.

Methyl 2-((2R,4R)-3-(2-bromoacetyl)-butyl-4-phenyloxazolidin-2-yl)acetate, 11.

Brown oil, 70% yield. (dr > 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.34 (m, 5H), 5.08 (m, 1H), 4.47 (dd, J = 9.1, 7.2 Hz, 1H), 3.94 (dd, J = 9.2, 7.7 Hz, 1H), 3.71 (s, 3H), 3.36 (m, 2H), 3.28 (d, J = 13.7 Hz, 1H), 3.14 (d, J = 13.8 Hz, 1H), 2.48 (m, 1H), 2.12 (ddd, J = 14.3, 11.4, 4.5 Hz, 1H), 1.41 (m, 1H), 1.33 (m, 3H), 0.91 (t, J = 6.89 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 164.9, 138.2, 129.6, 128.8, 126.4, 98.8, 73.2, 62.1, 51.9, 42.5, 34.6, 29.01, 24.8, 22.5, 14.0. HRMS(ESI): Calcd for C₁₈H₂₄BrNO₄: 397.0888 found: 397.0891.

Methyl 2-((2S,4R)-3-(2-bromoacetyl)-2-(naphthalen-2-yl)-4-phenyloxazolidin-2-yl)acetate, 13.

Yelow oil, 35% yield. (dr > 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 1.3 Hz, 1H), 7.79 (m, 3H), 7.76 (m, 1H), 7.64 (dd, J = 8.7, 1.9 Hz, 1H), 7.45 (m, 4H), 7.35 (m, 3H), 5.08 (dd, J = 7.2, 2.5 Hz, 1H), 4.09 (m, 3H), 3.94 (dd, J = 9.0, 2.6 Hz, 1H), 3.76 (AB, J = 14.7 Hz, 2 H), 3.50 (AB, J = 10.5 Hz, 2H), 1.10 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 168.9, 165.5, 140.6, 129.5, 128.8, 128.7, 128.4, 127.5, 126.6, 126.5, 126.3, 125.8, 129.3, 98.0, 72.3, 61.2, 60.7, 43.5, 29.3, 14.1. HRMS(ESI): Calcd for C₂₄H₂₂BrNO₄: 467.0732 found: 467.0729.

General procedure for the synthesis of sulfonium oxazolidine salts.

To a stirred solution of corresponding *N*-acyl oxazolidine (1 equiv.) in a minimum amount of CH_2Cl_2 at room temperature was added $S(CH_3)_2$ (7 equiv). The resulting mixture was stirred until the total consumption of starting material was confirmed by TLC. Then, the solvent and the excess of dimethyl sulfur were eliminated by distillation under reduced pressure. All sulfonium salts were used for the next reaction without purification.

General procedure for the synthesis of zwitterionic bicyclic lactams derivates.

To a stirred solution of the corresponding sulfonium salts (1 equiv.) in a mixture of acetonitrile:methanol (1:1) at room temperature, was added K_2CO_3 (1.2 equiv.). The reaction mixture was stirred until the total consumption of starting material was confirmed by TLC (4 to 8 h, depending on the sulfonium salts derivate). Then, the solvent was eliminated by distillation under reduced pressure. Next, a brine solution and ethyl acetate were added. The organic layer was separated and the aqueous layer was re-extracted with ethyl acetate (3 times). The combined organic layers were dried over anhydrous Na₂SO₄, concentrated, and the residue was purified by flash chromatography on silica gel with a mixture of CH₂Cl₂/MeOH (9:1).

(3R)-6-(dimethylsulfonio)-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5H-oxazolo[3,2-a]pyridin-7-olate, 22(a+b).

Brown solid, inseparable diastereomeric mixture, 97% yield. (dr = 73:27). Major diastereoisomer: ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.29 (m, 5H), 5.12 (dd, J = 11.37, 4.19 Hz, 1H), 5.00 (dd, J = 7.04, 1.58 Hz, 1H), 4.26 (dd, J = 8.94, 7.05 Hz, 1H), 4.09 (dd, J = 8.97, 1.58 Hz, 1H), 2.91-2.87 (m, 7H), 2.81 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 185.1, 162.6, 142.0, 128.6, 127.4, 126.4, 85.8, 74.7, 74.2, 57.9, 43.2, 27.3, 25.9. Minor diastereoisomer: ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.23 (m, 5H), 5.40 (dd, J = 9.82, 5.28 Hz, 1H), 5.21 (t, J = 6.63 Hz, 1H), 4.48 (dd, J = 8.73, 7.21 Hz, 1H), 3.86 (dd, J = 8.77, 6.07 Hz, 1H), 2.96 (s, 3H),

2.86 (s, 3H), 2.80 (m, 1H), 2.71 (dd, J = 15.8, 9.84 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 184.2, 163.0, 140.6, 128.7, 127.4, 126.0, 85.4, 73.3, 73.1, 58.7, 42.5, 27.7, 25.6. HRMS(FAB): Calcd for C₁₅H₁₇NO₃S: 291.0923 found: 291.0921

(3R,8aR)-6-(dimethylsulfonio)-8a-methyl-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5H-oxazolo[3,2-a]pyridin-7-olate, 23a.

Yellow solid, 98% yield, (*dr* =98:2). Major diastereoisomer, **23a**: m.p.= 186-188°C. $[\alpha]_D^{20} = -2.41°$ (*c* 1, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.22 (m, 5H), 5.00 (dd, *J* = 7.15, 1.95 Hz, 1H), 4.46 (dd, *J* = 9.12, 7.13 Hz, 1H), 3.98 (dd, *J* = 9.12, 1.96 Hz, 1H), 2.99 (dd, *J* = 15.6, 1.39 Hz, 1H), 2.87 (s, 3H), 2.85 (s, 3H), 2.78 (dd, *J* = 15.4, 1.63 Hz. 1H), 1.50 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 186.2, 162.2, 142.1, 128.6, 127.3, 126.1, 91.8, 73.2, 72.3, 58.3, 49.6, 27.4, 25.8, 22.0. HRMS (FAB): Calcd for C₁₆H₁₉NO₃S: 305.1085 found: 305.2420.

(3R,8aR)-6-(dimethylsulfonio)-8a-ethyl-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5H- oxazolo[3,2-a]pyridin-7-olate, 24a.

Colorless solid, 98% yield. (dr =97:3). Major diastereoisomer, **24a:** m.p.= 156-158°C. $[\alpha]_D^{20}$ = -9.6° (c 1, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.25-7.15 (m, 5H), 4.93 (dd, J = 7.21, 2.17 Hz, 1H), 4.33 (dd, J = 9.06, 7.23 Hz, 1H), 3.87 (dd, 9.03, 2.19 Hz, 1H), 2.89 (d, J = 15.9 Hz, 1H), 2.81-2.76 (m, 7H), 1.83 (m, 1H), 1.74 (m, 1H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 185.1, 161.3, 141.1, 127.6, 126.3, 125.2, 93.0, 72.2, 71.3, 57.6, 44.8, 26.4, 26.1, 24.9, 7.3. HRMS (FAB): Calcd for C₁₆H₁₈NO₃S: 304.1007 found: 304.1005.

(3R,8aR)-8a-butyl-6-(dimethylsulfonio)-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5H-oxazolo [3,2-a]pyridin-7-olate, 25a.

Brown solid, 98% yield. (*dr* =97:3). Major diastereoisomer, **25a**: m.p. = 150-152°C. $[\alpha]_D^{20}$ = -18.4° (*c* 1, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) & 7.33-7.22 (m, 5H), 5.00 (dd, *J* = 7.28, 2.22 Hz, 1H), 4.42 (dd, *J* = 9.09, 7.24 Hz, 1H), 3.95 (dd, 9.07, 2.23 Hz, 1H), 2.92 (m, 2H), 2.87 (d, *J* = 1.90 Hz, 6H), 1.88 (ddd, *J* = 14.19, 10.33, 6.23 Hz, 1H), 1.86 (m, 1H), 1.39 (m, 2H), 1.29 (m, 2H), 0.90 (t, *J* = 7.20 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) & 186.2, 163.0, 142.1, 128.6, 127.3, 126.2, 93.8, 73.3, 72.4, 58.6, 46.5, 34.2, 27.5, 26.1, 25.9, 22.9, 14.0. HRMS (FAB): Calcd for C₁₉H₂₅NO₃S: 347.1555 found: 347.1553.

(3R,8aS)-6-(dimethylsulfonio)-5-oxo-3,8a-diphenyl-2,3,8,8a-tetrahydro-5H-oxazolo [3,2-a]pyridin-7-olate, 26a.

Yellow oil, 98% yield. dr = 98:2. Major diastereoisomer: $[\alpha]_D^{20} = \circ (c \ 1, CH_2Cl_2)$. ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.25 (m, 10 H), 5.06 (t, J = 4.36 Hz, 1H), 3.87 (d, J = 4.29 Hz, 2H), 3.36 (d, J = 15.3 Hz, 1H), 3.19 (d, J = 15.3 Hz, 1H), 2.84 (s, 3H), 2.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 184.7, 163.3, 142.1, 140.5, 128.7, 128.5, 128.7, 127.4, 126.3, 126.2, 94.0, 74.4, 71.9, 59.1, 49.7, 27.5, 25.7. HRMS (FAB): Calcd for C₂₁H₂₁NO₃S: 367.1242 found: 367.1244.

(*3R*,8*aS*)-6-(dimethylsulfonio)-8a-(naphthalen-2-yl)-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5H-oxazolo[3,2-a]pyridin-7-olate, 27a.

Yellow oil, 98% yield. dr = 98:2. Major diastereoisomer: ¹H NMR (500 MHz, CDCl₃) δ 7.72-7.79 (m, 4H), 7.49 (dd, J = 8.6, 1.5 Hz, 1H), 7.43 (dd, J = 9.3, 4.7 Hz, 2H), 7.38 (m, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H), 5.08 (t, J = 4.2 Hz, 1H), 3.84 (d, J = 4.3 Hz, 2H), 3.30 (AB, J = 15.5 Hz, 2H), 2.80 (s, 3H) 2.72 (s. 3H).¹³C NMR (125 MHz, CDCl₃) δ 184.7, 163.5, 142.1, 137.7, 132.6, 128.8, 128.1, 127.7, 127.5, 126.6, 126.5, 126.4, 125.4, 124.0, 94.2, 74.3, 72.1, 59.3, 49.6, 29.7, 27.7, 25.8. HRMS (FAB): Calcd for C₂₅H₂₃NO₃S: 417.1398 found: 417.1400.

(3R,8aS)-6-(dimethylsulfonio)-8a-(4-nitrophenyl)-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5H-oxazolo[3,2-a]pyridin-7-olate, 28a

Yellow oil, 98% yield. dr = 98:2. Major diastereoisomer. ¹H NMR (500 MHz, CDCl₃) δ 8.1 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 8.7 Hz, 2H), 7.20-7.33 (m, 5H), 5.00 (d, J = 6.6 Hz, 1H), 3.88 (d, J = 9.2 Hz, 1H), 3.76 (dd, J = 9.1, 7.1 Hz, 1H), 3.20 (AB, J = 15.6 Hz, 2H), 2.80 (s, 3H), 2.75 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 183.7, 163.2, 148.2, 148.1, 141.5, 128.8, 127.7, 127.4, 126.3, 123.6, 74.7, 72.3, 59.3, 49.5, 27.5, 25.7. HRMS (FAB): Calcd for C₂₁H₂₀N₂O₅S: 412.1092 found: 412.1090.

Desulfurization reaction.

Synthesis of (3R,8aR)-8a-methyl-3-phenyltetrahydro-5H-oxazolo[3,2-a]pyridine-5,7(6H)-dione 29.

Zinc powder (0.7 g, 10.6 mmol) was added at room temperature to a stirring solution of compound **23a** (0.22g, 0.704 mmol) in glacial acetic acid (8 mL), then HCl(g) was added over 10 min and the resulting mixture was stirred for 7d. After, the insoluble material was filtered off and washed with ethyl acetate. Finally, the filtrate was neutralized with an aqueous solution of NaHCO₃ and extracted with ethyl acetate (3 x 20 mL). The organic phase was dried over anhydrous Na₂SO₄, the solvent was eliminated by distillation under reduced pressure and the residue was purified by flash chromatography on silica gel with a mixture of petroleum ether/ethyl acetate (1:1).

ketone function reduction.

Synthesis of (3R,8aR)-7-hydroxy-8a-methyl-3-phenylhexahydro-5H-oxazolo[3,2-a]pyridin-5-one, 32a.

Compound **23** (0.8 g, 3.26 mmol) was dissolved in methanol at -50 °C (10 mL) then NaBH₄ was added Next, the mixture was allowed to reach for 24h. Finally, the solvent was eliminated by distillation under reduced pressure and a solution of NaHCO₃ and ethyl acetate was added. The organic layer was separated, and the aqueous layer was re-extracted with ethyl acetate (3 times). The combined organic layers were dried over Na₂SO₄ and concentrated.

(3R,8aR)-7-hydroxy-8a-methyl-3-phenylhexahydro-5H-oxazolo[3,2-a]pyridin-5-one, 32a.

White solid, combined yield 99%. (dr = 87:13). Major diastereoisomer: m.p.=100-102°C, ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.22 (m, 5H), 4.91 (dd, J = 7.14, 1.86 Hz, 1H), 4.46 (dd, J = 9.32, 7.20 Hz, 1H), 4.19 (m, 1H), 3.95 (dd, J = 9.30, 1.80 Hz, 1H), 3.39 (s, 1H), 2.59 (dd, J = 17.3, 6.85 Hz, 1H), 2.35 (dd, J = 17.2, 5.86 Hz, 1H), 2.26 (m, 2H), 1.59 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 141.2, 128.6, 127.6, 126.3, 93.0, 71.3, 62.7, 58.7, 43.5, 40.2, 24.9. HRMS(ESI): Calcd for C₁₄H₁₇NO₃: 247.1208 found: 247.2150.

Synthesis of 1-(2-hydroxy-1-phenylethyl)-2-methylpiperidin-4-ol, 33a.

To a solution of compound **32a** (0.21 g, 0.85 mmol, 1 equiv) in THF (10 mL) was slowly added $BH_3 \bullet DMS$ (2.25 mL, 3.5 equiv). The mixture was heated at reflux temperature for 15 min and then, methanol was added. The solvent was eliminated by distillation under reduced pressure. Finally, a saline solution and ethyl acetate were added. The organic layer was separated and the aqueous layer extracted with ethyl acetate (3 x 15 mL). The combined organic layers were dried over Na_2SO_4 filtered and concentrated. The compound **33a** was purified by a chromatographic column on silica gel with petroleum ether/ethyl acetate (1:1).

(2S,4S)-1-((R)-2-hydroxy-1-phenylethyl)-2-methylpiperidin-4-ol, 33a.

White solid, m.p. = 117-119°C, yield 98%. $[\alpha]_D^{20}$ = +19.3° (*c* 1, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) (major isomer): δ 7.35-7.18 (m, 5H), 4.10 (t, *J* = 6.70 Hz, 1H), 3.99 (dd, *J* = 11.0, 6.64 Hz, 1H), 3.90 (dd, *J* = 11.0, 6.64 Hz, 1H), 3.57 (m, 1H), 2.88 (s, 1H), 2.81 (m, 1H), 2.61 (s, 1H), 2.46 (m, 1H), 1.86 (m, 1H), 1.74 (m, 1H), 1.29 (m, 2H), 1.20 (d, *J* = 3.37 Hz, 3H), 1.80 (m, 1H).¹³C NMR (125 MHz, CDCl₃) δ 139.6, 128.4, 128.3, 127.2, 68.4, 63.4, 60.2, 52.5, 45.3, 43.7, 35.1, 20.1. HRMS(ESI): Calcd for C₁₄H₂₁NO₂: 235.1572 found: 235.1574.

major diasteroisomer

Synthesis of tert-butyl (2S,4R)-4-hydroxy-2-methylpiperidine-1-carboxylate, 34.

To a solution of (2S,4S)-1-((R)-2-hydroxy-1-phenylethyl)-2-methyl piperidine-4-ol, **33a** (0.1 g, 0.43 mmol, 1 equiv.) in methanol (10 mL) was added di-*tert*-butyl dicarbonate (0.23 g, 1.06 mmol, 2.5 equiv) and Pd/C (10% mol). The mixture was placed under hydrogen atmosphere for a period of 4 h. After the reaction was filtered and the solvent was eliminated under reduced pressure. The compound **34** was purified by chromatographic column on silica gel with petroleum ether/ethyl acetate (1:1).

tert-butyl (2*S*,4*R*)-4-hydroxy-2-methylpiperidine-1-carboxylate 34.

34

CH₃ Colorless oil, 98% yield. $[\alpha]_D^{20} = +32.3^{\circ}$ (c 1, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 4.21 (m, 1H), 4.19 (m, 1H), 3.73 (m, 1H), 3.19 (ddd, J = 13.6, 10.9, 4.91 Hz, 1H), 2.06 (s, 1H), 1.76 (ddd, 14.3, 6.64, 3.35 Hz, 1H), 1.63 (m, 3H), 1.38 (s, 9H), 1.26 (d, J = 7.10 Hz 3H).¹³C NMR (125 MHz, CDCl₃) δ 155.0, 79.2, 64.7, 45.5, 36.4, 33.2, 32.3, 28.5, 19.0. HRMS(ESI): Calcd for C₁₁H₂₁NO₃: 215.1521 found: 215.1518.

Colorless oil, quantitative yield. $[\alpha]_D^{20} = -6^\circ$ (c 1, MeOH). ¹H NMR (500 MHz, CDCl₃) δ 3.83 (m, 1H), 3.36 (m, 3H), 3.0 (t, J = 13.2 Hz, 1H), 2.15 (m, 2H), 1.62 (td, J = 13.7, 3.5 Hz, 1H), 1.44 (dd, 24.5, 12.3 Hz, 1H), 1.38 (d, J = 6.3 Hz, 3H.¹³C NMR (125 MHz, CDCl₃) δ 65.0, 51.5, 42.3, 39.3, 30.7, 17.9. HRMS(ESI): Calcd for C₆H₁₃NO: 115.1760 found: 115.1758.

Synthesis of tert-butyl (2S,4S)-4-((tert-butyldimethylsilyl)oxy)-2-methylpiperidine-1-carboxylate, 36.

Tert-butyl (2*S*,4*R*)-4-hydroxy-2-methyl piperidine-1-carboxylate **34**, *tert*-butyl-dimethyl silane chloride (1.1 equiv), triethylamine (1.2 equiv), and imidazole (1.2 equiv), were dissolved in dichloromethane (15 mL) at room temperature. The mixture was stirred until the consumption of the starting material was observed by thin layer chromatography. After a brine solution was added, the organic phase was separated, dried over anhydrous Na_2SO_4 , filtered and concentrated. The compound **36** was purified by chromatographic column on silica gel with petroleum ether/ethyl acetate (7:3)

Tert-butyl (2S,4S)-4-((tert-butyldimethylsilyl)oxy)-2-methylpiperidine-1-carboxylate, 36.

Boc N CH₃ Oil colorless, 100% yield. $[\alpha]_D^{20} = +37.5^{\circ}$ (*c* 1, CH₂Cl₂). NMR-¹H (500 MHz, CDCl₃) δ 4.23 (m, 1H), 4.03 (m, 1H), 3.75 (d, *J*= 13.3 Hz, 1H), 3.18 (m, 1H), 1.70 (ddd, *J*= 13.8, 6.5, 2.7 Hz, 1H), 1.53 (t, 12.7 Hz, 3H), 1.40 (s, 9H), 1.25 (d, *J*= 7.1 Hz, 3H), 0.84 (s, 9H), 0.002 (s, 6H). NMR-¹³C (125 MHz, CDCl₃) δ 154.9, 78.9, 65.1, 45.6, 36.7, 33.2, 33.0, 28.4, 25.7, 25.6, 19.1, 17.9, 5.00, 5.04. HRMS(ESI): Calcd for C₁₄H₁₇NO₃: 247.1208 found: 247.1210. **36**

Synthesis of (2R,4R,6S)-1-(tert-butoxycarbonyl)-4-((tert-butyldimethylsilyl)oxy)-6methylpiperidine-2-carboxylic acid, 37.

To a stirred solution of *tert*-butyl (2*S*,4*S*)-4-((*tert*-butyldimethylsilyl)oxy)-2-methylpiperidine-1-carboxylate **36** in anhydrous ethyl ether at -78 °C was added TMEDA (1.5 equiv.) and *s*-BuLi (1.4 equiv.). This mixture was allowed to react for a period of 4h and then $CO_{2(g)}$ was added. The total consumption of starting compound was observed by thin-layer chromatography after 12 h. To a resulting mixture was added a brine solution and ethyl acetate. The organic phase was separated, the aqueous layer was extracted with ethyl acetate (twice) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and the solvent was eliminated by distillation under reduced pressure. Compound **37** was purified by chromatographic column on silica gel with petroleum ether/ethyl acetate (7:3).

Synthesis of (2R,4R,6S)-4-hydroxy-6-methylpiperidine-2-carboxylic acid.

To a stirred solution of (2R,4R,6S)-1-(tert-butoxycarbonyl)-4-((tert-butyldimethylsilyl)oxy)-6-methylpiperidine-2-carboxylic acid 37 in MeOH was added a solution HCl (3N). This reaction remained at 40 °C for 20 min. The excess of solvent was evaporated by reduced pressure. The product was purified by recrystallization with dichloromethane/methanol.

(2R,4R,6S)-4-hydroxy-6-methylpiperidine-2-carboxylic acid, 38.

HRMS(ESI): Calcd for C₇H₁₄ClNO₃: 195.0662 found: 195.0665.

¹H and ¹³C NMR Spectra

HRMS spectra

