Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Material

Flexible Thermal Conductive Al₂O₃@siloxane Composite with Rapid Self-healing Property Based on Carboxyl-amine Dynamic Reversible bonds

Ziyue Hu,^a Weijian Wu,^a Xiang Chen, ^{*a} Yuanzhou Chen,^a Junlin Chen,^a Zhifeng Hao,^{*a}

^a Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.

* Corresponding author

E -mail address: chenxiang@gdut.edu.cn (X. Chen); haozf@gdut.edu.cn (Z. Hao)

Fig. S1: Preparation process of PDMS-COOH and SCNR

Fig. S2:(a) ¹H NMR spectrogram of PDMS-H; (b) PDMS-MMA; (c) PDMS-COOH

Fig. S3: (a) FTIR spectra of PDMS-H, PDMS-MMA, PDMS-COOH; (b) XRD patterns of the SCNR before and after self-healed

Fig. S4: (a) DTG curves of Al $_2$ O $_3$ @SR and Al $_2$ O $_3$ @SR/SCNR composites; (b) TG curves of Al $_2$ O $_3$ @SR and Al $_2$ O $_3$ @SR/SCNR composites;

Table S1 Date of TG and DTG of Al₂O₃@SR and Al₂O₃@SR/SCNR composites

Sample	T _{d 5%} (°C)	$T_d \max (^{\circ}C)$	Mass %
10Al ₂ O ₃ @SR	507	539	90.73
10Al ₂ O ₃ @SR/SCNR-1/0.025	562	569	89.96
10Al ₂ O ₃ @SR/SCNR-1/0.05	544	566	89.47
10Al ₂ O ₃ @SR/SCNR-1/0.075	530	548	89.92
10Al ₂ O ₃ @SR/SCNR-1/0.02	502	548	88.43

Fig. S5: (a-g) Self-healing properties of the Al₂O₃@SR and Al₂O₃@SR/SCNR composites with different SCNR wt% content

Fig. S6: Self-healing properties of the Al₂O₃@SR and Al₂O₃@SR/SCNR composites under 2 kPa pressure at 90 °C for 3 min

Fig. S7: Al₂O₃@SR/SCNR composites during tensile test

Table S2 A numerical contrast of the thermal conductivity, self-healing efficiency and

the time on self-healing of Al₂O₃@SR/SCNR composites with recent works

Composites	Thermal	Self-healing	Self-healing	References
	conductivity	efficiency	time	and year
	(W/mK)	(%)	(h)	
Al ₂ O ₃ @SR/SCNR	5.8	95.6 %	0.05	This work
silicone/BN	0.8837	97.16	0.25	2020[S1]
EMPI@VACNTs	10.83	90.8	80	2021[S2]
Graphene/PDMS	0.826	78.83	6	2020[S3]
mBN/thiol-epoxy	1.058	85	1	2018[S4]
PDMS-COOH-CG	0.48	84.6	24	2021[S5]
LCEF	1.25	90.6	1	2021[S6]
BN/GO/ENR/PLA	0.36	86	1	2022[S7]
mBN-30/UPy-	0.48	84.6	24	2021[S8]
PDMS-UPy				

Fig. S8: (a) Experimental thermal conductivity data and the Agari's fitting line; (b) Thermal diffusivity of $Al_2O_3@SR/SCNR$ before and after self-healed

The thermal conductivities of the composites with high filler content can be theoretically analyzed and predicted by classic **Agari's** model and the equation was as follows:

where λ_c , λ_f and λ_p are the thermal conductivities of the composite, filler and polymer matrix, respectively. In this work, the thermal conductivities of silicone matrix and Al_2O_3 are 0.2 W/mK and 27.5 W/mK, respectively. V_f is the volume fraction of the filler. The equation (1) can be transformed into equation (2):

$$\log \lambda_c = V_f [C_2 \log \lambda_f - \log(C_1 \lambda_p)] + \log(C_1 \lambda_p) \dots \dots \dots \dots (2)$$

It can be seen from equation (2) that λ_c is a function of the V_f , and the relationship between λ_c and V_f was shown in. So an equation (3) for Agari's fitting line can be obtained as follows:

$$y = 2.4388x - 0.1.3287...$$
 (3)

Therefore, from equations 2 and 3, the value of C_1 can be calculated firstly $(log(C_1\lambda_p) = -0.74)$. The calculated C_1 was 0.2345, and then C_2 can be calculated to be 0.83.

References:

- [S1] L. Zhao, X. Shi, Y. Yin, et al., A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities, Compos. Sci. Technol. 186 (2020) 107919.
- [S2] H. Yu, Y. Feng, C. Chen, et al., Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material, Carbon (New York). 179 (2021) 348-357.
- [S3] H. Yu, Y. Feng, L. Gao, et al., Self-Healing High Strength and Thermal Conductivity of 3D Graphene/PDMS Composites by the Optimization of Multiple Molecular Interactions, Macromolecules. 53 (16) (2020) 7161-7170.
- [S4] X. Yang, Y. Guo, X. Luo, et al., Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization, Compos. Sci. Technol. 164 (2018) 59-64.
- [S5] D. Yue, H. Wang, H. Tao, et al., A Fast and Room-temperature Self-healing Thermal Conductive Polymer Composite, Chinese J. Polym. Sci. 39 (10) (2021) 1328-1336.
- [S6] X. Yang, X. Zhong, J. Zhang, et al., Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance, J. Mater. Sci. Technol. 68 (2021) 209-215.
- [S7] C. Jia, P. Zhang, S.M. Seraji. et al., Effects of BN/GO on the recyclable, healable and thermal conductivity properties of ENR/PLA thermoplastic vulcanizates, Composites. Part A, Applied science and manufacturing. 152 (2022) 106686.
- [S8] C. Chen, H. Yu, Y Feng, et al., Polymer composite material with both thermal conduction and self-healing functions, ACTA POLYMERICA SINICA. 52 (3) (2021) 272-280.