Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Efficient *N*-sulfopropylation of chitosan with 1,3-propane sultone in aqueous solutions: neutral pH as the key condition

Abolfazl Heydari,*a Mahdieh Darroudi,^b Igor Lacík*a,c

^aPolymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41
^bDepartment of Energy Science and Technology, Faculty of Science, Turkish-German University, 106 34820 Istanbul, Turkey
^cCentre for Advanced Materials Application of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia

*Corresponding authors: abolfazl.heydari@savba.sk, igor.lacik@savba.sk

Table of Contents

EQUATIONS
Eqs. S1 and S2. Determination of the degree of acetylation (DA) for chitosan (CS)3
FIGURES
Figure S1. ¹³ C NMR spectra of N-(3-sulfopropyl)chitosan salt (SPCS) purified by different methods4
Figure S2. ¹³ C NMR spectra of 1,3-propane sultone in D_2O
Figure S3. HMBC spectrum of N-(3-sulfopropyl)chitosan salt (SPCS)6
Figure S4. ¹³ C NMR spectra of N-(3-sulfopropyl)chitosan salt (SPCS) containing sulfopropyl salt7
REFERENCES

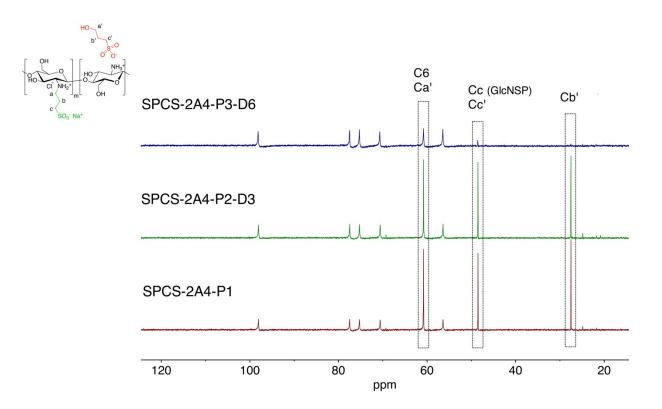
EQUATIONS

Eqs. S1 and S2. Determination of the degree of acetylation (DA) for chitosan (CS)

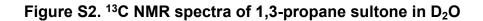
Elemental analysis:

$$DA(\%) = \left(\frac{W_{(C/N)} - (C/N)_{GlcN}}{(C/N)_{GlcNAc} - (C/N)_{GlcN}}\right) \times 100$$
Eq. S1

where $W_{(C/N)}$ is carbon/nitrogen mass ratio obtained by elemental analysis, $(C/N)_{GlcN}$ and $(C/N)_{GlcNAc}$ are the carbon/nitrogen ratios of GlcN and GlcNAc, respectively, equal to 5.145 and 6.861.¹


¹H NMR method:

$$DA(\%) = (\frac{I_{CH3}/3}{I_{H2-6}/6}) \times 100$$
 Eq. S2


where I_{CH3} and I_{H2-6} are the integrals of the acetyl proton signal in GlcNAc and proton signals of H2-6 in GlcN and GlcNAc units, respectively.²

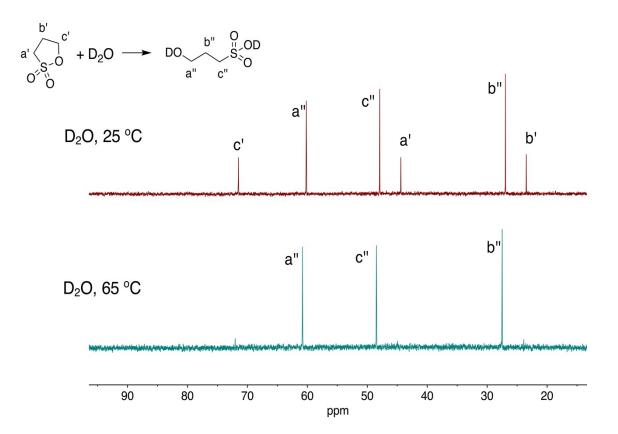

FIGURES

Figure S1. ¹³C NMR spectra of N-(3-sulfopropyl)chitosan salt (SPCS) purified by different methods

Figure S1. ¹³C NMR spectra of SPCS-2A4 in D₂O/DCI (100 MHz, pH ~ 3.0, 65 °C). SCPS was purified by precipitation (P1), dialysis against water at pH 6.5 (P2), and dialysis against water at pH 9 (P3). The representative carbon signals are labeled in the spectra.

Figure S2. ¹³C NMR of PrS in D_2O (100 MHz) measured at 25 and 65 °C. PrS was dissolved around 2 h before performing NMR analysis and stored at ambient temperature. The spectra at 65 °C were measured after 30 min exposure of PrS to this temperature (by setting the acquisition time to 30 min).

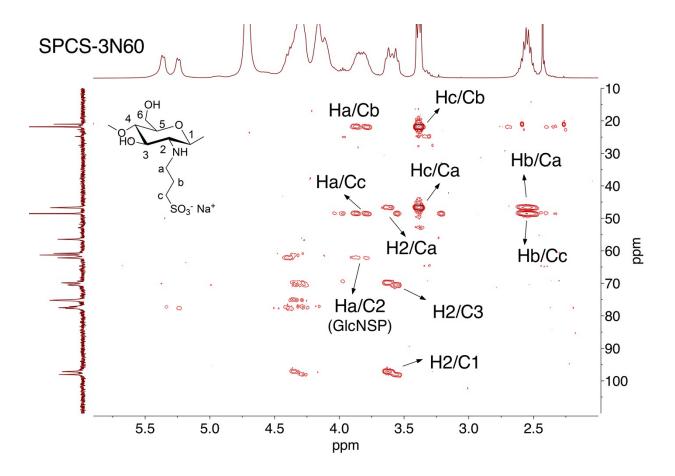
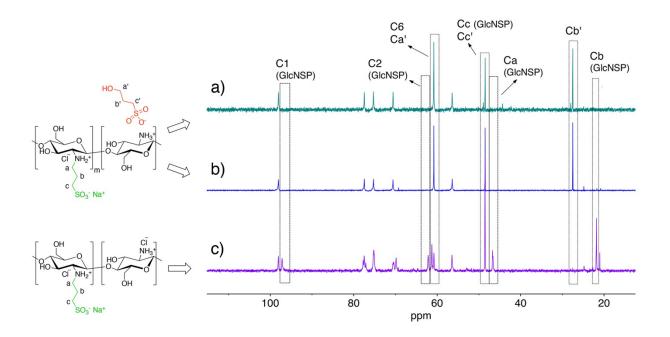



Figure S3. HMBC spectrum of N-(3-sulfopropyl)chitosan salt (SPCS)

Figure S3. ¹H-¹³C HMBC spectrum of SPCS-3N60 (400 MHz, D_2O/DCI , $pH \sim 3.0$, 65 °C). The representative cross peaks are labeled in the spectrum.

Figure S4. ¹³C NMR (100 MHz) (a) CS@PrS (weight ratio of 1 : 1) in D₂O after 30 min exposure of the solution to this temperature (by setting the acquisition time to 30 min), (b) SPCS-2A4@sulfopropyl salt in D₂O/DCl, and (c) SPCS-3N60 in D₂O/DCl.

REFERENCES

1. Kasaai, M. R.; Arul, J.; Charlet, G., Intrinsic Viscosity-Molecular Weight Relationship for Chitosan. *J Polym Sci Pol Phys* **2000**, 38, (19), 2591-2598.

2. Hirai, A.; Odani, H.; Nakajima, A., Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. *Polym Bull* **1991**, 26, (1), 87-94.