Electronic supplementary information

Construction of Supramolecular Laccase Enzymes and Understanding of Catalytic Dye Degradation Using Multispectral and Molecular Docking Approaches

Qingteng Zhou¹, Ming Guo^{*, 2}, Kaijie Ni², Francesca M. Kerton^{*, 3}

¹ College of Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China

²College of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China

³ Department of Chemistry, Memorial University, St. John's, NL, Canada A1B 3X7

* Corresponding authors

E-mail: guoming@zafu.edu.cn (M. Guo) E-mail: fkerton@mun.ca (F. M. Kerton)

Fig. S1 Catalytic oxidation mechanism of the laccase active site

Fig. S2 DB165 and DB86 molecular synchronous fluorescence spectrum with SL-DSA ($\Delta\lambda$ =15 nm, $\Delta\lambda$ =60 nm), [$C_{\text{Dyes}} = C_{\text{LAC}} = 1.0 \times 10^{-5} \text{ M}, \text{ T}=298 \text{K}, \text{ pH}=4.5$]

References

- [S1] L. Shen, Z. Jin, W. Xu, X. Jiang, Y. Shen, Y. Wang, Y. Lu, Enhanced treatment of anionic and cationic dyes in wastewater through live bacteria encapsulation using graphene hydrogel, *Ind. Eng. Chem. Res.* 2019, **58**, 7817 - 7824.
- [S2] D. Singh, K. K. Sharma, S. Jacob, S. K. Gakhar, Molecular Docking of Laccase Protein from Bacillus Safensis DSKK5 Isolated from Earthworm Gut: A Novel Method to Study Dye Decolorization Potential, *Water Air Soil Pollut.*, 2014, 225, 2175.
- [S3] G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I. M. Banat, R. Merchant, W. F. Smyth, Microbial decolorization and degradation of textile dyes. *Appl. Microbiol. Biotechnol.* 2001, 56, 81-87.
- [S4] M. Chivukula, V. Renganathan, Phenolic azo dye oxidation by laccase from Pyricularia oryzae. *Appl. Environ. Microbiol.*, 1995, 61, 4347-4377.

Fig. S3 Comparison of chromaticity, UV spectrum and HPLC before and after decolorization of dyes

Name of 13 dyes	Chemical characteristics	Category	Chemical structure of dyes
 Azoic Diazo C omponent 7 (ADC 7), CAS: 99-09-2 	MF: $C_6H_6N_2O_2$ MW: 138.12 g.mol ⁻¹ λ_{max} : 375 nm	Monoazo	NO ₂ NH ₂
2. Mordant Orang e1 (MO1) CAS: 2 243-76-7	MF: $C_{13}H_8N_3Na O_5$ MW: 309.21 g.mol ⁻¹ λ_{max} : 385 nm	Monoazo	
 Disperse Blue 165 (DB165), CA S: 41642-51-7 	$MF:C_{20}H_{19}N_{7}O_{3}$ MW: 405.41 g.mol ⁻¹ λ_{max} : 694 nm	Monoazo	${}_{2}N \longrightarrow {}_{CN} \longrightarrow {}_{N} \longrightarrow {}_{N} \longrightarrow {}_{C_{2}H_{5}} \times {}_{C_{2}H_{5}} \times {}_{C_{2}H_{5}} \times {}_{COCH_{3}} \times $
4. Acid Orange 7 (AO7), CAS: 633- 96-5	MF: $C_{16}H_{11}N_2NaO_4S$ MW: 350.33 g.mol ⁻¹ λ_{max} : 498 nm	Monoazo	
5. Food Red 4 (F R4), CAS: 2302-9 6-7	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Monoazo	SO ₃ Na-N=N-N=N-SO ₃ Na
6. Direct Red 28 (DR28),CAS: 573- 58-0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bisazo	SO_3Na Na Na Na Na Na Na Na
7. Direct Orange 26(DO26), CAS: 3 626-36-6	MF: $C_{33}H_{20}N_6Na_4O_{15}S_4$ MW: 960.55 g.mol ⁻¹ λ_{max} : 496 nm	Bisazo	SO ₃ Na C N H

Table S1 Chemical information and structural characteristics of the 13 kinds of dyes

 8. Disperse Red 6 0 (DR60), CAS: 1 2223-37-9 	MF: $C_{20}H_{13}NO_4$ MW: 331.32 g.mol ⁻¹ λ_{max} : 520 nm	Anthraquinone	C C C C C C C C C C C C C C C C C C C
9. Acid Blue 90 (AB90), CAS: 610 4-58-1	MF: $C_{45}H_{44}N_3NaO_7S_2$ MW: 825.97 g.mol ⁻¹ λ_{max} : 595 nm	Triarylmethane	$H_{3}C_{0}O_{H}$ $H_{3}C_{0}O_{H}$ $H_{3}C_{0}O_{H}$ $H_{3}C_{0}O_{H}$ $H_{3}C_{0}O_{H}$ $H_{3}C_{0}O_{H}$ $H_{3}C_{0}O_{H}$
10. Vat Blue1 (V B1), CAS: 482-89 -3	MF: $C_{16}H_{10}N_2O_2$ MW: 262.26 g.mol ⁻¹ λ_{max} : 715 nm	Indigo	
 Basic Blue 9 (BB9), CAS: 61-7 3-4 	MF: $C_{16}H_{18}ClN_3S$ MW: 319.85 g.mol ⁻¹ λ_{max} : 664 nm	Sulfide dyes	$\begin{bmatrix} H_3C \\ N^+ \\ I \\ CH_3 \end{bmatrix} CI^-$
 12. Direct Blue 8 6 (DB86), CAS: 1 330-38-7 	MF: $C_{34}H_{16}CuN_8Na_2O_6S_2$ MW: 982.18 g.mol ⁻¹ λ_{max} : 616 nm	Phthalocyanine	SO_3Na N
- 13. Basic Red 2 (BR2), CAS: 477-7 3-6	MF: $C_{20}H_{19}CIN_4$ MW: 350.84g.mol ⁻¹ λ_{max} : 563 nm	Heterocyclic	$H_{3C} \xrightarrow{N} \xrightarrow{N} \xrightarrow{CH_{3}} H_{2N}$

Dyes	J(cm ³ ·L / mol)	E	R ₀ /nm	<i>r</i> /nm
DB86	8.27×10 ⁻¹⁶	0.6877	1.62	1.42
FR4	1.53×10 ⁻¹⁶	0.6512	1.22	1.10
AB90	1.24×10 ⁻¹⁶	0.5902	2.54	2.39
BB9	3.06×10 ⁻¹⁴	0.7605	2.95	2.44
DO26	7.03×10 ⁻¹⁶	0.4444	1.58	1.63

Table S2 Calculation results of combined distance

Table S3 The internal effective binding molecular model of the SL-DSA decolorization reaction

Dyes	Docking score kJ/mol	Amino acid residues that interact with chromophore	π-π stacking	Unfavorable
	-79.48	Interaction between Asp206\Phe457 and	Phe265\Phe457\Pro163	$Dh_{2}(2) H_{2}(5)$
DR28		the -N=N- bond and sulfosulfide atoms	Pro394\Ala240\Pro396	
		of DR28	Ile455 \Arg161\Ala461	Phe239
- AB90	-93.20	Interaction between Asp456\His111\	His454\Ala80\Phe344\Asp	His64\Cu1501\
		Phe344\Glu460 and the -C=N- $-$ C=C-	456\Ser113\His398\His400	Cu1500\Pro346\
		bonds and sulfosulfide atoms of AB90	\Leu459 \His66	Thr114\Val82
	-12.10	Interaction between Phe344\Ala80\	Glu460\ Val82\	Sor112\Dha457
DO26		His111\Gly159\Ser343 and the -N=N-	Pro346\Arg157\	Sel113\Pile437\
		bond, sulfosulfide atoms of DO26	Ala156\Arg161	Leu459
DR60	-8.03	Interaction between Phe344\Leu459\Gl		$Gly 462 \land ra161 \land$
		y462 and the aniline group, phenolic	Glu460\Pro346	A == 157
		hydroxyl group atom of DR60		Alg157
	-8.32	Interaction between Pro346\Arg161 and	Phe162\Pro391\Phe332	Nothing
FR4		the -N=N- bond of FR4	1 hero2 (1 105) 1 (1 hess2	
	-5.79	Interaction between Leu459\Phe344 an	Dro346	Nothing
ADC7		d the benzene amino of ADC7	110340	
MO1	-7.25	Interaction between Glu460\Leu459\	Leu/50\Pro3/6\His111	Nothing
		Arg161 and the -N=N- bond of MO1	Leu439/110340/1113111	Nothing
AO7	-7.20	Interaction between Glu460\Arg161 and	Thr345\Pro346\Phe344\	NI-41
		the -N=N- bond of AO7	Arg157	Nothing
		Interaction of Phe265\Asp206 with	D1 4 65	
BB9	-5.80	aromatic ring -C-N- bond of BB9	Phe162	Nothing

system for the other 11 kinds of dyes

VB1	-7.11	Interaction of Pro346\Glu460\Arg161 with the -C=N- bond of VB1	Leu459\Ala80\Ser113	Nothing
BR2	-4.66	Interaction of Phe162\Phe344\Glu460\ Pro346 with the -C=N- bond of BR2	Glu460\Arg161	Nothing

Dyes	Original dye structure	Prediction of degradation products
ADC7		H ₂ O
MO1	O ₂ N-N=N-OH	O = O O O O O O O O O O O O O O O O O O
DB165	$O_2N - \underbrace{\bigvee_{CN}^{CN} \bigvee_{HN}^{N} \bigvee_{C_2H_5}^{C_2H_5}}_{COCH_3} N \underbrace{\bigvee_{C_2H_5}^{C_2H_5}}_{COCH_3}$	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & $
A07	N=N OH	HN=N-O-SO ₃ Na NaO ₃ S-O-OOH
FR4	NaO ₃ S- N=N SO ₃ Na	NaO ₃ S-N=NH NaO ₃ S-OOH
BR2	H ₃ C H ₂ N H ₂ N	$\begin{array}{c} H_{3}C \longrightarrow H \\ H_{2}N \longrightarrow NH_{2} \end{array} \qquad \begin{array}{c} H_{3}C \longrightarrow H \\ H_{2}N \longrightarrow NH_{2} \end{array} \qquad \begin{array}{c} H_{3}C \longrightarrow H \\ H_{2}N \longrightarrow NH_{2} \end{array} \qquad \begin{array}{c} H_{3}C \longrightarrow H \\ H_{2}N \longrightarrow NH_{2} \end{array}$
DR60	$\bigcup_{0}^{Q} \bigcup_{OH}^{NH_2O} \bigcup_{OH}$	$(\mathcal{A}^{0})^{0} (\mathcal{A}^{0})^{0} (A$
VB1		$\begin{array}{c} \begin{array}{c} O \\ H \\ H \\ H \\ H \\ \end{array} \end{array} \xrightarrow{O} \\ H \\ H \\ \end{array} \xrightarrow{O} \\ H \\ H \\ \end{array} \xrightarrow{O} \\ O \\ H \\ H \\ \end{array} \xrightarrow{O} \\ O \\ H \\ O \\ H \\ \end{array} \xrightarrow{O} \\ O \\ H $
BB9	$\begin{bmatrix} H_3C \\ N^T \\ CH_3 \end{bmatrix} \begin{bmatrix} N \\ S \\ CH_3 \end{bmatrix} \begin{bmatrix} CH_3 \\ CH_3 \end{bmatrix} C^T$	$\underset{CH_{3}C-N}{\overset{H}{\leftarrow}}\underset{CH_{3}}{\overset{H}{\leftarrow}}\underset{CH_{3}}{\overset{CH_{3}}{\leftarrow}}\underset{CH_{3}}{\overset{H}{\leftarrow}}\underset{H_{3}C}{\overset{H}{\leftarrow}}\underset{H_{3}C}{\overset{H}{\leftarrow}}\underset{SH}{\overset{H}{\leftarrow}}\underset{CH_{3}}{\overset{CH_{3}}{\leftarrow}}\underset{CH_{3}}{\overset{H}{\leftarrow}}\underset$

Table S4 The expected structure of the degradation products of the other 10 dyes

