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Appendix A: Data handling 

 

Mass balance check 

The molar flow rates are first converted to mass flow rates using the molar masses. For each 

measurement, Eq. S1, where the mass flowrates at the reactor outlet, 𝐹𝑚,𝑖, are compared to 

the mass flowrates at the reactor inlet, 𝐹°𝑚,𝑖, closure of the mass balance must be satisfied to 

ensure that the measurements are not irredeemably affected by experimental error. If the 

mass balance is not satisfied within a given percentage (10 % by default), this is indicated by 

the tool with a warning. 

|∑ 𝐹°𝑚,𝑖𝑖 − ∑ 𝐹𝑚,𝑖𝑖 |

∑ 𝐹°𝑚,𝑖𝑖
< 0.01 (𝐸𝑞. 𝑆1) 

Calculation of meaningful variables 

Together with temperature, total pressure and partial pressures of the reactants, the space-

time represents a crucial independent variable in the construction and validation of a kinetic 

model and it is here calculated via Eq. S2:  

𝑆𝑝𝑎𝑐𝑒-𝑡𝑖𝑚𝑒 = 𝑊 𝐹°(𝑅1)⁄ (𝐸𝑞. 𝑆2) 

Where 𝑊 indicates the mass of catalyst loaded in the reactor and 𝐹°(𝑅1) is the inlet molar 

flowrate of the limiting reactant. 

To decouple from the effect of total pressure, the partial pressures of the components of 

interest are better expressed as a ratio of partial pressures (in this case, normalized by the 

limiting reactant), as calculated via Eq. S3:  

𝑝(𝑅𝑖)/𝑝(𝑅1) = 𝐹°(𝑅𝑖)/𝐹°(𝑅1) (𝐸𝑞. 𝑆3) 
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These independent variables are meant to represent the various degrees of freedom of the 

reaction in a meaningful manner. 

Conversion and selectivities are commonly used to measure the performance of a catalyst 

and are therefore meaningful dependent variables. Those are calculated using Eq. S4 and Eq. 

S5 respectively: 

|∑ 𝐹°𝑚,𝑖𝑖 − ∑ 𝐹𝑚,𝑖𝑖 |

∑ 𝐹°𝑚,𝑖𝑖
< 0.01 (𝐸𝑞. 𝑆4) 

𝑆(𝑃𝑖) =
𝐹(𝑃𝑖) − 𝐹°(𝑃𝑖)

𝐹°(𝑅1) − 𝐹(𝑅1)
∙

#𝐶(𝑃𝑖 𝑓𝑟𝑜𝑚 𝑅1)

#𝐶(𝑅1)
(𝐸𝑞. 𝑆5) 

Where #𝐶 represents the number of carbon atoms in a specific species, either the limiting 

reactant 𝑅1 or the product of interest 𝑃𝑖. 

As the values for the independent variables can sometimes show slight variations, a margin of 

error is requested from the user for each independent variable. The code then checks if any 

values for the independent variables are within this margin of error and replaces the values 

by their average if they are. This is important during the generation of the sub-datasets, which 

is discussed in Section 3.2.2, as the code needs to knows when variables can be considered to 

be constant. 
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Appendix B: Smoothing factor 

 

The recommended value for the smoothing factor of a spline in the UnivariateSpline algorithm 

equals the number of data points 𝑚. The effect of the smoothing factor on the generated 

spline was tested on fictional datasets with a small number of data points (10 or lower). Three 

examples of the results obtained by varying the smoothing factor are shown in Figure S1. It 

can be seen that for the first dataset, the recommended smoothing factor leads to a 

chemically intuitive result, while the lower smoothing factors lead to chemically unrealistic 

results. For the two other datasets, it is clear that the default smoothing factor leads to a spline 

which is unable to capture the linear trends in the data. In these cases, a lower smoothing 

factor is needed to lead to a chemically intuitive curve. Based on these results, it can be 

concluded that it is not possible to determine a single smoothing factor which leads to a 

realistic curve for all datasets. 
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Figure S1: Splines generated by the UnivariateSpline algorithm for three fictional datasets using a smoothing factor of m, 
m/1000 and m/2000. 
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Appendix C: Maximal number of knots 

 

To limit the number of splines which can be generated for a dataset, a maximal number of 

knots is used for the splines. Multiple tests were therefore done to see how many knots are 

needed to be able to extract all trends which can realistically be expected from kinetic data. 

In Figure S2, splines with different numbers of knots are shown for a dataset representing an 

S-curve trend, showcasing that 7 knots are sufficient to generate a curve which is visually 

almost identical to an actual S-curve. This trend was chosen as it contains two linear sections, 

making it particularly difficult to represent using a cubic spline with a low number of knots. All 

curves in Figure S1 in Appendix A were also generated with less than 7 knots. 

 

 

Figure S2: Generated spline for a dataset representing an S-curve trend using different smoothing factor leading to different 
numbers of knots. 
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Appendix D: Number of equidistant points for discretization 

 

To discretize the interval of x-values for the calculation of the first and second derivatives, 100 

equidistant points were chosen. In Figure 1, an example is shown of the extracted features for 

different numbers of equidistant points. It can be seen that going from 10 to 50 equidistant 

points leads to a visible difference in the width of the areas where the primitives G and E are 

selected by the code. Increasing the number equidistant points to 100 leads to very minor 

differences which are hardly noticeable, while a further increase to 200 equidistant points 

leads to no additional visible changes. It was decided that for the feature extraction, it is 

sufficient to use 100 equidistant points, as it is not necessary to get exceptionally accurate 

values for the positions of the extremes of the intervals to be able to extract the features of 

the curve. 

 

 

Figure S3: Extracted features from a given curve using 10, 50, 100 and 200 equidistant points for the discretization of the 
interval of x-values. 
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Appendix E: Threshold values a and b for extraction of linear trends 

 

To extract linear trends from the data (primitives E, F and G), the values of the first and second 

derivatives in a certain point must be considered 0 below a certain threshold value. However, 

it is hard to assign a single value for all cases as the values for the derivatives depend on the 

units of the data and the considered ranges of x-values and y-values. To address this unit 

dependency, the first and second derivative are normalized by the magnitude of the 

respective derivative (i.e. multiplied with ∆𝑥/∆𝑦 and ∆𝑥2/∆2𝑦 respectively to remove this 

dependence, , with ∆𝑥 being the range of x-values, the independent variable on the abscissa, 

and ∆𝑦 being the range of y-values, the dependent variable on the ordinate). To  determine if 

the first or second derivative of a generated curve can be considered approximately 0, the 

threshold values 𝑎 and 𝑏 are used. The first or second derivatives are considered 0 if their 

absolute value is lower than 𝑎 or 𝑏 respectively. After several tests using fictional data, a value 

of 0.5 was chosen for both threshold values. Figure S3 shows the effect of the threshold values 

on the extracted primitives for a given curve. It can be seen that an increasing value for 𝑎 leads 

to an increased detection of 0th order trends (primitive G), while and increasing value for b 

leads to an increased detection of 1st order trends (primitives E and F). Both values were 

chosen to be 0.5 as this led to a compromise between capturing important trends in the data 

while ensuring that not too many trends were automatically considered to be linear. 
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Figure S4: Extracted primitives from a given curve using different values for the threshold values a and b. 
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Appendix F: R-value for simplification 

 

The multiple correlation coefficient R is defined in Eq. S6 [1]. 

𝑅2 =
�̂�𝑇�̂�

�̂�𝑇�̂� + 𝑒𝑇𝑒
=

𝑆(𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝑆(𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) + 𝑆(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠)
(𝐸𝑞. 𝑆6) 

To compare a spline to a polynomial, the developed code compares the change in the R-value 

of both curves and simplifies the curve if the change is small but not when the change is large. 

After several tests using fictional data, it was chosen that the code would simplify the curve if 

the R-value of the simplified curve if larger than 99.8% of the R-value of the original curve. 

Some of the performed tests are shown in Figure S5. For the first dataset, the change is always 

lower than the threshold value, so the curve is simplified to a linear polynomial. A quadratic 

polynomial is selected for the second dataset, as the change between the quadratic 

polynomial and the cubic polynomial is small, but the change between the quadratic 

polynomial and the linear polynomial is considered too large. In the case of the third dataset, 

the spline is not simplified to a polynomial as it would lead to a large decrease in the R-value 

due to the fact that the cubic polynomial is not able to capture the linear trend in the data. 
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Figure S5: Generated splines and polynomials (cubic, quadratic and linear) for three datasets. 
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Appendix G: Logarithmic functions 

When a logarithmic function is fitted to the data, it is sufficient to perform a linear regression 

with 𝑦 in function of 𝑙𝑛(𝑥) to obtain values for the coefficients 𝐴 and 𝐵, as in Equation S7. If 

an exponential function is used for the regression, as in Equation S8, the logarithm must be 

taken of both sides of the equation to linearize it and the residual is transformed. This leads 

to an approximation, as a transformation of the residual is minimized and not the actual 

residual. Therefore, as mentioned in section 3.4.4, the logarithm is preferred.  

𝑦 = A ∙ ln(𝑥) + 𝐵 (𝐸𝑞. 𝑆7) 

𝑦 = 𝐴 ∙ exp(𝐵 ∙ 𝑥) (𝐸𝑞. 𝑆8) 

The following two functions are used to fit the logarithmic functions, regardless of the x-values 

of the data: 

𝑦 = A ∙ ln(𝑥 − 𝐶) + 𝐵 (𝐸𝑞. 𝑆9) 

𝑦 = A ∙ ln(−(𝑥 − 𝐶)) + 𝐵 (𝐸𝑞. 𝑆10) 

Due to the constant C introduced in the equations, it is not possible to estimate all coefficients 

in the equations using linear regression. The coefficient C in Eq. S9 and Eq. S10 can be 

estimated using Eq. S11 and Eq. S12 respectively. In these equation, 𝑥1 and 𝑥3 represent the 

smallest and the largest x-value respectively, and 𝑥2 is the x-value of a data point between 

these two, which can be defined by Eq. S13. The y-values 𝑦𝑖 correspond to the y-values of the 

data points with x-value 𝑥𝑖. To derive Eq. S9, it was assumed that 𝑥3 − 𝐶 is much larger than 

𝑥1 − 𝐶, which means that the value for 𝐶 is relatively close to the the smallest x-value 𝑥1. For 

Eq. S10, on the other hand, it was assumed that 𝐶 − 𝑥1 is much larger than 𝐶 − 𝑥3, which 

means that the value for 𝐶 is relatively close to the the largest x-value 𝑥3. In general, these 
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assumptions mean that the considered curves have a very “sharp” shape, which, in other 

words, corresponds to a fast change in the progression of the curve. These assumptions are 

justified, as the use of logarithmic functions was introduced for this type of progressions. 

Curves with much slower changes in the progression can be described just as well by 

polynomials, which were considered as well in the tool. 

𝐶 =
𝑥3 − 𝑥1 exp (

𝑦3 − 𝑦1

𝑦2 − 𝑦3
∙ ln(𝛼))

1 − exp (
𝑦3 − 𝑦1

𝑦2 − 𝑦3
∙ ln(𝛼))

(𝐸𝑞. 𝑆11) 

𝐶 =
𝑥1 − 𝑥3 exp (

𝑦1 − 𝑦3

𝑦2 − 𝑦1
∙ ln(1 − 𝛼))

1 − exp (
𝑦1 − 𝑦3

𝑦2 − 𝑦1
∙ ln(1 − 𝛼))

(𝐸𝑞. 𝑆12) 

𝑥2 = 𝑥1 + 𝛼 ∙ (𝑥3 − 𝑥1) = (1 − 𝛼) ∙ 𝑥1 + 𝛼 ∙ 𝑥3 (𝐸𝑞. 𝑆13) 

To estimate a value for 𝐶 for any dataset, the formula is applied to all datapoints with an x-

value 𝑥2 between 𝑥1 and 𝑥3. The final estimation is then the average of all calculated values 

for 𝐶. This value is only an estimation for 𝐶 and is not exactly the optimal value for 𝐶 to make 

the sum of squares of the residuals as small as possible. Nevertheless, it is deemed more than 

adequate for the purpose of this work. 
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