Supplementary information

Copper-based MOF, $Cu_3(SDBA)_2(HSDBA)$, as catalyst for efficient reduction of 4-nitrophenol in the presence of sodium borohydride

Manel Mansour^{1,2}, Hamza Kahri^{3*}, Mouhieddinne Guergueb⁴, Houcine Barhoumi³, Enrique Gutierrez Puebla², Brahim Ayed¹, Umit B. Demirci^{5*}

- 1 Laboratory Materials, Crystal Chemistry and Applied Thermodynamics, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
- 2 Materials Science Factory, Materials Science Institute of Madrid (CSIC), C/Sor Juana Ines de La Cruz, 3, Madrid, Spain
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Tunisia
- 4 University of Monastir, Laboratoire de Physico-Chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, Tunisia
- 5 IEM (Institut Européen des Membranes), UMR5635 (CNRS, ENSCM, UM), Université de Montpellier, Place Eugene Bataillon, CC047, Montpellier, France
- * kahrihamza11@gmail.com; umit.demirci@umontpellier.fr

Figure S1. Schematic illustration of the synthesis of blue crystals of Cu₃(SDBA)₂(HSDBA), and their use for the reduction of 4-nitrophenol into 4-aminophenol.

Figure S2. SEM images of $Cu_3(SDBA)_2(HSDBA)$ at two different magnifications. These images are the same as those shown in Figure 1 but at two different magnifications. The image (b) shows a magnification of the area of the image (a) indicated by the yellow box.

Figure S3. Energy dispersive X-ray spectrum of $Cu_3(SDBA)_2(HSDBA)$.

Parameters	[Cu ₃ (SDBA) ₂ (HSDBA)]
CCDC deposit No.	1956263
Empirical formula	$C_{42}H_{25}Cu_3O_{19}S_3$
Formula weight g/mol	2175.40
Temperature (K)	296
Wavelength (Å)	1.54178
Crystal system	Triclinic
Space group	<i>P</i> -1
a (Å)	12.5482(7)
b (Å)	12.6669(9)
c (Å)	15.7079(8)
α (°)	106.396(4)
β (°)	91.917(3)
γ (°)	119.522 (4)
Volume (Å ³)	2039.2(2)
Z	2
Density (Mg m⁻³)	1.771
Absorption coefficient (mm ⁻¹)	3.742
F ₀₀₀	1097
Crystal size (mm ³)	0.02 × 0.02 × 0.01
θ range for data collection	3.00° to 65.42°
Index renges	$-14 \le h \le 14$
index ranges	-14≤ K ≤ 14 -16≤ I ≤18
Reflections collected	16003
Unique reflections	6522 [Rint = 0.0620]
Absorption correction	multi-scan
Refinement method	Full matrix least-squares on F ²
Data/restraints/parameters	6522 / 0 / 601
Goodness-of-fit on F ²	1.070
Final [<i>l</i> > 2σ(<i>l</i>)]	$R_1 = 0.0877, wR_2 = 0.2440$
R indices (all data)	$R_1 = 0.2440, wR_2 = 0.2647$
Largest diff. peak and hole	0.727 and -0.927e Å ⁻³

 Table S1. Crystal data and refinement table.

Figure S4. (a) PXRD pattern of bulk $Cu_3(SDBA)_2(HSDBA)$ (blue precipitate) denoted 'experimental'. (b) Calculated XRD pattern, the simulation being from the single XRD data.

Figure S5. UV-vis absorption spectrum of the H₂-SDBA ligand. The λ_{max} of the two absorption bands and the λ_{lim} are indicated.

Figure S6. Time for the conversion of 4-NP catalyzed by re-used $Cu_3(SDBA)_2(HSDBA)$ in the presence of aqueous NaBH₄, for 7 cycles. Conditions: 5 mL; [4-NP] = 7.1×10⁻⁴ mol L⁻¹; [NaBH₄] = 2.1×10⁻² mol L⁻¹; 2 mg Cu₃(SDBA)₂(HSDBA); 25 °C.

Figure S7. FTIR spectrum of used Cu₃(SDBA)₂(HSDBA), that is, Cu₃(SDBA)₂(HSDBA) recovered after 7 cycles.

Figure S8. PXRD pattern of used $Cu_3(SDBA)2(HSDBA)$, that is, $Cu_3(SDBA)_2(HSDBA)$ recovered after 7 cycles. The peak at around 43.5° belongs to metallic Cu (the plane (111)).