Supporting Information

Experimental

N₂O pulse chemisorption

The Cu characteristics were determined by N₂O pulse chemisorption on a chemical adsorption instrument (PCA-1200, Builder, China). Before the measurement, the catalyst was reduced at 473 K for 2 h in H₂. The N₂O chemisorption was carried out with 3 vol% N₂O/He mixture. The Cu surface area was calculated by assuming a N₂O/Cu molar stoichiometry of 0.5:1 and a Cu surface density of 1.46 ×10¹⁹ Cu atom/m².

The metal surface area (MSA), metal dispersion (D_{Cu}) and particle size (d_{Cu}) of Cu were calculated as

$$MSA = \frac{2 \times N_2 O \text{ adsorption} \times N_A}{1.46 \times 10^{19}}$$
(1)
$$D_{Cu} = \frac{n_{\text{surface Cu}}}{n_{\text{total Cu}}} \times 100\%$$
(2)
$$d_{Cu} = \frac{104}{D_{Cu}}$$
(3)

Analysis of the reaction products

The liquid products collected from the reaction mixture were analyzed by a gas chromatograph (Shimadzu GC-14C). The conditions for the analysis were as follows: a 50 m HP-PONA capillary column, a flame ionization detector, $30 \text{ mL/min } N_2$ flow as a carrier gas, detector temperature 533 K, and the oven temperature programmed from 313 K to 522 K at the speed of 10 K/min. The products were identified by gas chromatography/mass spectrometry (Agilent GC/MS 5890). The carbon balance of all examined catalysts was in the range of 93 to 98%.

The furfural conversion, the selectivity and yield of furfural alcohol were calculated using the formulas as follows:

$$Conversion = \frac{n_{(\text{furfural})before} - n_{(\text{furfural})after}}{n_{(\text{furfural})before}} \times 100\% \quad (4)$$

$$Selectivity = \frac{n_{(\text{furfuryl alcohol})}}{n_{(\text{furfural})before} - n_{(\text{furfural})after}} \times 100\% \quad (5)$$

$$Yield = \frac{n_{(\text{furfuryl alcohol})}}{n_{(\text{furfuryl alcohol})}} \times 100\% \quad (6)$$

Here, $n_{(\text{furfural})before}$ is the initial furfural concentration in the reactor, $n_{(\text{furfural})after}$ and $n_{(\text{furfuryl alcohol})}$ are the furfural and furfuryl alcohol concentrations after the reaction, respectively.

 $\label{eq:Fig.S1} \mbox{ (a) } N_2 \mbox{ adsorption-desorption isotherms and (b) pore size distribution curves of Fe/Cu@C (Fe^{3+} 10 wt\%) and $$Fe_3O_4/Cu@C (Fe^{3+} 10 wt\%)$. $$ Fe_3O_4/Cu@C (Fe^{3+} 10 wt\%)$. $$$

Table S1 Catalytic activity of this research compared to other literatures.

No.	Catalysts	Reaction conditions	Con.	Sel. ^a	Yield	Ref.
			(%)	(%)	(%)	
1	Fe/Cu@C	20 mg catalyst, 1 mmol furfural,	68.5	98.2	67.3	This work
		10 mL <i>i</i> -propanol, 1MPa H ₂ , 457 K, 4 h				
2	Fe ₃ O ₄ /Cu@C	20 mg catalyst, 1 mmol furfural,	86.3	99.6	86.0	This work
		10 mL <i>i</i> -propanol, 1MPa H ₂ , 457 K, 4 h				
3	Cu/C	0.1 g catalyst, 0.6 g furfural, 15.4 g <i>i</i> -propanol,	99.6	99.3	-	1
		443 K, 2 MPa H ₂ , 3 h				
4	5 wt% Pd/MCM-41	2.1 mL furfural, 5 mL octane, 30 bar H_2 , 413 K, 3	~51	~59	_	2
		h				
5	CuAl+MgO	0.04 g catalyst, 0.08 g furfural, 3.92 g ethanol,	100	98.5	98.5	3
		100 µL NaOH solution (1.0 mol/L) 373 K, 5 MPa				
		H ₂ , 2 h				
6	Ni-Cu/SiO ₂	0.2 g catalyst, 2.415 mmol furfural,	63	68	43	4
		10 mL methanol, 20 bar H ₂ , 373 K, 2 h				
7	Na-Cu@TS-1	0.3 g catalyst, 0.3 g furfural, 23.56 g <i>i</i> -propanol,	93.0	98.1	-	5
		10 bar H ₂ , 383 K, 2 h				
8	Pt3Fe/CeO ₂	20 mg catalyst, 200 µL furfural, 10 mL <i>i</i> -	99.8	> 99.0	_	6
		propanol, 20 bar H ₂ , 373 K, 4 h				

^a Selectivity of furfuryl alcohol.

- [1] C. Wang, Y. Liu, Z. Cui, X. Yu, X. Zhang, Y. Li, Q. Zhang, L. Chen and L. Ma, ACS Sustainable Chem. Eng., 2020, 8, 12944–12955.
- [2] Z. Yi, H. Xu, D. Hu and K. Yan, J. Alloy. Compd., 2019, 799, 59-65.
- [3] Y. Shao, Q. Li, X. Dong, J. Wang, K. Sun, L. Zhang, S. Zhang, L. Xu, X. Yuan and X. Hu, Fuel, 2021, 293, 120457.
- [4] P. Weerachawanasak, P. Krawmanee, W. Inkamhaeng, F.J. Cadete Santos Aires, T. Sooknoi and J. Panpranot, *Catal. Commun.*, 2021, 149, 106221.
- [5] P. Cao, L. Lin, H. Qi, R. Chen, Z. Wu, N. Li, T. Zhang and W. Luo, ACS Catal., 2021, 11, 16, 10246–10256.
- [6] X. Gao, S. Tian, Y. Jin, X. Wan, C. Zhou, R. Chen, Y. Dai and Y. Yang, ACS Sustainable Chem. Eng., 2020, 8, 12722– 12730.