A sustainable and product-controllable aerobic oxidative cleavage of vicinal

diols using vanadium-based photocatalyst

Guobao Yang, Jing Shi, Haijing Sun, Xinli Tong*

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China. Tel: (+86)-22-60214259; E-mail: tongxinli@tju.du.cn or tongxli@sohu.com.

Supporting Information

1. The characterization of catalysts

1.1 Photoelectrochemical detection of different catalysts

Figure S1. The photocurrent density spectra (left) and EIS Nyquist plots (right) of different samples

1.2 SEM image

Figure S2. The SEM image of VO_x/ZnO sample

1.3 XPS spectrum of VO_x/ZnO photocatalyst

Figure S3. The XPS spectrum of VO_x/ZnO sample (a) and the results of Zn2p core (b), V2p core (c), O1s core (d)

Figure S4. The comparison of XPS result of O1s core for the VO_x/ZnO and VO_x/ZrO₂ catalysts

1.4 The UV-vis spectra and NH₃-TPD data of different catalysts

Figure S5. The UV-vis spectra (a) and the band gap energy (b) of differet photocatalysts

Figure S6. The NH₃-TPD result of ZnO sample (a) and VO_x/ZnO photocatlyst (b)

1.5 BET detection

Table S1. The N ₂ physisor	ption results of different catalysts
---------------------------------------	--------------------------------------

Catalyst	Surface area (m ² /g)	Pore Volume (m ³ /g)	Pore Size (Å)
ZnO	19.5776	0.000831	71.0930
VO _x /ZnO	18.1030	0.00120	51.210
VO _x	2.5210	0.000613	48.266

2. The influence of oxygen pressure on the oxidative cleavage process of vicinal diols

Figure S7. The influence of oxygen pressure (reaction conditions: 0.1 g of 1, 50 mg of VO_x/ZnO catalyst, in 10 mL methanol solvent, Xe lamp with a light intensity of 220 mW/cm², for 8 h)

3. Results of control experiments for oxidative cleavage reaction of 1 with VO _x in r	nethanol
Table S2. The results of control experiments to study the mechanism ^[a]	

Entry	Additive	Conv.(%) ^[b] -	Product distribution ^[b]	
			2	3+5+others
1	Silver nitrate	52	15	85
2	Ammonium oxalate	26	32	68
3	<i>p</i> -benzoquinone	60	5	95
4	β -carotene	70	-	>99
5	Diphenylamine	24	10	90
6	TEMPO	32	<1	>99
7	TEMPO+ <i>p</i> -benzoquinone	<3	-	>98

[a] Reaction conditions: 0.1 g of compound 1, 50 mg of VO_x , in 10 mL CH₃OH, under 0.2 MPa of O_2 , Xe lamp with a light intensity of 200 mW, 5 h; [b] The results are obtained by GC with internal standard technique.

4. The possible reaction mechanism for the oxidative cleavage process with the VO_x/ZnO photocatalyst

Figure S8. Proposed reaction mechanism for oxidative cleavage process of 1 under the oxygen atmosphere

	Conv.(%) ^{[b}	Product Distribution(%) ^[b]			
Reaction conditions]	Benzaldehyde	Benzoic acid	Ref.	
AgOTf, NaOMe (3 equv.) 37 °C, 12 h	>99	96	-	Angew. Chem. Int. Ed., 2018, 57, 2616	
Vanadium complex, in toluene solvent, 0.7 h, 100 °C,	99	99	-	Adv. Synth. Catal. 2018, 360, 3286	
CeCl ₃ • 7 H ₂ O, TBACl (50mol%), in CH ₃ CN solvent, LED 455 nm, 18 h	>99	85	-	Chem. Commun., 2019, 55, 486	
Na-Mn-LMO (1%Mn) ,O ₂ 1- butanol 100 °C, 1 h	99	>99	-	Angew. Chem. Inter. Ed., 2017, 56, 9561	
EcoMnOx (10%Mn) O ₂ 1- butanol 100 °C, 1 h	98	99	-	ACS Sustainable Chem. Eng., 2017, 5, 3214	
CN 620, visible light 2wt%CTAB/H ₂ O O ₂ (1atm)	>99	75	-	Green Chem., 2020, 22, 5042	
VO _x /ZnO, visible light O ₂ ,CH ₃ OH 10 h	100	91	-	This work	
VO _x , visible light O ₂ , CH ₂ Cl ₂ 5 h	99	-	100	This work	

5. The results of oxidative cleavage process compared with the previous works

Table S3. The compared results for the oxidative cleavage process of hydrobenzoin

As shown in Table S3, the previous researches provide the technology for either the production of aldehyde or as the generation of ester (or acid) from vinical diols with the suitable catalysts; however, the regulation and controlling of product selectivity is not enough to carry out and understand the oxidative cleavage of 1, 2-diols from the catalytic method. This work presents a novel, mild and adjustable oxidative cleavage process of C-C bond using the vanadium oxide-based photocatalysts. In case of the oxidative transformation of hydrobenzoin, a complete conversion with 91% selectivity of benzaldehyde was obtained in methanol using the VO_x/ZnO as catalyst, and 99% conversion in 100% selectivity of benzoic acid was attained with the VO_x as the catalyst in dichloromethane solvent.

6. The photocatalytic oxidative cleavage reactions of different vicinal diols

Entry	The substrate	product	Conversion (%) ^[b]	Select. (%) ^[b]
1	ОН	0	15.0	97
2	ОН		5.8	90
3	OH OH OH		85	93
4	ОНОН	000	90	91
5 ^[c]	OH OH OH	0	62	92
6 ^[c]	OH OH OH	0	26	90
7 ^[c]	OH IIII OH	0	55	91

Table S4. The oxidative transformations of different 1, 2-diols with VO_x/ZnO as catalyst ^[a]

^[a]Reaction conditions: 0.1 g substrate, 50 mg of VO_x/ZnO photocatalyst, in 10 mL methanol, under 0.2 MPa of O_2 , Xe lamp with a light intensity of 220 mW /cm², for 8 h. ^[b]The results are obtained by GC with internal standard technique. ^[c]Reaction was performed at the conditions of Xe lamp with a light intensity of 220 mW/cm² under 0.2 MPa of O_2 for 3 h.

7. The GC and GC-MS spectra of reaction products

Figure S9. The GC and GC-MS spectra for oxidative cleavage of hydrobenzoin with VO_x/ZnO

Figure S10. The GC and GC-MS spectrs for oxidative cleavage of hydrobenzoin with VO_x catalyst