Supporting Information

Oxygen Atom Transfer Promoted Nitrate to Nitric Oxide Transformation: A Step-wise Reduction of Nitrate \rightarrow Nitrite \rightarrow Nitric Oxide

Kulbir,[†] Sandip Das,[†] Tarali Devi,¹ Mahesh Yenuganti,[†] Mrigaraj Goswami,[†] Somnath Ghosh,[†] Subash Chandra Sahoob,[‡] Pankaj Kumar*[†]

[†]Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India

^IHumboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, D-12489 Berlin, Germany

[‡]Department of Chemistry, Punjab University, Punjab, Chandigarh, India

* To whom correspondence should be addressed. E-mail: <u>pankaj@iisertirupati.ac.in</u>

Table of Contents

Materials and InstrumentationS3Synthesis of $[(12-TMC)Co^{II}(ACN)](BF_4)_2(1)$ S3Synthesis of $[(12-TMC)Co^{II}(NO_3)](BF_4)(2)$ S3Synthesis of $[(12-TMC)Co^{II}(NO_2)](BF_4)(3)$ S4Synthesis of $[(12-TMC)Co^{III}(NO)](BF_4)_2(4)$ S4Reactivity StudiesS4 15 N-labeling Experiments by FT-IR SpectroscopyS4
Synthesis of $[(12-TMC)Co^{II}(ACN)](BF_4)_2(1)$ S3 Synthesis of $[(12-TMC)Co^{II}(NO_3)](BF_4)(2)$ S3 Synthesis of $[(12-TMC)Co^{II}(NO_2)](BF_4)(3)$ S4 Synthesis of $[(12-TMC)Co^{III}(NO)](BF_4)_2(4)$ S4 Reactivity Studies S4 ¹⁵ N-labeling Experiments by FT-IR Spectroscopy S4
Synthesis of $[(12-TMC)Co^{II}(NO_3)](BF_4)$ (2)S3Synthesis of $[(12-TMC)Co^{II}(NO_2)](BF_4)$ (3)S4Synthesis of $[(12-TMC)Co^{III}(NO)](BF_4)_2$ (4)S4Reactivity StudiesS4 15 N-labeling Experiments by FT-IR SpectroscopyS4
Synthesis of $[(12-TMC)Co^{II}(NO_2)](BF_4)$ (3)S4Synthesis of $[(12-TMC)Co^{III}(NO)](BF_4)_2$ (4)S4Reactivity StudiesS4 15 N-labeling Experiments by FT-IR SpectroscopyS4
Synthesis of [(12-TMC)Co ^{III} (NO)](BF4)2 (4)S4Reactivity StudiesS4 ¹⁵ N-labeling Experiments by FT-IR SpectroscopyS4
Reactivity StudiesS4 ¹⁵ N-labeling Experiments by FT-IR SpectroscopyS4
¹⁵ N-labeling Experiments by FT-IR Spectroscopy S4
Nitrate Reduction and Nitrite Reduction ¹⁵ N-labeling Experiments S5
Reactivity of $[(12-TMC)Co^{II}(NO_3)](BF_4)(2) + VCl_3$ S5
Reactivity of $[(12-TMC)Co^{II}(NO_2)](BF_4)$ (3) + VCl ₃ S5
Magnetic moment calculation calculation using Evans NMR S6
Calculation of Binding Constant(K_b) S6
Qualitative and quantitative estimation of 4 by ¹ H-NMR S7
Single-Crystal XRD Studies. S8
References S9
Table T1. Crystallographic data for 2 and 4S10
Table T2. Selected bond lengths (Å) and bond angles (°) for 2 and 4S11
Fig. S1 S12
Fig. S2 S13
Fig. S3 S14
Fig. S4 S15
Fig. S5 S16
Fig. S6 S17
Fig. S7 S18
Fig. S8 S19
Fig. S9 S20
Fig. S10 S21
Fig. S11 S22
Fig. S12 S23
Fig. S13 S24
Fig. S14 S25
Fig. S15 S26
Fig. S16 S27
Fig. S17 S28
Fig. S18 S29
Fig. S19 S30
Fig. S20 S31
Fig. S21 S32

Materials: All reagents and solvents obtained from commercial sources (Sigma Aldrich Chemical Co. and Tokyo Chemical Industry) were of the best available purity and used without further purification unless otherwise indicated. Solvents were dried according to reported literature and distilled under an inert atmosphere before use.^{S1} Na¹⁵NO₂ and Na¹⁵NO₃ (99.2% 15N-enriched) were purchased from ICON Services Inc. (Summit, NJ, USA). The 12-TMC ligand was prepared by reacting excess amounts of formaldehyde and formic acid with 1,4,7,10-tetraazacyclododecane as reported previously.^{S2}

Instrumentation: UV-vis spectra were recorded on a Hewlett-Packard 8453 diode array spectrometer equipped with a thermostat cell holder (UNISOKU Scientific Instruments) designed for low-temperature experiments. FT-IR spectra in solid form were recorded on Bruker-Alpha Eco-ATR FTIR spectrometer using the standard KBr disk method. ¹H-NMR spectra were measured with a Bruker model Ascend 400 FT-NMR spectrometer. Electrospray ionization mass spectra (ESI-MS) were recorded on an Agilent Mass Spectrometer (6200 series TOF/6500 series Q-TOF B.08.00) by infusing samples directly into the source using a manual method. The spray voltage was set at 4.2 kV and the capillary temperature at 80 °C. GC-MS analyses were recorded on an Agilent 7890B GC system equipped with a 5977B MSD Mass analyzer.

Synthesis of [(12-TMC)Co^{II}(ACN)](BF₄)₂ (1). CH₃CN solution (5 mL) of Cobalt(II) tetrafluoroborate hexahydrate (409 mg, 1.2 mmol) was added to 12-TMC (229 mg, 1 mmol) CH₃CN solution of with constant stirring followed by refluxed for 12 hours at 80 °C. During this color of the solution changed to wine red after reaction completion. The reaction mixture was dried over vacuum and then washed with cold methanol several times to remove excess $[Co^{II}(H_2O)_6](BF_4)_2$. Diethyl ether (50 mL) was added to precipitate out complex **1** (wine red solid). The precipitate was collected and dried under vacuum over anhydrous CaCl₂. To get X-ray quality single crystals, the solid was re-dissolved in CH₃CN layered with diethyl ether and kept at -20 °C; after two days, dark brown colored crystals were obtained. Yield: 425 mg (~ 85%). UV: $\lambda_{max} = 485$ nm ($\varepsilon = 170$ M⁻¹ cm⁻¹). FT-IR (KBr pellet): 2925, 1635, 1475, 1084, 755 cm⁻¹. Mass (*m/z*): Calcd: 374.2, Found: 374.2.

Synthesis of [(12-TMC)Co^{II}(NO₃)](BF4) (2): To a 20 ml CH₃CN solution of [(12-TMC)Co^{II}(ACN)](BF4)₂ (502 mg, 1 mmol), 1 mL aqueous solution of NaNO₃ (85 mg, 1 mmol) was added slowly with constant stirring. The mixture was stirred for one hour at RT (298 K) until the color of the solution changed from wine red to light pink, indicating completion of the reaction. The volume of the reaction mixture was decreased to 10 mL over rotary vacuum and

then layered with diethyl ether and kept for crystallization at -20 °C. Yield: 400 mg (~ 90%). UV: $\lambda_{max} = 472$ nm ($\varepsilon = 25 \text{ M}^{-1} \text{ cm}^{-1}$). FT-IR (KBr pellet): 2925, 1384, 1084, 755 cm⁻¹. Mass (m/z): Calcd: 349.1, Found: 349.1. [(12-TMC)Co^{II}(¹⁵NO₃)](BF₄) (**2**-¹⁵NO₃⁻) was prepared by using the same method with Na¹⁵NO₃. FT-IR (KBr pellet): 2925, 1358, 1084, 755 cm⁻¹. Mass (m/z): Calcd: 350.1, Found: 350.1

Synthesis of [(12-TMC)Co^{II}(NO₂)](BF₄) (3). To a 20 ml CH₃CN solution of [(12-TMC)Co^{II}(ACN)](BF₄)₂ (502 mg, 1 mmol), 1 mL aqueous solution of NaNO₂ (69 mg, 1 mmol) was added slowly with constant stirring. The mixture was stirred for one hour at RT (298 K) until the color of the solution changed from wine red to pink, indicating completion of the reaction. The volume of the reaction mixture was decreased to 10 mL over rotary vacuum and then layered with diethyl ether and kept for crystallization at -20 °C. Yield: 350 mg (~ 85%). UV: $\lambda_{max} = 535$ nm ($\varepsilon = 24$ M⁻¹ cm⁻¹). FT-IR (KBr pellet): 2925, 1271, 1084, 755 cm⁻¹. Mass (*m*/*z*): Calcd: 333.1, Found: 333.1. [(12-TMC)Co^{II}(¹⁵NO₂)](BF₄) was prepared using the same method with Na¹⁵NO₂. FT-IR (KBr pellet): 2925, 1245, 1084, 755 cm⁻¹. Mass (*m*/*z*): Calcd: 334.2, Found: 334.2.

Synthesis of {CoNO}⁸ (**4**). The Ar saturated CH₃CN solution (10 mL) of [(12-TMC)Co^{II}] (BF₄)₂ (0.461 g, 1 mmol) was purged with an excess of NO for 5 min; and the color of the solution was changed from light pink to wine red color. The reaction mixture was kept for 30 min, and excess of NO was removed with Ar (degassing) and then layered with Ar saturated ether. Deep wine red colored crystals [(12-TMC)Co^{III}(NO)] (BF₄)₂ were obtained by slow diffusion after several days at -20 °C. UV: $\lambda_{max} = 370$ nm ($\varepsilon = 800$ M⁻¹ cm⁻¹). FT-IR (KBr pellet): 2925, 1703, 1084 cm⁻¹. Mass (*m*/*z*): Calcd: 404.2, Found: 404.2 ([(12-TMC)Co^{III}(NO)(BF₄)]⁺). ¹H-NMR: active (Figure S6e).

Reactivity Studies: All UV-vis spectral measurements were run in a UV cuvette in H₂O at RT. All kinetic reactions were run at least three times, and the data reported here are the average outcome for these reactions. We have performed all the reactions using H₂O as solvent at room temp (298 K). The formation of **4** and VOCl₃ in the reactions was identified by comparing with authentic samples, and product yields were calculated by comparing with standard curves prepared with original samples.

¹⁵N-labeling Experiments by FT-IR Spectroscopy: we have recorded the IR spectra of the different complexes in their solid form as KBr pellet to follow the source of nitrogen. The IR spectra of complex 2 showed a nitrate ($^{14}NO_{3}^{-}$) characteristic peak at 1384 cm⁻¹, which

shifted to 1358 cm⁻¹ when prepared with ¹⁵N-labeled nitrate (¹⁵NO₃⁻). The change in the IR stretching frequency of cobalt bound nitrate ($\Delta = 26 \text{ cm}^{-1}$) confirmed that an increase in the reduced mass of nitrogen atom (¹⁴N to ¹⁵N) is responsible for the decrease in the stretching frequency of the nitrate functional group. Similarly, the IR spectra of complex **3** showed a nitrite (¹⁴NO₂⁻) characteristic peak at 1271 cm⁻¹, which shifted to 1245 cm⁻¹ when prepared with ¹⁵N-labeled nitrite (¹⁵NO₂⁻). The change in the IR stretching frequency of cobalt-bound nitrite ($\Delta = 26 \text{ cm}^{-1}$) confirmed that an increase in the reduced mass of nitrogen atom (¹⁴N to ¹⁵N) is responsible for the decrease in the stretching frequency of cobalt-bound nitrite ($\Delta = 26 \text{ cm}^{-1}$) confirmed that an increase in the reduced mass of nitrogen atom (¹⁴N to ¹⁵N) is responsible for the decrease in the stretching frequency of the nitrate functional group. We observed similar spectral changes when the IR spectra of cobalt bound nitrosyl complex recorded with ¹⁴N and ¹⁵N-labeled cobalt nitrosyl complexes. The IR spectra of **4** showed a characteristic nitrosyl stretching frequency at 1703 cm⁻¹ (¹⁴N), which shifted to 1673 cm⁻¹ (¹⁵N, $\Delta = 30 \text{ cm}^{-1}$) when exchanged with ¹⁵N-labeled nitrosyl functional group.

Nitrate Reduction and Nitrite Reduction ¹⁵N-labeling Experiments by ESI-Mass Spectrometry: To establish the source of nitrogen, complex 2 and 3 with ¹⁵N-labeled nitrate and nitrite were reacted with 2.2 equiv. and 1 equiv. of VCl₃ in H₂O at 298 K, respectively. The reaction mixture was kept for one hour, and then ESI mass spectra of the reaction mixture were recorded.

Reactivity of [(12-TMC)Co^{II}(NO₃)](BF4) (2) + VCl₃: Complex 2 was reacted with excess VCl₃ in H₂O to confirm the reaction product of nitrate reduction reaction. The color of the above reaction mixture changed to wine red from pink over a period of one hour, indicating the formation of **4**. The end product, obtained in the reaction of **2** and VCl₃, was determined to be {Co(NO)}⁸ from various spectroscopic and structural characterization. To grow good crystals for X-ray data, the red product was reacted with sodium tetraphenylborate to give a deep red solid in MeOH (changed counter anion). The deep wine red colored crystals were obtained by keeping the solution layered with Et₂O at -20 °C for 3 days. UV: $\lambda_{max} = 370$ nm ($\varepsilon = 760 \text{ M}^{-1} \text{ cm}^{-1}$). FT-IR (KBr pellet): 2925, 1703, 1100, 1077 cm⁻¹. Mass (m/z): Calcd: 404.2, Found: 404.2 ([(12-TMC)Co^{III}(NO)(BF₄)]⁺)

Reaction of [(12-TMC)Co^{II}(NO₂)](BF₄) (3) + 1 equivalent VCl₃: Complex 3 was reacted with 1 equivalent amount of VCl₃ in H₂O to confirm the reaction product of NO₂⁻ reduction reaction. To confirm the end product, **3** was reacted with 1 equivalent of VCl₃ in H₂O at RT. The color of the above reaction mixture changed to red from light pink upon the addition of 1 equivalent VCl₃ over a period of 3-5 minutes, indicating the formation of **4**. The end product, obtained in the reaction of **3** and VCl₃, was determined to be {Co(NO)}⁸ from various

spectroscopic and structural characterization. To grow good crystals for X-ray data, the red product was reacted with sodium tetraphenylborate to give a deep red solid in MeOH (changed counter anion). The deep red colored crystals were obtained by keeping the solution layered with Et₂O at -20 °C for 3 days. UV: $\lambda_{max} = 370$ nm ($\epsilon = 760$ M⁻¹ cm⁻¹). FT-IR (KBr pellet): 2925, 1703, 1100, 1077 cm⁻¹. Mass (m/z): Calcd: 404.2, Found: 404.2 ([(12-TMC)Co^{III}(NO)(BF₄)]⁺).

Magnetic moment calculation and determination of the number of unpaired electrons in complex 2:

Evans' method of ¹H-NMR was performed to determine the number of unpaired electrons (spin state) in complex **2** at room temperature (298K). A WILMAD® coaxial insert (with a sealed capillary) tube containing the only CD₃CN solvent (with 1.0% TMS) was inserted into the normal NMR tubes containing the complex **2** (4.0 mM, with 0.1% TMS). We have calculated the chemical shift value of the TMS peak in the presence of complex **2** with respect to that of the TMS peak in the outer NMR tube. The magnetic moment was calculated using the given equation,

$$\mu_{eff} = 0.0618 (\Delta vT / 2fM)^{1/2}$$

$$\mu_{eff} = 0.0618 * (56 * 298 / 2 * 400 * 0.004)^{1/2}$$

$$\mu_{eff} = 4.46 \text{ BM}$$

Where f = oscillator frequency (MHz) of the superconducting spectrometer, T = absolute temperature, M = molar concentration of the complex **2**, and v = difference in frequency (Hz) between the two TMS signals.^{S3, S4, S5} The calculated magnetic moment of complex **2** was determined to be 4.46 BM in CD₃CN at RT, suggesting 3 unpaired electrons in the Co²⁺ center of complex **2**.

Calculation of Binding Constant(K_b): The binding constants, $K_b(\text{Co}^{II}-\text{NO}_3^-)$, $K_b(\text{Co}^{II}-\text{NO}_2^-)$ & $K_b(\text{Co}^{II}-\text{NO})$, were determined by titrating the complex **1** with respect to the different concentrations of NO₃⁻⁻, NO₂⁻⁻ & NO, respectively. The stock solutions of **1** (5.0 mM & 2.50 mM) were prepared in CH₃CN and the guest solutions were prepared in the required solvents in 5.0 mM (NaNO₃ and NaNO₂ in H₂O-CH₃CN in 1:9 v/v) & 14 mM (NO_(g) in CH₃CN), respectively. Solutions of **1** with increasing concentration of the guest molecules were prepared separately. The UV-vis spectra of these solutions were recorded by means to get absorbance values. The binding constants were calculated using the Benesi-Hildebrand equation.^{S6, S7} K_b was calculated from the equation stated below.

Supporting Information S6

$$1/(A-A_o) = 1/\{K_b(A_{max}-A_o) [X]_n\} + 1/[A_{max}-A_o]$$

Here, A_o is the absorbance of **1** in the absence of guests, A is the absorbance in the presence of guests at different concentration, A_{max} is the absorbance in the presence of added [X]_{max} where X was NO₃⁻, NO₂⁻, and NO, respectively, and K_b is the binding constant (M⁻¹). The binding constants (K_b) were determined from the slope of the straight line of the plot of 1/(A-Ao) against 1/(Amax–Ao)[X]_n. The binding constant (K_b) as determined by UV-vis titration method for **2**, K_b (Co^{II}-NO₃⁻), **3**, K_b (Co^{II}-NO₂⁻), **4**, K_b ({CoNO}⁸) with X is found to be 2.3 × 10² M⁻¹, 2.5 × 10³ M⁻¹ & 2.4 × 10³ M⁻¹ for NO₃⁻, NO₂⁻ and NO, respectively

Detection of 4 by ¹**H-NMR.** To confirm the **4** formations in the reaction of **2** with 2.2 fold VCl₃, we have monitored the reaction by ¹H-NMR spectroscopy. The ¹H-NMR spectrum of complex **2** (1.04 mg / 600 μ L, 4 mM) with 2.2eq, 1.eq, 0.2eq of VCl₃ in CD₃OD showed signals at 3.68, 3.20, and 2.43 ppm, corresponds to a 12-TMC ligand which was absent in **2** and compared with the authentic {CoNO}⁸ samples (Figure S10). Additionally, we have calculated the amount of formation of **4** by comparing peak integral at 3.68 ppm of the reaction mixture (**2** + VCl₃) with the authentic sample **4** containing an internal standard Benzene (7.35 ppm; Figure S10).

S. No.	Sample	Integral of benzene	Integral of 12-TMC	Ratio
		peak (7.37 ppm)	peak (3.68 ppm)	(B) / (A)
		(A)	(B)	
1	$[(12\text{-}TMC)Co^{III}(NO)]^+$	6	8	1.33
2	2 + 2.2 equiv. VCl ₃	6	7.2	1.20
3	2 + 2.2 equiv. VCl ₃	6	7.46	1.24
4	2 + 2.2 equiv. VCl ₃	6	7.3	1.21

Amount of {Co-NO}⁸ formed:

Sample 1 = (1.20 / 1.33) × 4 mM = 3.6 mM (90 %) Sample 2 = (1.24 / 1.33) × 4 mM = 3.72 mM (93 %) Sample 3 = (1.21 / 1.33) × 4 mM = 3.63 mM (90.7 %) 4 formed in the reaction (average): = ~ 91.23 % Single-Crystal XRD Studies. Crystals were mounted on Hampton cryoloops. All geometric and intensity data for the crystals were collected using a Super-Nova (Mo) X-ray diffractometer equipped with a micro-focus sealed X-ray tube Mo-K α ($\lambda = 0.71073$ Å) X-ray source and HyPix3000 (CCD plate) detector of with increasing ω (width of 0.3 per frame) at a scan speed of either 5 or 10 s/frame. The CrysAlisPro software was used for data acquisition and data extraction. Using Olex2⁵⁸, the structure was solved with the SIR2004^{S9} structure solution program using Direct Methods and refined with the ShelXL^{S10} refinement package using Least Squares minimization. All non-hydrogen atoms were refined with anisotropic thermal parameters. Few anions, mainly BF₄ ions, were found to be highly disordered, and an appropriate disordered model was applied (Figure S4 and S11). Detail crystallographic data and structural refinement parameters are summarized in Table T1 - T4. CCDC 2058407 (2), 2058406 (4), contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

References

- S1. W. L. Armarego, Purification of laboratory chemicals, Butterworth-Heinemann, 2017.
- S2. J. A. Halfen, V. G. Young, Jr., Chem. Commun., 2003, 2894-2895.
- S3. D. F. Evans, J. Chem. Soc., 1959, 2003-2005.
- S4. S. Das, Kulbir, S. Ghosh, S. Chandra Sahoo, P. Kumar, *Chemical Science*, **2020**, *11*, 5037-5042
- S5. M. Yenuganti, S. Das, Kulbir, S. Ghosh, P. Bhardwaj, S. S. Pawar, S. C. Sahoo, P. Kumar, *Inorganic Chemistry Frontiers*, **2020**, *7*, 4872-4882.
- S6. S. Goswami, D. Sen, N. K. Das, H. K. Fun, C. K. Quah, *Chem Commun (Camb)*, 2011, 47, 9101-9103.
- S7. J. Chen, H. Yoon, Y. M. Lee, M. S. Seo, R. Sarangi, S. Fukuzumi, W. Nam, *Chem Sci*, 2015, 6, 3624-3632;
- S8. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 2009, 42, 339-341
- S9. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R., IL MILIONE: a suite of computer programs for crystal structure solution of proteins. *J Appl Crystallogr* 2007, 40, 609-613
- S10. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 2015, 71, 3-8

	2	4
Chemical formula	$C_{36}H_{48}BCoN_5O_3$	$C_{61}H_{68}B_2CoN_5O_2$
Formula weight	668.53	955.79
Wavelength /Å	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c$	Ia
<i>Т</i> , К	140	140
a, Å	14.66223(19)	17.5811(3)
b, Å	9.57975(12)	32.4018(4)
<i>c</i> , Å	23.8521(4)	18.2337(2)
α, °	90	90
β, °	95.9041(12)	90.6880(10)
γ, °	90	90
$V/ Å^3$	3332.51(8)	10386.2(2)
Z	4	4
Calculated density, g/cm ³	1.332	1.248
Abs. Coeff. /mm ⁻¹	0.559	0.378
Reflections collected	39091	4148.0
Unique reflections	7122	71166
Refinement method	Least-squares on F^2	Least-squares on F^2
Data/restraints/parameters	7122/0/419	20067/2/1288
Goodness-of-fit on F^2	1.055	1.098
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0317$	$R_1 = 0.0833,$
	$wR_2 = 0.0800$	$wR_2 = 0.2133$
<i>R</i> indices (all data)	$R_1 = 0.0377$	$R_1 = 0.0955,$
	$wR_2 = 0.0831$	$wR_2 = 0.2258$

 Table T1 Crystallographic data for 2 and 4.

	2	4	
Co1 O1	2.1712(11)	Co1 N1	1.975(5)
Col O2	2.1610(12)	Co1 N2	1.988(6)
Co1 N1	2.1820(13)	Co1 N3	1.981(5)
Co1 N2	2.2206(13)	Co1 N4	1.984(6)
Co1 N3	2.1501(12)	Co1 N5	1.773(6)
Co1 N4	2.2078(12)		
O1 Co1 N4	132.83(4)	N3 Co1 N2	87.6(2)
O1 Co1 N2	91.03(4)	N3 Co1 N4	87.1(2)
O1 Co1 N1	131.18(5)	N1 Co1 N3	155.7(2)
O2 Co1 O1	59.11(4)	N1 Co1 N2	87.1(2)
O2 Co1 N4	92.38(5)	N1 Co1 N4	88.2(2)
O2 Co1 N2	131.01(5)	N4 Co1 N2	156.4(2)
O2 Co1 N1	91.90(5)	N5 Co1 N3	102.6(2)
N4 Co1 N2	132.70(5)	N5 Co1 N1	101.7(3)
N3 Co1 O1	92.12(5)	N5 Co1 N2	100.0(3)
N3 Co1 O2	131.94(5)	N5 Co1 N4	103.6(3)
N3 Co1 N4	80.11(5)	O1 N5 Co1	128.6(6)
N3 Co1 N2	81.82(5)		
N3 Co1 N1	132.65(5)		
N1 Co1 N4	81.36(5)		
N1 Co1 N2	79.64(5)		

Table T2 Selected bond lengths (Å) and bond angles (°) for 2 and 4.

Figure. S1. FT-IR spectrum of (a) **2** recorded in KBr pellet at 298 K. The spectrum showed the peaks for aliphatic chain (2925 cm⁻¹), $[Co^{-14}NO_3^{-1}]$ (1384 cm⁻¹). (b) **2-**¹⁵ NO₃⁻ recorded in KBr pellet at 298 K. The spectrum showed peak $[Co-NO_3^{-1}]$ (1358 cm⁻¹).

Figure S2. (a) Long range ¹H-NMR (400 MHz) spectra of complex 2 (4 mM) in CD₃CN. (b) ¹H-NMR (400 MHz) spectra of complex 2 (4 mM) in CD₃CN (0.1 % TMS), recorded in a coaxial NMR tube, with inside CD₃CN (1.0 % TMS) at RT.

Figure S3. ESI-MS spectrum of $2^{-15}NO_3^-$, The peak at m/z 350.1 is assigned to be $[(12TMC)Co^{II}(^{15}NO_3)]^+$.

Figure. S4: Displacement ellipsoid plots of **2** with 20 % probability. Disordered C-atoms in the TMC ring and the H atoms have been removed for clarity

Figure. S5. UV-vis spectral changes of **2** (0.50 mM, Grayline to red line) in (a) H_2O (b) MeOH under Ar at 298 K. The Inset shows the time course of the natural decay of **2** (red circles) monitored at 370 nm in (a) H_2O (b) MeOH at 298 K.

Figure. S6. FT-IR spectrum of (a) **4** isolated from the reaction of $\mathbf{2}$ + VCl₃ recorded in KBr pellet at 298 K. The spectrum showed the peaks for aliphatic chain (2925 cm⁻¹), [Co-¹⁴NO] (1703cm⁻¹). (b) **4**-¹⁵NO isolated from the reaction of $\mathbf{2}$ -¹⁵ NO₃⁻ + VCl₃ recorded in KBr pellet at 298 K. The spectrum showed the peaks [Co-¹⁵NO] (1673 cm⁻¹).

Figure S7. ESI-MS spectrum of **4**, formed in the reaction of **2-**¹⁵NO₃⁻ + VCl₃, in H₂O at 298K. The peak at m/z 405.2 is assigned to be [(12TMC)Co^{III}(¹⁵NO)(BF₄)]⁺.

Fig. S8. ¹H-NMR (400 MHz) spectra of (a) isolated product from reaction of $\mathbf{2} + \text{VCl}_3$ (**4**, 30 mM) and (b) complex **2** (30 mM).

Fig. S9. ¹H-NMR (400 MHz) spectra of (a) complex **2** (4 mM), (b) complex **2** (4mM) and 0.2eq VCl₃ (0.8 mM), (c) complex **2** (4mM) and 1 equiv. VCl₃ (4 mM), (d) complex **2** (4mM) and 2.2 equiv. VCl₃ (8.8 mM), (e) complex **4** (4mM), benzene (4mM) as internal standard in CD₃OD.

Figure. S10: Displacement ellipsoid plots of **4** with 20 % probability. Disordered C-atoms in the TMC ring and the H atoms have been removed for clarity

Fig. S11. 51 V-NMR (400 MHz) spectra of (a) reaction mixture **2** (15mM) + VCl₃ (35 mM) and (b) authentic sample of VOCl₃ (45 mM) in CD₃OD at RT.

Figure. S12. FT-IR spectrum of (a) reaction mixture of 2 + 1 equiv. VCl₃ recorded in KBr pellet at 298 K. The spectrum showed the peaks for aliphatic chain (2925 cm⁻¹), [Co-¹⁴NO] (1703cm⁻¹) ¹), $[Co^{-14}NO_2^-]$ (1272 cm⁻¹), $[Co^{-14}NO_3^-]$ (1385 cm⁻¹). (b) Reaction mixture of **2-**¹⁵NO₃ + 1equiv. VCl₃ showed the peaks for aliphatic chain (2925 cm⁻¹), [Co-¹⁵NO] (1673cm⁻¹), [Co- $^{15}NO_2^{-1}$ (1245 cm⁻¹), [Co- $^{15}NO_3^{-1}$] (1358 cm⁻¹). (c) ESI-MS spectrum of reaction mixture, 2 + 1equiv. VCl₃, The peak at m/z 404.2, 349.1, 333.1 are assigned to be $[(12TMC)Co^{II}(^{14}NO_3^{-})]^+$ $[(12TMC)Co^{III}(^{14}NO)(BF_4)]^{2+},$ and [(12TMC)Co^{II}(¹⁴NO₂⁻)]⁺ respectively. (d) ESI-MS spectrum of reaction mixture, $2^{-15}NO_3 + 1equiv$. VCl₃, The peak at $[(12TMC)Co^{III}(^{14}NO)(BF_4)]^+,$ 405.2, 350.1, m/z334.1 are assigned to be $[(12TMC)Co^{II}(^{14}NO_3^{-})]^+$ and $[(12TMC)Co^{II}(^{14}NO_2^{-})]^+$ respectively.

Figure. S13. FT-IR spectrum recorded in KBr pellet at 298 K of (a) reaction mixture of 2 + 1.5 equiv. VCl₃. The spectrum showed the peaks for aliphatic chain (2925 cm⁻¹), [Co-¹⁴NO] (1703cm⁻¹), [Co-¹⁴NO₂⁻⁻] (1272 cm⁻¹). (b) Reaction mixture of $2^{-15}NO_3^- + 1.5$ equiv. VCl₃ showed the peaks for aliphatic chain (2925 cm⁻¹), [Co-¹⁵NO] (1673cm⁻¹), [Co-¹⁵NO₂⁻⁻] (1245 cm⁻¹). ESI-MS spectrum of reaction mixture, (c) 2 + 1.5 equiv. VCl₃, The peak at m/z 404.1, and 333.1 are assigned to be [(12TMC)Co^{III}(¹⁴NO)(BF₄)]²⁺ and [(12TMC)Co^{III}(¹⁴NO₂⁻⁻)]⁺ respectively. (d) $2^{-15}NO_3^- + 1.5$ equiv. VCl₃, The peak at m/z 405.1, 334.1 are assigned to be [(12TMC)Co^{III}(¹⁴NO₂⁻⁻)]⁺ respectively.

Fig. S14. UV-vis spectral changes observed in the reaction 3 with VCl₃ (in the increments of 0, 0.20, 0.40, 0.60, 0.8, 1.0, 1.2, 1.4, 1.6 equiv.) in H₂O under Ar at 298 K.

Figure. S15. FT-IR spectrum recorded in KBr pellet at 298 K of (a) isolated product of reaction mixture $\mathbf{2} + 1.1$ equiv. VCl₃. The spectrum showed the peaks for the aliphatic chain (2925 cm⁻¹), [Co-¹⁴NO] (1703cm⁻¹). (b) isolated product of reaction mixture $\mathbf{2}$ -¹⁵NO₂⁻ + 1.1 equiv. VCl₃. The spectrum showed the peaks [Co-¹⁵NO] (1673 cm⁻¹).

Fig. S16. ¹H-NMR (400 MHz) spectra of (a) isolated product from reaction mixture **3** (30 mM) + VCl₃ (30 mM) and (b) complex **3** (30 mM) in CD₃CN at RT.

Fig. S17. ⁵¹V-NMR (400 MHz) spectra of reaction mixture $3 + VCl_3$

Fig. S18. Binding constants of complex (a) **4**, (b) **3**, (c) **2** calculated from the Benesi-Hildebrand equation.

Figure. S19. FT-IR spectrum recorded in KBr pellet at 298 K of (a) complex **3**. The spectrum showed the peaks for the aliphatic chain (2925 cm⁻¹), $[Co^{-14}NO_2^{-1}]$ (1271 cm⁻¹). (b) **3**-¹⁵NO₂⁻¹. The spectrum showed the peaks $[Co^{-15}NO_2^{-1}]$ (1245 cm⁻¹).

Figure. S20 Long range ¹H-NMR (400 MHz) spectra of complex 3 in CD₃CN.

Fig. S21. Schematic diagram showing the generation and purification setup for NO.