SUPPORTING INFORMATION

Discovery and characterisation of an amidine-containing ribosomally-synthesised

peptide that is widely distributed in nature

Alicia H. Russell, Natalia M. Vior, Edward S. Hems, Rodney Lacret and Andrew W. Truman* Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK

CONTENTS

Materials ar	nd Methods	3
Table S1	Strains used in this study	11
Table S2	Plasmids used in this study	11
Table S3	Constructs generated in this study	12
Table S4	Media used in this study	13
Table S5	Solutions used for TAR cloning	13
Table S6	Primers used in this study	14
Table S7	Accurate masses of streptamidine and related compounds	16
Table S8	Proteins encoded in the streptamidine biosynthetic gene cluster	17
Figure S1	Precursor peptide networks associated with actinobacterial YcaO proteins	18
Figure S2	YcaO protein phylogenetic tree with branch lengths	19
Figure S3	Alignment of precursor peptides containing motif A	20
Figure S4	Alignment of precursor peptides containing motif B	22
Figure S5	80% identity networking of network 1 precursor peptides	23
Figure S6	Phylogenetic tree of YcaO proteins associated with network 1 peptides	24
Figure S7	MultiGeneBlast analysis of streptamidine BGC	25
Figure S8	Comparative analysis of LC-MS data	27
Figure S9	MS/MS fragmentation data for streptamidine and related compounds	28
Figure S10	MS/MS comparison between pCAPSalbC and S. albidoflavus	29
Figure S11	Structure of streptamidine with numbered atoms	29
Table S9	NMR chemical shift assignments for streptamidine in DMSO-d ₆	30
Figure S12	NMR correlation data observed in 2D spectra.	31
Figure S13	¹ H NMR spectrum of streptamidine	32
Figure S14	¹³ C NMR spectrum of streptamidine	32
Figure S15	2D COSY spectrum of streptamidine	33
Figure S16	2D HMBC spectrum of streptamidine	34
Figure S17	Selected regions of 2D HMBC spectrum	35
Figure S18	2D HSQCed spectrum of streptamidine	36
Figure S19	2D TOCSY spectrum of streptamidine	37
Figure S20	2D HSQC-TOCSY spectrum of streptamidine	38
Figure S21	Marfey's analysis of streptamidine	39
Figure S22	NMR analysis of isomerisation	40
Figure S23	Match to the MS/MS spectrum of streptamidine identified using MASST	41

Table S10	Indicator strains tested in bioactivity assays	42
Figure S24	LC-MS analysis of $\Delta amiE$ culture extract and synthetic <i>N</i> -acetylated LSA	43
Figure S25	MS/MS fragmentation data for predicted modified LSA compounds	44
Figure S26	Sequence alignment of YcaO proteins	45
Figure S27	Proposed mechanism of amidine ring formation in streptamidine	46
Figure S28	Mutation of AmiA core peptide	47
Figure S29	Secondary structure alignment of AmiE with McbC	48
References		49

MATERIALS AND METHODS

Chemicals and media

Unless otherwise stated, all chemicals and media components were purchased from Sigma Aldrich, except for the following: agar (Melford), NaCl, glucose and sorbitol (Fisher Scientific), yeast extract (Merck), soy flour (Holland and Barrett) and peptone (BD Biosciences). Ultrapure water was obtained using a Milli-Q purification system (Merck). All media were autoclaved prior to use and chemical solutions were filter sterilised using a 0.22 µM syringe filter. All primers were ordered from Eurofins Genomics and purified by HPSF. *N*-acetyl-LSA was custom synthesised by Genscript.

Strains and culture conditions

All strains, plasmids, culture media and primers used in this work are described in the Supporting Information (Tables S1-S6). Unless otherwise specified, all Streptomyces strains were grown at 28 °C on solid SFM for spore growth, solid SFM supplemented with 10 mM MgCl₂ for conjugations, liquid TSB for seed cultures and liquid SM12 media for fermentations. Other media used during screening trials include liquid R5, BPM and SM14. Liquid cultures were grown with shaking at 250 rpm. Spores and mycelium stocks were kept at -20 °C in 20% glycerol. Saccharomyces cerevisiae VL6–48N¹ was used for transformation-associated recombination (TAR) cloning and was grown at 30 °C with shaking at 250 rpm in YPD medium. Recombinant yeast selection was performed using selective media SD+CSM-Trp complemented with 5-fluoorotic acid (Fluorochem, 1 mg mL⁻¹). Escherichia coli DH5 α was used for transformation and propagation of DNA plasmids. For gene deletions, E. coli DH5a BT340 was used for Flp-FRT recombination and E. coli BW25113/pIJ790 was used for Lambda-Red mediated recombination². pIJ790-carrying strains were grown at 30 °C for plasmid replication, and Flp-FRT recombination was performed at 42 °C. E. coli ET12567/pR9604 and E. coli ET12567/pUZ8002 were used to transfer DNA to Streptomyces by intergeneric conjugation. All E. coli strains were grown in LB medium at 37 °C unless otherwise specified. E. coli hygromycin selection was performed in solid DNA media. E. coli cell stocks were kept at -20 °C in 20% glycerol. Antibiotic selection was carried out using the following final concentrations of antibiotic: kanamycin 50 μ g mL⁻¹, apramycin 50 μ g mL⁻¹, hygromycin 50 μ g mL⁻¹, nalidixic acid 25 μ g mL⁻¹, chloramphenicol 25 μ g mL⁻¹ and carbenicillin 100 μ g mL⁻¹.

Analysis of YcaO domain proteins

All actinobacterial standalone YcaO-domain proteins were identified in NCBI Genbank using CDART (Conserved Domain Architecture Retrieval Tool)³ (2,574 proteins). These were filtered using EFI-EST⁴ to 2,338 sequences after excluding proteins smaller than 350 AA, and further filtered to 1,514 proteins using a 95% identity cut-off. Corresponding accession numbers were submitted to Batch Entrez and the resulting sequence files aligned using MUSCLE⁵ (version 3.8.31). This alignment was used to construct a maximum likelihood tree using RAxML⁶ (version 8.2.12) on the CIPRES

Science Gateway (<u>https://www.phylo.org/</u>) with the following settings: raxmIHPC-HYBRID -T 4 -n result -s infile.txt -p 12345 -m PROTCATDAYHOFF -f a -N 100 -x 12345

The YcaO proteins associated with Network 1 (plus outgroup protein WP_044386624.1) were aligned using MUSCLE. This alignment was used to construct a maximum likelihood tree using RAxML on the CIPRES Science Gateway with the following settings: raxmIHPC-HYBRID-AVX -T 4 -f a -N autoMRE -n result -s infile.txt -p 12345 -m PROTGAMMAWAGF -k -x 12345 The trees were visualised with the interactive Tree Of Life (iTOL)⁷.

Retrieval and analysis of precursor peptides and BGCs

The 1,514 YcaO-domain protein accessions were used as the input for RiPPER^{8,9} (https://github.com/streptomyces/ripper) with default settings. The resulting GenBank files are available to download online (DOI: 10.6084/m9.figshare.14191544). Some of the precursor peptide sequences obtained from RiPPER analysis were duplicated due to the presence of more than one YcaO protein in some BGCs, so 29 duplicated precursor sequences were manually removed prior to subsequent analysis. Peptide similarity networking of the precursor peptide sequences were created using EGN (Evolutionary Gene and genome Network)¹⁰, visualised with Cytoscape 2.8.3¹¹ and is provided as Supplementary Dataset 1. Multiple sequence alignments of precursor peptides were performed using ClustalW¹² via MEGA7¹³ using default settings, and motifs were searched for using the MEME tool in the MEME suite¹⁴ (http://meme-suite.org/index.html) using classic mode with the site distribution as Any Number of Repetitions and searching for 3 motifs. The captured genomic regions were visualised and analysed in Artemis¹⁵ and Vector NTI¹⁶, and putative BGCs were compared using MultiGeneBlast¹⁷ (http://multigeneblast.sourceforge.net/). Conserved protein using domains analysed NCBI conserved were domain search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and Phyre2¹⁸. Network 1 peptides were tested with NeuRiPP using the Parallel CNN network architecture¹⁹.

Non-actinobacterial BGCs were identified by BLAST analysis (Expect threshold = 0.05) of AmiD (WP_008409979.1) with actinobacterial proteins excluded from the results. RiPPER analysis identified related precursor peptides in the phylum Firmicutes. A firmicute YcaO protein (ETB73247.1, *Bacillus* sp. CPSM8) was then used for a further cycle of BLAST/RiPPER to assess for any additional related precursor peptides.

TAR cloning of Streptomyces albidoflavus J1074 gene cluster

A vector to capture the gene cluster from *S. albidoflavus* J1074 genomic DNA was constructed by Gibson assembly between a linearised pCAP03 vector²⁰ and two single-strand oligonucleotides (Salb_TAR_fw and Salb_TAR_rv). The forward and reverse oligonucleotides had 34 and 36 nucleotide homology sequences with pCAP03 respectively. These were designed to generate a vector with 50 and 49 nucleotide homology sequences with upstream and downstream regions of

the gene cluster respectively, either side of an AvrII restriction site. pCAP03 was digested with Xhol and Ndel, and 100 ng linearised plasmid and 10 pmol of each oligonucleotide were incubated with 5 μ L ligase-free Gibson assembly reaction (100 mM Tris-HCl pH 7.5, 10 mM MgCl₂, 0.2 mM each dNTPs, 10 mM DTT, 1 mM NAD, 5% PEG-8000, 0.1125 units T5 exonuclease, 0.375 units Phusion polymerase, 10 μ L total reaction volume) and incubated at 50 °C for 2 hours in a BioRad T100 ThermoCycler. 10 μ L assembly reaction was then transformed into *E. coli* DH5 α by chemical transformation selected with kanamycin. Colonies containing the correct capture vector were identified by PCR using primers pCAP_sp and pCAP_asp, and the plasmid was isolated using a Promega Wizard Plus SV Minipreps DNA Purification System.

Genomic DNA from *S. albidoflavus* J1074 was digested with Nsil and Smll, and the capture vector was linearised between the capture arms with AvrII. Digested material was transformed into *S. cerevisiae* VL6–48N by spheroplast polyethylene glycol 8000 transformation. Successful gene cluster capture by pCAP03 was confirmed by colony PCR. For yeast-colony PCR, each colony was resuspended in 50 μ L 1 M sorbitol (Fisher) and 2 μ L of zymolyase (5 U μ L⁻¹) was added to each cell suspension and incubated at 30 °C for 1 hour. Cell suspensions were then boiled for 10 min, centrifuged (15 s, 1,000 × *g*) and 1 μ L of the supernatant was analysed by PCR using primers Salb_TARscr_Fw and Salb_TARscr_Rv. The plasmids from four positive clones were recovered and transformed into electrocompetent *E. coli* DH5α for further analytical digest of the purified construct with HindIII-HF and Srfl to confirm the identity of pCAPSalbC. The streptamidine BGC is shown in Table S8 and has been deposited at MIBiG²¹ with accession number BGC0002115.

Conjugation of pCAPSalbC into Streptomyces coelicolor M1146

E. coli ET12567/pR9604 was transformed with pCAPSalbC by electroporation, and transformants were then used to transfer pCAPSalbC into *S. coelicolor* M1146 by intergeneric conjugation. Nalidixic acid and kanamycin-resistant exconjugants containing integrated pCAPSalbC (*S. coelicolor* M1146-pCAPSalbC) were verified by PCR using Promega GoTaq polymerase with primers Salb_TARscr_Fw and Salb_TARscr_Rv.

Construction of pathway mutant in S. albidoflavus J1074

A fragment of DNA corresponding to the translationally coupled YcaO and hydrolase genes was PCR cloned with restriction sites for EcoRI and HindIII. The DNA fragment was digested with EcoRI and HindIII and ligated into the pKC1132 plasmid digested with EcoRI and HindIII. The resulting DNA construct was isolated and transferred into *S. albidoflavus* J1074 via intergenic conjugation with *E. coli* ET12567/pUZ8002 selected with apramycin, chloramphenicol and kanamycin. Exconjugants resistant to apramycin were validated by PCR to confirm that the YcaO and hydrolase genes had been disrupted.

Deletion of genes in pCAPSalbC

Mutations of the *S. albidoflavus* J1074 BGC were carried out using an *E. coli*-based Lambda-Redmediated PCR-targeting strategy², which allowed substitution of genes in pCAPSalbC by a PCRgenerated cassette containing the apramycin resistance gene aac(3)-*IV*. Resistance cassettes were amplified by PCR using a pIJ773-derived cassette lacking OriT as a template, which allowed the elimination of the apramycin resistance cassette after FIp-FRT recombination in *E. coli* DH5 α BT340. This created mutants with an in-frame 81 bp scar in the place of the original gene sequence. The PCR-targeting mutant versions of pCAPSalbC were introduced into *S. coelicolor* M1146 by *E. coli* ET12567/pR9604-mediated intergeneric conjugation and selected by resistance to nalidixic acid and kanamycin.

Complementation of deleted genes in S. coelicolor M1146-pCAPSalbC

Constructs for the complementation of mutants were obtained by high-fidelity PCR amplification (Q5 polymerase) of each of these genes, digestion of the PCR product with Ndel and HindIII and cloning by ligation (T4 DNA ligase, Invitrogen) into pIJ10257 digested with Ndel and HindIII. Ligation mixtures were transformed into chemically competent *E. coli* DH5α and the plasmids were recovered by miniprep and then sequenced. The constructs were introduced into the corresponding *S. coelicolor* M1146-pCAPSalbC mutants by *E. coli* ET12567/pR9604-mediated intergeneric conjugation. Exconjugants were selected by resistance to nalidixic acid, kanamycin and hygromycin.

Mutation of amiA in pCAPSalbC

Amino acids within the streptamidine core peptide were mutated using a Lambda-Red-mediated recombination strategy in *E. coli* cells deficient in mismatch repair²². *E. coli* HME68 cells were grown in LB (10 mL) with chloramphenicol and grown overnight at 30 °C with shaking at 250 rpm. 300 μ L of this culture was used to inoculate LB (15 mL) with chloramphenicol, which was grown for four hours at 30 °C with shaking at 250 rpm. Recombineering activity was induced by incubating the cells for 20 minutes at 42 °C with shaking. Cells were then made electrocompetent and transformed with the pCAPSalbC construct. A 63 bp oligonucleotide (SalbPP_Ser3CysRV) was designed containing the desired amino acid mutation flanked by 30 bp regions of homology on either side. *E. coli* HME68-pCAPSalbC cells were then co-transformed with 1 μ L (4 pmol) of the mutant oligonucleotide and 1 μ L (4 pmol) of oligo100, which produces Gal⁺ recombinants of HME68 cells.

Recombinant cells were grown for 2 days at 30 °C on MacConkey agar containing 1% galactose, and selected for using red/white screening. Red colonies were re-streaked as patches on MacConkey agar containing 1% galactose and grown for a further 2 days at 30 °C. Mutations were then screened for by PCR using screening primers (SalbPPmut_FWScr and SalbPPmut_RVScr) binding ~300 bp each side of the desired mutation. Mixed populations of wild type and mutant genes were identified from sequencing data by identifying overlapping peaks for both the wild type and

mutant codons in the sequence chromatogram. Plasmid DNA from corresponding cells was isolated and transformed into *E. coli* DH5α cells. Individual clones were screened for as before for pure mutants. Mutant plasmids were transformed into *S. coelicolor* M1146 by *E. coli* ET12567/pR9604-mediated intergeneric conjugation.

Fermentation screening for streptamidine production

Seed cultures of *S. coelicolor* M1146-pCAPSalbC were prepared by fermentation in a 50 mL flask containing 5 mL of TSB with kanamycin selection for 48 h. 500 µL seed culture was used to inoculate 10 mL SM12, SM14, BPM and R5 in 50 mL Falcon tubes with caps replaced by foam bungs. Control strains carrying the TAR clone with a precursor peptide gene deletion were cultured in the same way for comparison. Seed cultures of *S. albidoflavus* J1074 were grown in the same way with no antibiotic selection, and the *S. albidoflavus* Δ amiD mutant seed cultures were grown with apramycin selection. All fermentations were conducted in triplicate and incubated at 28 °C with shaking at 230 rpm. 1 mL culture samples were taken at day 4, mixed with one volume of methanol and agitated for 30 min at room temperature. These mixtures were then centrifuged (15,871 × *g*, 5.5 min) and 800 µL of the resulting supernatant was transferred to glass vials for liquid chromatography–mass spectrometry (LC–MS) analysis.

LC-MS analysis

LC-MS samples were analysed on a Shimadzu Nexera X2 UHPLC coupled to a Shimadzu IT-TOF mass spectrometer. 5 μ L samples were injected onto a Phenomenex Luna Omega 1.6- μ m Polar C18 column (50 mm x 2.1 mm, 100 Å) set at a temperature of 40 °C and eluting with a linear gradient of 0–60% methanol in water + 0.1% formic acid over 6 minutes with a flow-rate of 0.6 mL min⁻¹. Positive mode mass spectrometry data was collected between *m*/*z* 200 and 2,000. Tandem MS (MS/MS) data were collected between *m*/*z* 50 and 2000 in a data-dependent manner for parent ions between *m*/*z* 200 and 2000, using collision-induced dissociation energy of 50% and a precursor ion width of 3 Da. The instrument was calibrated using sodium trifluoroacetate cluster ions prior to every run. Untargeted comparative metabolomics was carried out on data from triplicate samples using Profiling Solution 1.1 (Shimadzu) with an ion *m*/*z* tolerance of 100 mDa, a retention time tolerance of 0.1 min, an ion intensity threshold of 100,000 units, LabSolutions compatible ion *m*/*z* tolerances = ON, De-Isotope matrix = ON.

For accurate mass analysis, mass spectra were acquired by LC–MS on a Synapt G2-Si mass spectrometer equipped with an Acquity UPLC (Waters). Samples were injected onto an Acquity UPLC BEH C18 column, 1.7 μ m, 1 × 100 mm (Waters) and eluted with a gradient of (B) acetonitrile/0.1% formic acid in (A) water/0.1% formic acid with a flow rate of 0.08 mL min⁻¹ at 45 °C. The concentration of B was kept at 1% for 1 min followed by a gradient up to 60% B over 10 min,

and then up to 99% over 2 min. MS data were collected with the following parameters: resolution mode, positive ion mode, scan time 0.5 s, mass range m/z 50–1200 (calibrated with sodium formate), capillary voltage = 3.0 kV; cone voltage = 40 V; source temperature = 110 °C; desolvation temperature = 250 °C. Leu-enkephalin was used to generate a lock-mass calibration with m/z = 556.2766 measured every 30 s during the run. Comparative metabolomic analyses were carried out on the Synapt G2-Si using the same settings as above but with a mass range of m/z 100–3000.

Additional MS/MS data were acquired on a Hybrid Quadrupole-Orbitrap Q-Exactive mass spectrometer coupled to a Vanquish UHPLC system (Thermo Scientific). 5 µL samples were injected onto a Phenomenex Luna Omega 1.6-µm Polar C18 column (50 mm x 2.1 mm, 100 Å) applying the same chromatography parameters used in the Shimadzu LC-MS analysis described above. Mass spectra were obtained in positive mode using full MS/dd-MS² acquisition settings with the following specific parameters: chromatography peak width = 7s; Full MS settings: resolution = 70,000, AGC target = $3x10^6$, maximum IT = 100 ms, scan range 150 to 2000 *m/z*; dd-MS² settings: resolution 17,500, AGC target = $1x10^5$, maximum IT = 50 ms, loop count = 5, isolation window 1.5 *m/z*, (N)CE/ stepped nce 20, 40, 60; dd settings: minimum AGC target = $8x10^3$, exclude isotopes ON, dynamic exclusion = 1s.

Streptamidine-like molecules were searched for using a MASST search²³ at Global Natural Products Social Molecular Networking (<u>https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp</u>) in January 2021. A single spectrum search (version release 27) was carried out using the following settings: parent mass tolerance = 2 Da; min matched peaks = 5; ion tolerance = 0.5 Da; score threshold = 0.7; library = speclibs.

Purification of streptamidine

Four 2-litre flasks containing 0.5 L of SM12 were each inoculated with 25 mL of S. *coelicolor* M1146pCAPSalbC TSB seed culture grown for 48 hours at 28 °C. After four days fermentation at 28 °C with shaking at 250 rpm, the cultures were centrifuged to remove debris, combined and filtered to yield approximately 1.5 L of crude extract. The crude extract was extracted with ethyl acetate (3 × 1.5 litres). The aqueous layer was further extracted with 1-butanol (3 × 1.0 litres). The resulting aqueous extract was concentrated to 50 mL using a Buchi rotary evaporator and subjected to solidphase chromatography (SPE) on a HP20 cartridge using a gradient of H₂O-MeOH (100:0 to 0:100). Methanol and water were removed using a Buchi rotary evaporator until the samples were concentrated to approximately 10 mL. Samples were then subject to semi-preparative HPLC using a Phenomenex Luna PFP(2) column (5 μ m, 250 x 10 mm) with a gradient of aqueous 0.1% formic acid-MeOH (98:2 to 90:10) over 35 minutes with a flow rate of 2 mL min⁻¹. The compound was monitored at a UV wavelength of 210 nm and fractions were assessed by LC-MS. Fractions containing streptamidine were combined and freeze dried. A final purification step was then carried out using a semi-preparative Luna Omega Polar C18 column (5 μ m, 250 x 10 mm), with an isocratic gradient of aqueous 0.1% formic acid-MeOH (90:10) for 16 minutes followed by a wash gradient from 90:10 to 5:95 over 5 minutes with a flow rate of 2.8 mL min⁻¹. The compound was monitored at a UV wavelength of 210 nm and fractions assessed by LC-MS, yielding 1.4 mg pure streptamidine.

Structural elucidation of streptamidine

Streptamidine (1.4 mg) was dissolved in 600 μ L DMSO-d₆ from an individual vial and subjected to a series of 1D and 2D nuclear magnetic resonance (NMR) experiments on a Bruker Ascend 600 MHz instrument at 298 K. The NMR experiments carried out were Proton (64 scans), Carbon (25,000 scans), HSQCed (100 scans), HMBC (64 scans), COSY (16 scans), TOCSY (32 scans) and HSQC-TOCSY (64 scans). Spectra were analysed using Bruker TopSpin 3.5 and Mestrelab Research Mnova 14.0 software. NMR data are reported in Figures S11-S20 and Table S9.

Marfey's analysis

500 µg of pure streptamidine was hydrolysed for 16 hours with 100 µL 6 M HCl at 100 °C in a sealed glass vial contained within a heated sand block. The HCl was dried off under a stream of N₂ for 1 hour at room temperature. The hydrolysed sample was mixed with 20 µL 1 M NaHCO₃ and 40 µL Marfey's reagent (L-FDAA [N α -(2,4-dinitro-5-fluorophenyl)-L-alaninamide] 1% solution in acetone) and incubated at 40 °C for 1 hour. The reaction was then neutralised with 20 µL 1 M HCl. The samples were diluted with 500 µL 50% acetonitrile and centrifuged for 1 minute at 15,871 × *g* to remove debris. For derivatisation of amino acid standards, 50 µL of each L- and D- amino acid (histidine, leucine, serine, alanine, threonine, 2 mg mL⁻¹ in H₂O) was mixed with 20 µL 1 M NaHCO₃ and 40 µL L-FDAA in a 1.5 mL Eppendorf tube and incubated at 40 °C for 1 hour. The reaction was then neutralised with 20 µL 1 M HCl. The samples were diluted with 20 µL 1 M HCl. The samples were diluted with 20 µL 1 M NaHCO₃ and 40 µL L-FDAA in a 1.5 mL Eppendorf tube and incubated at 40 °C for 1 hour. The reaction was then neutralised with 20 µL 1 M HCl. The samples were diluted with 1 mL 50% acetonitrile and centrifuged for 1 minute at 15,871 × *g* to remove debris. 1 µL each sample were injected onto a Phenomenex Kinetex 1.6-µm C18 column (50 mm x 2.1 mm, 100 Å) set at a temperature of 40 °C and eluting with a linear gradient of (B) 50% acetonitrile from 5-50% in (A) H₂O + 0.1% formic acid over 12 minutes with a flow rate of 0.6 mL min⁻¹. Samples were analysed on a Shimadzu Nexera X2 UHPLC coupled to a Shimadzu IT-TOF mass spectrometer.

Antimicrobial assays

10 mL cultures of each indicator strain (Table S14) were grown in LB (YPD for *Candida utilis*) overnight at 37 °C (30 °C for *C. utilis*). 100 μ L of each culture was then used to inoculate a 10 mL subculture of each strain in the same medium, which were grown for 5 hours at 37 °C (30 °C for *C. utilis*). 1 mL of each culture was then mixed with 14 mL molten LB agar, which was poured into plates. Once solidified, three 1 cm diameter plugs were taken from each agar plate, which were then separately loaded with 50 μ L streptamidine (1 mg mL⁻¹), 50 μ L kanamycin, apramycin or nalidixic

acid (1 mg mL⁻¹) as a positive control and 50 μ L water as a solvent control. Plates were incubated overnight at 37 °C (30 °C for *C. utilis*).

Metal binding assays

For the CAS assay, 500 μ L of CAS assay solution (prepared as described by Alexander and Zuberer²⁴) was mixed with 10 μ L increasing concentrations of streptamidine from 1.5 μ M to 25 μ M. For LC-MS binding assays, solutions of 10 mM metal salts were prepared (FeCl₃, CoCl₂, CuCl₂, MgCl₂, MnSO₄, NiSO₄, ZnCl₂, dissolved in 10 mM HCl) and 500 μ L of each were mixed with 20 μ L streptamidine (15 μ M). 5 μ L samples were analysed on a Shimadzu Nexera X2 UHPLC coupled to a Shimadzu IT-TOF mass spectrometer with a Phenomenex Luna Omega 1.6- μ m Polar C18 column (50 mm x 2.1 mm, 100 Å) set at a temperature of 40 °C and eluting with a linear gradient of 0–60% methanol in water + 0.1% formic acid over 6 minutes with a flow-rate of 0.6 mL min⁻¹. Positive mode mass spectrometry data was collected between *m*/*z* 200 and 2,000.

For metal starvation experiments, a minimal medium was prepared (2 g K₂SO₄, 3 g K₂HPO₄, 1 g NaCl, 5 g NH₄Cl, 0.005 mg CuSO₄, 0.035 mg MnSO₄.H₂O, 2 mg ZnSO₄.7H₂O, 80 mg MgSO₄.7H₂O, 100 mg CaCl₂.2H₂O, 2.5% glycerol) as described by Müller and Raymond²⁵ in glassware washed with EDTA. A series of the same minimal media omitting either copper, zinc or iron were also prepared. Seed cultures of *S. albidoflavus* J1074 and the *S. albidoflavus* Δ amiD mutant were prepared by fermentation in a 50 mL flask containing 5 mL of TSB (with apramycin selection for the Δ amiD mutant) for 48 h. 500 µL each seed culture was used to inoculate 10 mL minimal media and each metal dropout media in 50 mL Falcon tubes with caps replaced by foam bungs. Cultures were grown for 4 days and 1 mL samples were taken for LC-MS analysis as described above.

Strain	Genotype/description	Application
Saccharomyces cerevisiae	MATα, his3- Δ 1, trp1- Δ 1, ura3- Δ 1, lys2, ade2-	TAR cloning
VL6-48N ¹	101, met14 cirº	
Escherichia coli DH5α	F [−]	Transformation and maintenance of
	argF)U169 recA1 endA1 hsdR17 (r _k ⁻,	plasmids and constructs
	m _k ⁺) <i>phoAsupE</i> 44 <i>thi</i> -1 <i>gyrA</i> 96 <i>relA</i> 1 λ⁻	
<i>E. coli</i> ET12567/pUZ8002	<i>dam-13::Tn9 dcm-6 hsdM</i> Cml ^R , carrying	Conjugations with pKC1132
	helper plasmid pUZ8002	disruption construct
<i>E. coli</i> ET12567/ pR9604	<i>dam-13::Tn9 dcm-6 hsdM</i> Cml ^R , carrying	Conjugations with TAR cloned BGC,
	helper plasmid pR9604	mutated BGC and complementation
		constructs
<i>E. coli</i> DH5α/BT340	<i>E. coli</i> DH5α carrying BT340 plasmid.	Gene deletions
<i>E. coli</i> BW25113/pIJ790	(Δ(araD-araB)567, ΔlacZ4787(::rrnB-4), laclp-	Gene deletions
	4000(laclQ), λ-,rpoS369(Am), rph-1, Δ(rhaD-	
	rhaB)568, hsdR514. Plasmid: plJ790	
	[oriR101], [repA101(ts)], araBp-gam-be-exo	
E. coli HME68	W3110 galKtyr145UAG ΔlacU169 [λ cl857	Mutagenesis of core peptide amino
	Δ (cro-bioA)] Δ mutS	acids
Streptomyces albidoflavus	Restriction-defective derivative (R ⁻ M ⁻) of S.	Genetic source of BGC
J1074 ²⁶	albidoflavus G	
Streptomyces coelicolor	Δ act Δ red Δ cpk Δ cda	Heterologous expression of gene
M1146 ²⁷		cluster

Table S2Plasmids used in this study.

Plasmid	Features	Resistance marker	Application
pCAP03 ²⁰	ARSH4/CEN6-Trp1, pUC ori, C31 int- attP-oriT-aph, URA3, ADH1	Kanamycin	TAR cloning
pKC1132 ²⁸	Conjugative vector, non-integrative, lacZa	Apramycin	S. albidoflavus pathway disruption
pIJ773 ²	oriT, non-conjugative, flippase recognition target (FRT) sites	Apramycin	Gene deletions via PCR targeting
plJ10257 ²⁹	ΦBT1, p <i>erm</i> E*	Hygromycin	Genetic complementation of mutants

Construct	Resistance marker	Application
pCAPSalbC	Kanamycin	pCAP03-based plasmid containing the TAR cloned <i>S. albidoflavus</i> BGC
pCAPSalbC_ΔPP	Kanamycin	pCAPSalbC with deletion of precursor peptide gene
pCAPSalbC_∆YcaO	Kanamycin	pCAPSalbC with deletion of YcaO gene
pCAPSalbC_ΔE1	Kanamycin	pCAPSalbC with deletion of E1-like gene
pCAPSalbC_∆Dehy	Kanamycin	pCAPSalbC with deletion of dehydrogenase gene
pCAPSalbC_∆Hydro	Kanamycin	pCAPSalbC with deletion of hydrolase gene
pCAPSalbC_∆Oxido	Kanamycin	pCAPSalbC with deletion of oxidoreductase gene
pCAPSalbC_∆ABC	Kanamycin	pCAPSalbC with deletion of set of ABC transporter genes
pCAPSalbC_∆lrTr	Kanamycin	pCAPSalbC with deletion of set of iron transporter genes
pCAPSalbC_∆PepMet	Kanamycin	pCAPSalbC with deletion of peptidyl methionine gene
pCAPSalbC_∆Oxyg	Kanamycin	pCAPSalbC with deletion of oxygenase gene
pCAPSalbC_∆Acet	Kanamycin	pCAPSalbC with deletion of both acetyltransferase genes
pCAPSalbCSer3Cys	Kanamycin	pCAPSalbC with core peptide Ser3 to Cys3 mutation
pKC1132_SalbYH	Apramycin	Construct for disruption of S. albidoflavus BGC in native host
pIJSalb_YcaO	Hygromycin	Construct for complementation of YcaO deletion
plJSalb_E1	Hygromycin	Construct for complementation of E1 deletion
plJSalb_Dehy	Hygromycin	Construct for complementation of dehydrogenase deletion

Table S3 Constructs generated in this study.

Table S4	Media used in t	his study.
Medium	Application	Ingredients per 1 L, made up with milliQ water
LB	E. coli	10 g Bacto-tryptone, 5 g yeast extract, 10 g NaCl, adjust to pH 7 with NaOH
DNA	E. coli	4 g Difco Nutrient Broth powder, 10 g agar
MacConkey agar	E. coli	17 g peptone, 3 g protease peptone, 10 g lactose monohydrate, 1.5 g bile
		salts, 5 g NaCl, 0.03 g neutral red, 0.001 g crystal violet, 13.5 g agar
TSB	Streptomyces	17 g tryptone, 3 g phytone, 5 g NaCl, 2.5 g K ₂ HPO ₄ , 2.5 g glucose
SFM	Streptomyces	20 g mannitol, 20 g soya flour, 100 mM CaCl ₂ , 20 g agar
YPD	Saccharomyces	10 g yeast extract, 20 g peptone, 20 g glucose (15 g agar), 0.004% adenine
SD-Trp	Saccharomyces	5 g (NH ₄) ₂ SO ₄ , 1.7 g YNB-AA, 20 g glucose, 0.74 g CSM-Trp (20 g agar),
		0.004% adenine
Top selective agar	Saccharomyces	182 g sorbitol, 22 g dextrose, 30 g agar, 0.0002% 5-FOA, 0.004% adenine
Bottom selective	Saccharomyces	182 g sorbitol, 22 g dextrose, 20 g agar, 0.0002% 5-FOA, 0.004% adenine
agar		
R5	Streptomyces	103 g sucrose, 0.25 g K ₂ SO ₄ , 10.12 g MgCl ₂ .6H ₂ O, 10 g glucose, 0.1 g
		casamino acids, 2 mL trace element solution, 5 g yeast extract, 5.73 g TES
		buffer
SM12	Streptomyces	10 g soy flour, 50 g glucose, 4 g peptone, 4 g beef extract, 1 g yeast extract,
		2.5 g NaCl, 5 g CaCo ₃ , adjust to pH 7.6 with KOH
SM14	Streptomyces	10 g glucose, 20 g soy peptone, 5 g meat extract, 5 g NaCl, 0.01 g
		ZnSO ₄ .7H ₂ O, adjust to pH 7.0 with KOH
BPM	Streptomyces	15 g starch, 5 g yeast extract, 10 g soy flour, 5 g NaCl, 3 g CaCO ₃ , 25 μ g/mL
		CoCl ₂
		CoCl ₂

Table S5Solutions used for TAR cloning.

Solution	Ingredients per 100 mL, made up with milliQ water
10x nitrogen bases	1.9 g YNB-AA, 1.9 g CSM-Trp, 5 g NH₄SO₄
100x adenine	1 g adenine, 74 mM HCl
SPE	10 mM HEPES buffer pH 7.5, 100 mM EDTA pH 8, 18.2 g sorbitol
SOS	15 mM CaCl ₂ , 0.25 g yeast extract, 18.2 g sorbitol, 1 g peptone
STC	10 mM Tris.HCl pH 7.5, 10 mM CaCl ₂ , 18.2 g sorbitol
PEG	10 mM Tris.HCl pH 7.5, 10 mM CaCl ₂ , 20 g PEG8000

Primer name	Sequence (5'-3')	Use	Restriction
		036	site
SalbCap_Fw	GCTGCCGGGCCGGCTCCTAGGTCTACATCGGGG		
	ACATCAGCGACGCCCGTCCCGCGAGTCTTCCGAT	Construction of	
	GCCGTTAATTAAGCCACTATTTATACCATGGGAG	pCAP03-derived	-
	GCGTCAAAC	capture vector for	
	TGTCCCCGATGTAGACCTAGGAGCCGGCCCGGC	TAR cloning	
SalbCap_Rv	AGCTGACGGGTCAGCCACGGCAGGAACCGCGG	TAR Cioning	
	GCCGTCATATGTCGAAAGCTACATATAAGGAACG		-
	TGCTG		
Salb_ClusScr_Fw	GCAGGACGGAACCGAGGGATG	Screening for cluster	-
Salb_ClusScr_Rv	TGGGAGAGGATCGCCTCGGC	capture	-
Salb_YHMut_Fw	GATACAAAGCTTGACTGGATACGCGCCCAGC	Amplification of DNA	HindIII
	GATACAGAATTCGCTCACCTCCAGGCCGGACC	fragment for pathway	
Salb_YHMut_Rv		disruption in S.	EcoRI
		albidoflavus	
Salb TAR PPDel Fw	CGTCCACCACGCATCGAACTGAATGGAGCTCAAC	Precursor peptide	_
	T CATGATTCCGGGGATCCGTCGACC	gene deletion	-
Salb_TAR_PPDel_Rv	TGTCAGCCGGCCGCCGTCACCGGCGGCCTGGGC	gene deletion	_
	TGACTATGTAGGCTGGAGCTGCTTC		-
Salb_TAR_E1Del_Fw	GCCCATCCCCTCGTACTCCATCCGACGGAGGTTT		
Salb_TAR_ETDel_FW	CCGTGATTCCGGGGATCC	E1 like sere deletion	-
Salb TAD E1Dal Dy	CGGGCCGCTCCCCCTTGCGGGCAGCGGGGCCA	E1-like gene deletion	
Salb_TAR_E1Del_Rv	CCGGCGGTGTAGGCTGGAGCTGCTTC		-
	GACCTGCCGATGACCGCCGCCCTGCCCCTCGAC		
Salb_TAR_YcaODel_Fw	GCCCTCATTCCGGGGATCCGTCGACC	VacO same deletion	-
	GGGAGCCGGGGGTCACATGTGCGGGGCGGGGG	YcaO gene deletion	
SalbTAR_YcaODel_Rv	CGAGGGTTGTAGGCTGGAGCTGCTTC		-
	GCTGCCCGCAAGGGGGAGCGGCCCGGCATGAC		
Salb_TAR_HydrDel_Fw	GCCCGCGATTCCGGGGATCCGTCGACC	Hydrolase gene	-
	GGGCGTCGAGGGGCAGGGCGGCGGTCATCGGC	deletion	
Salb_TAR_HydrDel_Rv	AGGTCTCTGTAGGCTGGAGCTGCTTC		-
	CGCCCCGCCCCGCACATGTGACCCCCGGCTCC		
Salb_TAR_DehyDel_Fw	CCCATGATTCCGGGGGATC	Dehydrogenase gene	-
	GGGTGAGGTGGTCGGGGGGGGGGCCGTGCGCGG	deletion	
Salb_TAR_DehyDel_Rv	CGGCTCATGTAGGCTGGA		-
	CGCCCGGCCCCGCACCCCTACCGAGGAGTTC		
Salb_TAR_OxidoDel_Fw	CCCGTGATTCCGGGGGATCCGTCGACC	Oxidoreductase gene	-
	GCGACACCCTGGCCCGCGCCTGGCCGAGCTGAG	deletion	
Salb_TAR_OxidoDel_Rv	GAGTCATGTAGGCTGGAGCTGCTTC		-
	AGGGACGCTACACGACGAGCGAGGAGACCCGCG		
Salb_TAR_MarRDel_Fw	ACCATGATTCCGGGGATCCGTCGACC	MarR regulator gene	-
	ACGGGGCGGAGGCGGACCCGGTGGGGCGGTGA	deletion	
Salb_TAR_MarRDel_Rv	CTCCTCATGTAGGCTGGAGCTGCTTC		-

Primer name	Sequence (5'-3')	Use	Restriction site
Salb_TAR_Oxyg_Fw	TCGAAGTTCACCATCCAGCAGCGCGCGGTTCCC		_
	GCGATGATTCCGGGGGATCCGTCGACC	Oxygenase gene	
Salb_TAR_Oxyg_Rv	CGTTCTCGCTCATGCGCGTCTCCTTCCTCGGCTC	deletion	_
	GTTCATGTAGGCTGGAGCTGCTTC		-
Salb_TAR_IrTr_Fw	ACGCGTCCCCGCAGGACGGAACCGAGGGATGAA		_
	GCCATGATTCCGGGGGATCCGTCGACC	Iron transporters	-
Salb_TAR_IrTr_Rv	GGTCGGTTCGTCGAGGAGGAGGGTCCGGGTGTC	gene deletions	_
	CTGGGCTGTAGGCTGGAGCTGCTTC		-
Salb_TAR_ABC_Fw	CGACCACCTCACCCCGCCCGGAGAGACGTACCC		
	GCGATGATTCCGGGGATCCGTCGACC	ABC transporters	-
Salb_TAR_ABC_Rv	CGTGTGCGTGCGCGTGTACGCACGCTTCGGTGC	gene deletions	
Salb_TAR_ADC_RV	GGGTCATGTAGGCTGGAGCTGCTTC		-
Solb TAD DopMat Fur	CCGGGCGCATGTCGATGCCAGTCGGGAGCACAG	Dontido mothionino	
Salb_TAR_PepMet_Fw	CGTATGATTCCGGGGGATCCGTCGACC	Peptide methionine sulfoxide reductase	-
Solb TAD DopMat Dv	CCCCGGCTCCTCGGTCCGGTGAAGGAGTGCTGT	MsrA gene deletion	
Salb_TAR_PepMet_Rv	GGCTCATGTAGGCTGGAGCTGCTTC	MSIA gene deletion	-
Solb TAD Aget Fur	CCGCCGGTCCGCACGCCACCGGGAGGGGCCCA	Acetyl transferase	
Salb_TAR_Acet_Fw	CCGCATGATTCCGGGGATCCGTCGACC	and maltose-O-	-
Solb TAD Aget Dy	GGGCCCGGCCCCTTCGCGTGTACGTACGGGCC	acetyltransferase	
Salb_TAR_Acet_Rv	CCGTCATGTAGGCTGGAGCTGCTTC	gene deletions	-
SalbCycl_PE_Fw	GATACACATATGACCAGCAGCCGACTCGCC	Complementation of	Ndel
SalbCycl_PE_ Rv	GATACAAAGCTTGTGGTCGCGGGCGTCATGC	E1-like protein	HindIII
SalbYcaO_PE_Fw	GATACACATATGACCGCCGCCCTGCCC	Complementation of	Ndel
SalbYcaO_PE _Rv	GATACAAAGCTTGGGGAGCCGGGGGTCACATG	YcaO	HindIII
SalbDehy_PE _Fw	GATACACATATGACCCCTGACGCCACCCTCG	Complementation of	Ndel
SalbDehy_PE _Rv	GATACAAAGCTTGCTCATCGGGCGGCTCCCAG	dehydrogenase	HindIII
PPDel_screen_Fw	GCGGCTGGCCGGTCTGTTAC	Screening precursor	-
PPDel_screen_Rv	CGGCTGCTGGTCACGGAAACC	peptide gene deletion	-
CyclDel_screen_Fw	GGTGCCGCGGACGACAAGTAG	Screening E1-like	-
CyclDel_screen_Rv	GTCGTACGGGGTGCGGATCAG	gene deletion	-
YcaODel_screen_Fw	ACCAGGCTGCGCGTCGAGA	Screening YcaO gene	-
YcaODel_screen_Rv	AGGTGGTCGAGGTCGACGGG	deletion	-
HydrDel_screen_Fw	CTCCTCACCGCCGACCTCCTC	Screening hydrolase	-
HydrDel_screen_Rv	GTGCCGAGCGAGACCCGGT	gene deletion	-
DehyDel_screen_Fw	TCGACCTGACCACCGAGGACG	Screening	-
		dehydrogenase gene	
DehyDel_screen_Rv	ACCAGGGCGAGCAGGGCG	deletion	-
OxidoDel_Screen_Fw	CATCCCTCGGTTCCGTCCTG	Screening	-
OxidoDel_Screen_Rv	AGCACCCTGATCCGGCTGAC	oxidoreductase deletion	-
Salb oxyg sor Fw	CAGTTGAGGGGCGGATCGTTC		
Salb_oxyg_scr_Fw		Screening oxygenase	-
Salb_oxyg_scr_Rv	GAAAGGCCCAGCTGGGCGTC	deletion	-
Salb_IronTr_scr_Fw	CAGAGGCGTCCCACGCGTC		-

Sequence (5 ² -3 ²)		Restriction	
Sequence (3 - 3)	056	site	
GAACGGCGTGGCGACTGCC	Screening iron	_	
	transporters deletion		
CTCACCCCGCCCGGAGAGAC	Screening ABC	-	
GTGCGTGCGCGTGTACGCAC	transporters deletion	-	
GACCCCGGCTCCTCGGTCC	Screening peptide	_	
	methionine sulfoxide		
CGCATGTCGATGCCAGTCGG	reductase MsrA	_	
	deletion		
GTGACACCAAGGTGCCGCGAAC	Screening acetyl		
	transferase and	-	
	maltose-O-		
GGCCCCCTTCGCGTGTACG	acetyltransferase	-	
	deletions		
TCAGCCCGACCGGTCCTG	Screening MarR	-	
CGACCACGCCGAGGAGGTC	deletion	-	
TTCGAGTGGCGGCTTGCG	Screening for	-	
CAAACGGCATTGAGCGTCAGC	pIJ10257 insert	-	
GTTCTCGACGAGGGCGTTGGAGTGGGTGGCGCA			
GAGGTGGGCCAGCTGGCCCGGGTCGGCGAT	Coro poptido		
AAGTCGCGGTCGGAACCGTATTGCAGCAGCTTTA			
TCATCTGCCGCTGGACGGCGCACAAATCGCGCTT	mutation		
AA			
GCCGAAGTGCTGGGTGTCGAG	Screening core		
GTGCCGGTGTCGAGGTGCAG	peptide mutation		
	GTGCGTGCGCGTGTACGCACGACCCCGGCTCCTCGGTCCCGCATGTCGATGCCAGTCGGCGCATGTCGATGCCAGTCGGGTGACACCAAGGTGCCGCGAACGGCCCCCTTCGCGTGTACGTCAGCCCGACCGGTCCTGCGACCACGCCGAGGAGGTCTTCGAGTGGCGGCTTGCGCAAACGGCATTGAGCGTCAGCGTTCTCGACGAGGGCGTTGGAGTGGGTGGCGCAGAGGTGGGCCAGCTGGCCCGGGTCGGCGATAAGTCGCGGTCGGAACCGTATTGCAGCAGCTTTATCATCTGCCGCTGGACGGCGCACAAATCGCGCTTAAGCCGAAGTGCTGGCTGGCGAGGTGTCGAGG	GAACGGCGTGGCGACTGCCScreening iron transporters deletionCTCACCCCGCCCGGAGAGAGACScreening ABCGTGCGTGCGCGTGTACGCACtransporters deletionGACCCCGGCTCCTCGGTCCScreening peptide methionine sulfoxideGACCCCGGCTCCTCGGTCCScreening peptide methionine sulfoxideGGCATGTCGATGCCAGTCGGreductase MsrA deletionGTGACACCAAGGTGCCGCGAACScreening acetyl transferase and maltose-O- acetyltransferase deletionsTCAGCCCGACCGGTCCTGScreening MarR deletionCGACCACGCCGAGGAGGTCdeletionTTCGAGTGGCGGCGTTGCGScreening for plJ10257 insertGTTCTCGACGAGGGCGTTGGAGTGGGGGGCGCA GAGGTGGGCCAGCTGGACGGCGATCore peptide mutationAAGCCGAAGTGCTGGGGTGCGAGScreening core	

Table S7Accurate masses of streptamidine and related compounds.

Description Formula		Calc. [M+H] ⁺	Obs. <i>m/z</i>	Error (ppm)
Streptamidine	C ₂₈ H ₄₂ N ₁₀ O ₈	324.1666 ([M+2H] ²⁺)	324.1666	0.00
(HLSATH amidine)	0281142101008	647.3260	647.3251	1.39
Predicted HLSAT amidine	$C_{22}H_{35}N_7O_7$	510.2671	510.2668	0.59
Predicted HLSA amidine	$C_{18}H_{28}N_6O_5$	409.2194	409.2195	-0.24
Predicted acetylated and dehydrated LSA (peptide A)	$C_{14}H_{23}N_3O_5$	314.1710	314.1711	-0.32
Predicted dehydrated LSA (peptide B)	$C_{12}H_{21}N_3O_4$	272.1604	272.1595	3.31
Acetylated LSA (peptide C)	$C_{14}H_{25}N_3O_6$	354.1636 ([M+Na]⁺)	354.1636	0.00

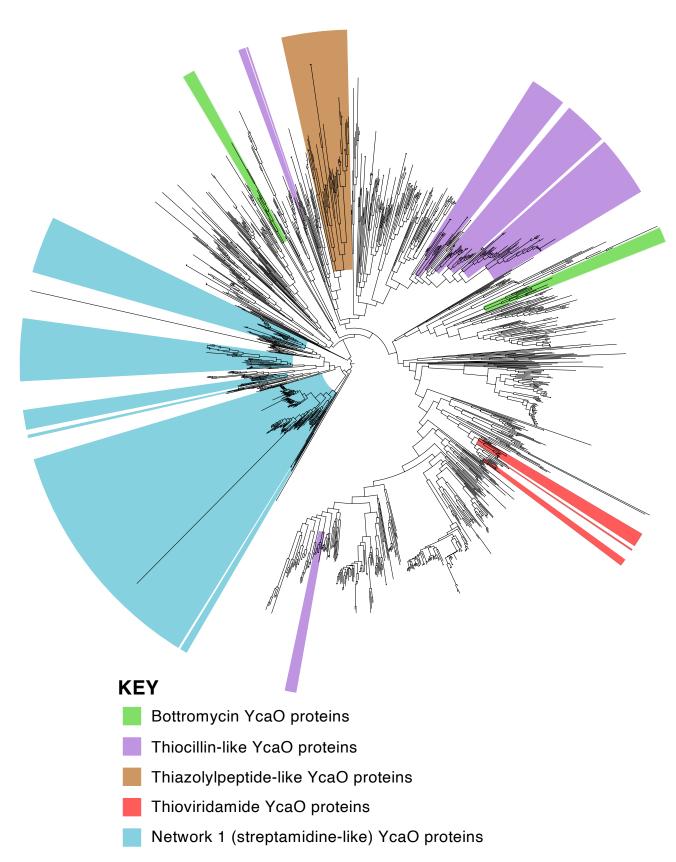

Protein Name	Locus tag ^a NC_020990.1/ CP004370.1	Protein ID ^a NC_020990.1/ CP004370.1	Pfam domain	Predicted function/domain	Size (AA)
AmiX	XNR_RS28595 XNR_5767	WP_106428983.1 AGI92072.1	No Pfam match	Oxidoreductase	410 ^b
AmiF1	XNR_RS28600 XNR_5768	WP_015508294.1 AGI92073.1	PF01497	Iron transporter complex	329
AmiF2	XNR_RS28605 XNR_5769	WP_003946623.1 AGI92074.1	PF01032	Iron transporter complex	344
AmiF3	XNR_RS28610 XNR_5770	WP_015508295.1 AGI92075.1	PF01032	Iron transporter complex	351
AmiF4	XNR_RS28615 XNR_5771	WP_003946621.1 AGI92076.1	PF00005	Iron transporter complex	278
AmiA ^c	XNR_5772°	AGI92077.1°	No Pfam match	Precursor peptide	44
AmiB	XNR_RS28620 XNR_5773	WP_015508297.1 AGI92078.1	No Pfam match	E1-like protein	281
AmiC	XNR_RS28625 XNR_5774	WP_015508298.1 AGI92079.1	PF02129	Hydrolase	508
AmiD	XNR_RS28630 XNR_5775	WP_008409979.1 AGI92080.1	PF02624	YcaO-domain	455
AmiE	XNR_RS28635 XNR_5776	WP_015508299.1 AGI92081.1	No Pfam match	Dehydrogenase	435
AmiT1	XNR_RS28640 XNR_5777	WP_003946615.1 AGI92082.1	PF00005	ABC transporter	581
AmiT2	XNR_RS28645 XNR_5778	WP_015508300.1 AGI92083.1	PF00005	ABC transporter	594

Table S8 Proteins encoded in the streptamidine biosynthetic gene cluster.

^{a.} Locus tags and protein IDs are provided both for the NCBI RefSeq accession (NC_020990.1) and the GenBank accession (CP004370.1) of the *S. albidoflabus* J1074 genome sequence.
 ^{b.} AGI92072.1/XNR_5767 annotated as a 417 AA protein.
 ^{c.} Precursor peptide AmiA is not annotated in the RefSeq accession (NC_020990.1).

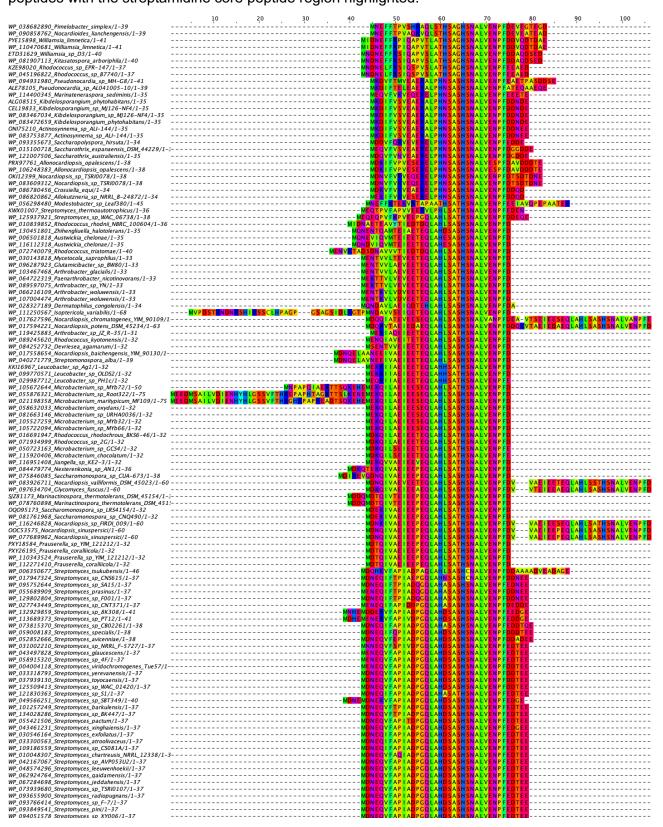


Figure S1 Precursor peptide networks associated with Actinobacterial YcaO proteins. Precursors with homology to known RiPPs are highlighted: green = bottromycin family (NCBI HMM domain NF033414), brown = thiazolylpeptide families (NF033400 and NF033399), red = thioviridamide family (NF033415), purple = thiocillin families (NF033482 and NF033401), dark blue = lasso peptide family (NF033521).

Figure S2 Version of the actinobacterial YcaO maximum likelihood tree shown in Figure 2 with branch distances included. A single colour (blue) is used to highlight all YcaO protein clades associated with Network 1 peptides. Figure generated using iTOL⁷.

Figure S3 (shown below) Alignment of precursor peptides from network 1 containing motif A. Sequences were aligned using ClustalW¹² and visualised using Jalview³⁰ with Taylor colour-coding³¹. The figure extends to the following page, which includes the consensus sequence for these Motif A peptides with the streptamidine core peptide region highlighted.

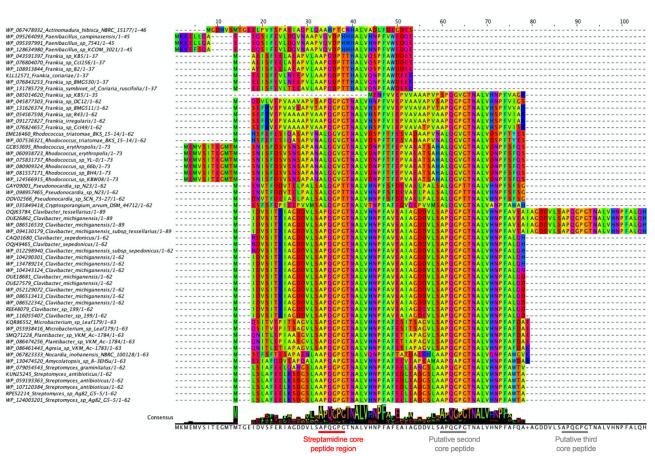
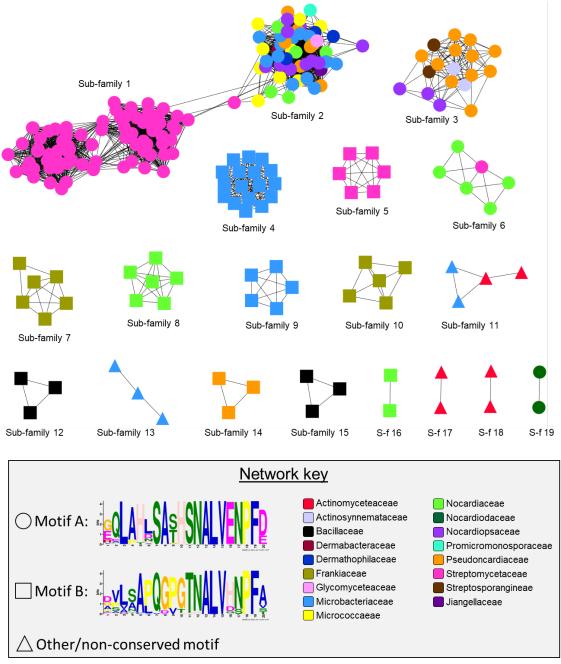


Figure S3 continued:


WP_066976558_Streptomyces_sp_NRRL_F-4489/1-45			LVENPFDEEAPAAGTDADK
ALC19908_Streptomyces_pristinaespiralis/1-44		· <mark>MEQHKVFSPIAEQGQLAHLSATHSN</mark> A	LVENPFEDTAAVET-DSDK
WP_053556805_Streptomyces_pristinaespiralis/1-44		<mark>MEQHKVFSPIAEQGQLAHLSATHSN</mark> A	LVENPFEDTAAVET-DSDK
WP_018847808_Streptomyces_sp_CNT372/1-44		· <mark>MEQHKVFSPIAEQGQLAHLSATHSN</mark> A	LVENPFEDAADTAA-DGDK
WP 031131024 Streptomyces fradiae ATCC 10745 = DSI	М	MEQQSVFSPIAEQGQLAHLSATHSNA	LVENPFDEVAEADA-DK
WP_023590616_Streptomyces_thermolilacinus_SPC6/1-42			LVENPFDDVAEAGA-DQ
WP 053914084 Streptomyces sp TP-A0875/1-42		MEQDKVFTPIAEQGQLAHLSATHSNA	LVENPFDDAVEVDA-DK
WP_016828012_Streptomyces_viridosporus_T7A/1-42			LVENPFDDAVEADA-DK
WP_031075178_Streptomyces_sp_NRRL_S-118/1-42			LVENPFDDAVEADA-DK
WP_073795746_Streptomyces_uncialis/1-45			LVENPFDDAPVDGDADTEK
WP_070343622_Streptomyces_agglomeratus/1-45		MEHNKVFSPIAEQGQLAHLSATHSNA	LVENPFDDTAADVTVDESK
ALM43314 Streptomyces sp FR-008/1-44		<mark>MEHDKVFAPIADPGQLAHLSATHSN</mark> A	LVENPFDDADEAGAADDK
WP_008409979_Streptomyces_albidoflavus/1-44			LVENPFDDADEAGAADDK
WP 103530696 Streptomyces sp SM11/1-44		MONNEVESPIADOGOLAHLSATHSNA	LVENPFDDAVEADTAAEK
WP_020679164_Streptomyces_sp_CNB091/1-44			LVENPFDDTVEADTATEK
OKI46856 Streptomyces sp TSRI0281/1-44		MEHNKVFSPIADOGOLAHLSATHSNA	LVENPFDDAVEADTADEK
RLV71217 Streptomyces sp CBMAI 2042/1-44		<mark>MEHNKVFSPIAD</mark> QGQLAHLSATHSNA	LVENPFDDAVEADTADEK
WP_015613007_Streptomyces_fulvissimus_DSM_40593/1-4	44	MEHNKV FSPI ADOGOLAHLSATHSNA	
WP_073876556_Streptomyces_sp_CB00316/1-44		MEHNKVFSPIADOGOLAHLSATHSNA	LVENPFDDAVEADTADEK
WP_079182634_Streptomyces_sp_TSRI0281/1-44		<mark>MEHNKVFSPIADOGOLAHLSATHSN</mark> A	LVENPFDDAVEADTADEK
WP_084752844_Kitasatospora_albolonga/1-44		MEHNKVFSPIADOGOLAHLSATHSNA	
WP 109162285 Streptomyces sp CS065A/1-44			LVENPFDDAVEADTADEK
WP_084990460_Streptomyces_sp_S8/1-44		MEONKVFSPIADOGOLAHLSATHSNA	
WP 073770697 Streptomyces sp CB02366/1-44		MEONKVESPIADOGOLAHLSATHSNA	LVENPFDDAVEPDTAAEK
WP_030081850_Streptomyces_baarnensis/1-44		MENNKV FSPI ADOGOLAHLSATHSNA	
SNB77017_Streptomyces_sp_PgraA7/1-44		MEONKVETPIADOGOLAHLSATHSNA	LVENPFDDAVEADTAAEK
SED75494_Streptomyces_griseus/1-44			
WP_030701973_Streptomyces_griseus_subsp_griseus/1-44	4	MENNTY FSPIADOGOLAHLSATHSNA	LVENPFDDAVEADTAAEK
OKJ27000_Streptomyces_sp_CB02130/1-44		MEONMVESPIADOGOLAHLSATHSNA	LVENPFDDAVEADTAAEK
EHM27670 Streptomyces sp W007/1-44		MENNKY FSPIADOGOLAHLSATHSNA	LVENPEDDAVEADTAAEK
KOX30631 Streptomyces sp Root1295/1-44			LVENPFDDAVEADTAAEK
OLO29347 Streptomyces sp MNU77/1-44			
WP_087767686_Streptomyces_sp_CS057/1-44		MENNKVESPIADOGOLAHLSATHSNA	LVENPEDDAVEADTAAEK
RPK87717 Streptomyces sp ADI98-10/1-44			
WP 030584801 Streptomyces anulatus/1-44		MEONKVESPIADOGOLAHLSATHSNA	LVENPEDDAVEADTAAEK
WP_053623192_Streptomyces_sp_NRRL_F-2295/1-44			LVENPEDDAVEADTAAEK
WP 078612341 Streptomyces vinaceus/1-44		MEONKY FSPIADOGOLAHLSATHSNA	LVENPEDDAVEADTAAEK
WP_078883251_Streptomyces_sp_NRRL_F-3273/1-44			
WP 083193763 Streptomyces violaceoruber/1-44		MEONKVESPIADOGOLAHLSATHSNA	LVENPEDDAVEADTAAEK
WP 089118023 Streptomyces sp SS07/1-44			LVENP FDDAVEADTAAEK
		- JL-m MI Dalli	
Consensu	is		
	MEEDMSAILVDIENHYHLGSSVFTHRGPAP++AERTT+M	IME E MENEQV F A P I AD P G Q L A H L S A S H S N A	L VENP FDDAE E ADTADE KEQLAHLSASH SNALVENP FD
		Strentamidine cor	Putative second

Streptamidine core peptide region

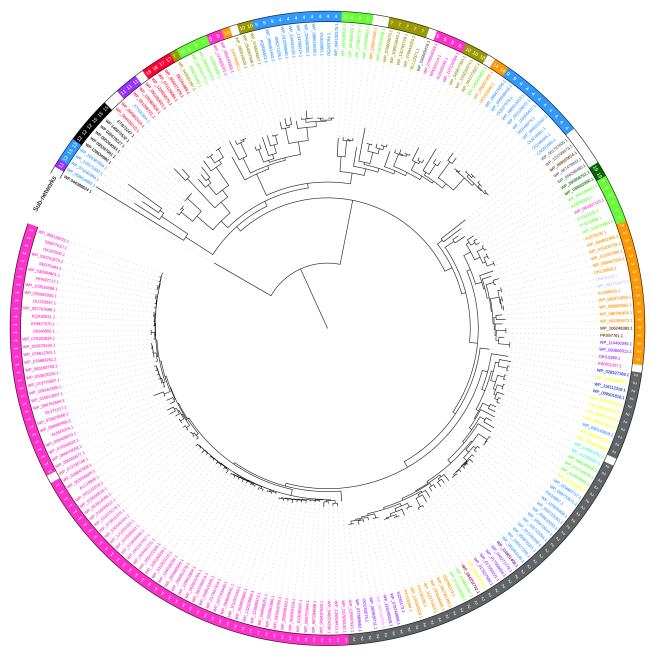

Putative second core peptide

Figure S4 Alignment of precursor peptides from network 1 containing motif B. Sequences were aligned using ClustalW¹² and visualised using Jalview³⁰ with Taylor colour-coding³¹. The consensus sequence for these Motif B peptides is shown with the putative streptamidine core peptide region(s) highlighted based on their proximity to the ALV motif.

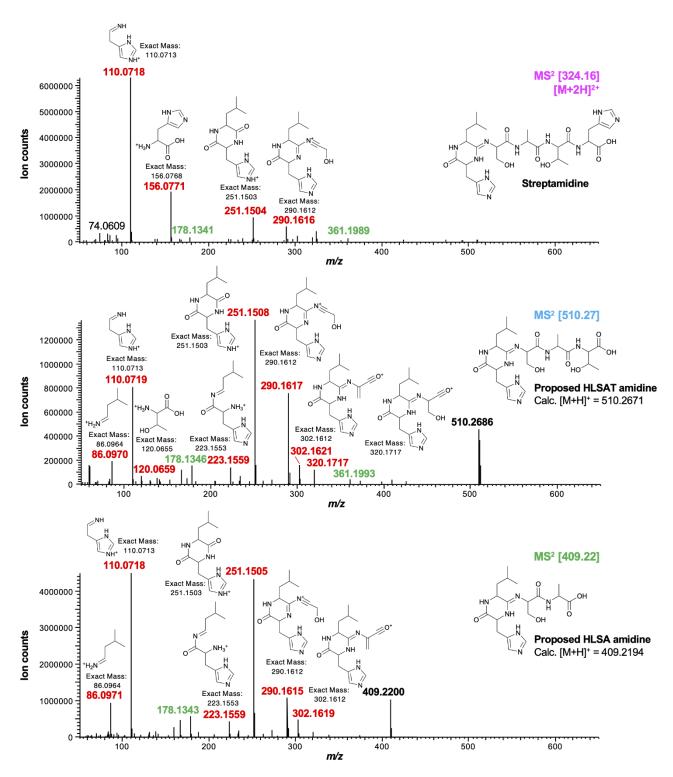
Figure S5 Network analysis of the 237 peptide sequences identified with RiPPER (network 1 from Figure 1 and Figure S1) using an identity cut-off of 80%. Similar sequences are clustered together in sub-families and nodes are colour coded by the associated bacterial family. Peptides containing motif A are indicated with a circular node and peptides containing motif B are indicated by a square node. Precursors containing neither motif are indicated by a triangular node. Motifs A and B were identified by MEME¹⁴ analysis of the 237 sequences. Each motif appears once, twice or three times in 208 of the precursor sequences.

Figure S6 Maximum likelihood tree of YcaO proteins associated with network 1 of putative precursor peptides. The tree is rooted using WP_044386624.1 as an outgroup. Precursor peptide sub-networks (80% identity networks from Figure S5) are mapped as an outer colour strip that is labelled with the sub-network number. This is colour-coded according to the dominant bacterial family within each sub-network (colour coding as in Figure S5), with the exception of sub-network 2, which consists of diverse bacterial families. Tree node labels are colour-coded by bacterial family. This shows that precursor peptides appear to have co-evolved with their cognate YcaO. Note that a small number of peptides do not network with the 80% identity cut-off and are therefore unlabelled on the colour strip. Figure generated using iTOL⁷.

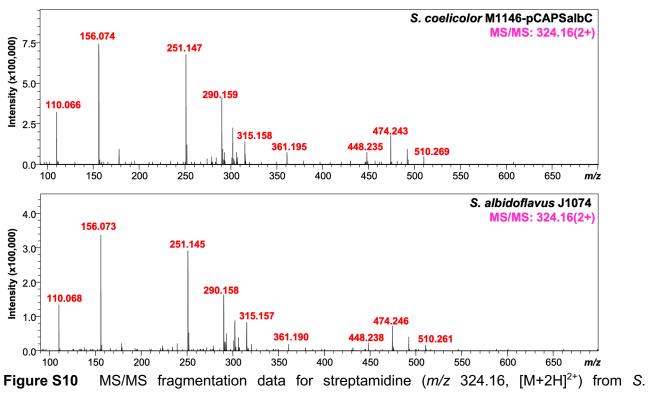
Α

	Streptomyces albidoflavus					Streptomyces sp. CB021
	Streptomyces sp. FR-008					Streptomyces sp. SS07
	Streptomyces pini					Streptomyces sp. CS065
	Streptomyces barkulensis					Kitasatospora albolonga
	Streptomyces prasinus					Streptomyces sp. CNB09
	Streptomyces anulatus					Streptomyces fulvissimus
	Streptomyces violaceoruber					Streptomyces sp. CBMAI
	Streptomyces sp. NRRL F-3273					Streptomyces sp. BK447
	Streptomyces qaidamensis					Streptomyces viridochror
	Streptomyces sp. Root1295					Streptomyces vinaceus
	Streptomyces sp. PgraA7					Streptomyces sp. S1
	Streptomyces sp. MNU77					Streptomyces uncialis
	Streptomyces sp. CS057					Streptomyces sp. F-7
	Streptomyces griseus					Streptomyces pactum
	Streptomyces griseus subsp. griseus					Streptomyces xinghaiens
	Streptomyces sp. ADI98-10					Streptomyces sp. CS081
	Streptomyces sp. S8					Streptomyces radiopugna
	Streptomyces sp. CB02366					Streptomyces sp. AVP05
	Streptomyces sp. CB02261					Streptomyces sp. NRRL I
	Streptomyces glaucescens					Streptomyces toyocaens
	Streptomyces exfoliates					Streptomyces baarnensis
	Streptomyces thermolilacinus SPC6				1	Streptomyces sp. CB003
	Streptomyces sp. 4F					Streptomyces sp. TSRI02
	Streptomyces sp. F001				4	Streptomyces sp. TSRI02
	Streptomyces fradiae ATCC 10745					Streptomyces sp. NRRL
I	Oxidoreductase Precurso	r peptide	Hydrolase	Dehydrogenase		MarR regulator
					_	
	Iron transporters E1-like p	rotein	YcaO protein	ABC transporters		Other regulatory gene

Streptomyces sp. CB02130 Streptomyces sp. SS07 Streptomyces sp. CS065A Kitasatospora albolonga Streptomyces sp. CNB091 Streptomyces fulvissimus Streptomyces sp. CBMAI 2042 Streptomyces sp. BK447 Streptomyces vinaceus Streptomyces sp. S1 Streptomyces uncialis Streptomyces sp. F-7 Streptomyces pactum Streptomyces sp. CS081A Streptomyces radiopugnans Streptomyces sp. AVP053U2 Streptomyces sp. NRRL F-5727 Streptomyces toyocaensis Streptomyces baarnensis Streptomyces sp. CB00316 Streptomyces sp. TSRI0281 Streptomyces sp. TSRI0281 Streptomyces sp. NRRL S-118 MarR regulator


Streptomyces viridochromogenes Tue57 Streptomyces xinghaiensis

В		
Frankia_sp_Ccl156	Agreia_sp_VKM_Ac-1783	
Nocardioides_lianchengensis	Frankia_irregularis	
Rhodococcus_sp_EPR-147	Cryptosporangium_arvum_DSM_44712	
Dermatophilus_congolensis	Frankia_sp_R43	
Rhodococcus_sp_B7740	Paenibacillus_sp_7541	
Modestobacter_sp_Leaf380	Bacillus_paralicheniformis	
Rhodococcus_triatomae_BKS_15-14	Bacillus_sp_CPSM8	
Rhodococcus_triatomae_BKS_15-14	Pseudonocardia_sp_AL041005-10 🛛 🗖	
Rhodococcus_sp_KBW08	Clavibacter_michiganensis	
Rhodococcus_triatomae	Clavibacter_michiganensis	
Glutamicibacter_sp_BW80	Clavibacter_michiganensis	
Frankia_sp_B2	Clavibacter_michiganensis	
Paenibacillus_sp_KCOM_3021	Clavibacter_michiganensis	
Saccharomonospora_sp_CUA-673	Clavibacter_michiganensis	
Pseudonocardia_sp_N23	Clavibacter_michiganensis	
Streptomyces_sp_Ag82_G5-5	Clavibacter_sp_199	
Streptomyces_sp_Ag82_G5-5	Clavibacter_sp_199	
Streptomyces_antibioticus	Clavibacter_sepedonicus	
Streptomyces_antibioticus	Clavibacter_sepedonicus	
Arthrobacter_sp_JZ_R-35	Microbacteriaceae_bacterium	
Salinibacterium_amurskyense	Frankia_symbiont_of_Coriaria_ruscifolia	
Rhodococcus_kyotonensis	Pseudonocardia_sp_SCN_73-27	
Rhodococcus_rhodnii_NBRC_100604	Pseudonocardia_sp_N23	
Nocardia_inohanensis_NBRC_100128	Amycolatopsis_sp_8-3EHSu	
Frankia_sp_BMG5_30	Frankia_sp_Ccl49	
Oxidoreductase Precursor peptide 🔁 Hydrolase 🛑 Dehydrogenase		
Iron transporters E1-like protein YcaO protein ABC transporters		


Figure S7 (previous page) A. First 50 examples of homologous gene clusters identified by MultiGeneBlast¹⁷ analysis of the *S. albidoflavus* BGC. The core set of putative biosynthetic genes are present in all examples, which are predominantly from the *Streptomyces* genus and are associated with precursor peptides containing motif A. Surrounding genes that do not have predicted biosynthetic function within the RiPP biosynthetic pathway have been omitted, with the exception of genes annotated as having a regulatory function. B. BGCs 151-200 identified from MultiGeneBlast analysis of the *S. albidoflavus* BGC. These BGC examples are distinct from the first 50 examples, as many encode two YcaO proteins, additional hypothetical proteins (in white), and generally lack the *amiE*, *amiB* and *amiX* genes. Additionally, this subset of BGCs is usually associated with precursor peptides containing motif B.

Α																							
1	lon m/z	RT/min	WT1	WT2	WT3	w	Γ4 N	lutant1 N	lutant2	Mutant3	Mutant4												
1	324.17	2.58	1628189	1895000				0	0	136742	158062												
	290.16 324.67	0.92	1783434 1301830	2104341 1929863				154724	0	0	0												
	324.67	2.59	809435	1254146				0	0	0	0		ION C	COUNT	s		- F	(EY					
	338.18	1.35	959988	1359900				õ	0	õ	131368												
	320.17	0.88	491922	553274				0	0	0	0					in each		(Compound	reported in	this study		
	647.33 647.33	1.74 2.60	372300 305683	544327 460086	57386 45425			0	0	0	0		0 1 x	10 ⁵	expe	riment				IS fragmen	,	d compour	
	251.15	0.91	291034	353716				0	0	0	0												iu
	510.27	2.52	267676	309829	30711			0	0	0	0							F	Potential B	GC-associa	ated moleci	le	
	290.16	1.79	190600	242783	30018			0	0	0	0												
	320.17 329.17	1.34 2.69	197786 187811	251664 285428	22948 16011			0	0	0	0												
	329.17	2.09	147017	179590				0	0	0	0												
	290.16	2.56	117759	182052				õ	0	õ	ő												
	356.18	1.09	151608	165779				0	0	0	0												
	324.67 359.21	2.83	121792	118528	12115			0	0	0	0												
1	359.21	2.12	135010	113220	12000	6 120	000	0	0	U	U												
_																							
B.																							
_ L	lon m/z	RT / min	SalbC1	SalbC2	∆amiA1	∆amiA2	∆amiA		∆amiB2	∆amiB3	∆amiC1	∆amiC2	∆amiC3	∆amiD1	∆amiD2	∆amiD3	∆amiE1	∆amiE2	∆amiE3	∆amiX1	∆amiX2	∆amiX3	
	314.17	3.03 2.98	1042037 387710	847530 410005	0	0	0	0	0	0	0	0	0	0	0	0	1605224 796578	2048790	1588020 943842	2825272	2569195 1699116	2451654 1560029	
	272.16	3.02	393459	329963	0	0	0	0	0	0	0	0	0	0	0	0	887866	1351619 1116939	943842 712023	1570774	1813192	1386092	
	324.17	1.40	2262279	2214873	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1057241	1172300	1139022	
	268.16	3.02	317850	255269	0	0	0	0	0	0	0	0	0	0	0	0	542292	723234	471336	1355002	1150870	981815	
	510.27	1.55	1475999 280038	1171449 252484	0	0	0	0	0	0	0	0	0	0	0	0	0 443885	0 483075	0 389179	810404 649966	763166 604358	660021 585720	
	354.16 252.68	3.03 2.59	280038	252484	0	0	0	805274	823917	750249	652656	0	0	0	0	0	443885	483075	0	049900	004358	0	
	731.49	5.88	ő	ő	0	ŏ	ŏ	472995	414900	387367	483298	185884	593732	o	ő	o	0	ō	ŏ	ő	õ	0	
	534.28	0.94	0	0	0	0	0	535754	340404	311922	409939	462929	279795	0	0	0	0	0	0	0	0	0	
	282.18	2.79	0	0	0	0	0	480684	308963	334050	426267	187481	358679	0	0	0	0	0	0	0	0	0	
	301.71 647.32	2.68 1.39	0 544662	113920 545338	0	0	0	0	0	0	0	0	0	0	0	0	528479 0	618234	813954	0 290000	0 237703	0 223171	
	753.48	5.89	0	0	ő	ŏ	ŏ	330045	334540	286914	278207	135959	390631	ő	ŏ	ő	o	ő	ŏ	0	0	0	
	414.69	1.63	498706	567594	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	179712	206891	210799	
	572.27	2.91	0	220338	0	0	0	0	0	0	309065	0	0	240054	235837	200915	0	207047	0	0	0	206498	
С																							
Ū,														-					-				
	lon m/z	RT/min	SalbC1	SalbC2	SalbC3	∆amiA1	∆amiA		∆amiF1	∆amiF2		∆amiT1	∆amiT2		∆oxy2	∆marR1	-		∆metred		∆metred3	∆acylT1	∆acylT2
	324.17 324.67	1.34 1.34	2262502 1480698	2715880 1563640	2252375 1455540	0	0	0	0	0	0	389484 134003	206483 0	2638215 1586077	3555376 2033893	3931198 2325951	2664038 1784058	4194032 2506411	3046506 1742056	2325230 1510709	2642271 1510224	2608474 1693574	129689 0
	414.69	1.58	1181609	1645592	1047319	Ő	ő	Ő	0	ő	ő	363852	290531	1451534	1318812	1240448		1337093	1704719	1659297	1820455	809350	379525
	415.19	1.58	647608	973697	518697	0	0	0	0	0	0	204596	150095	714917	663617	595986	641513	867811	791543	1048942	944463	519469	208578
	405.69	1.94	204544 0	473083	449510	0	0	0	0	0	0	279087	349649	488694	521578	724514	443171	529039	575600	634771 0	456094	421526	0
	607.34 647.32	4.90 1.34	0 513445	0 744674	0 437623	0	0	0	0	0	0	661060 0	585094 0	405660 447968	453464 462424	582933	0 555897	0 579071	0 508534	523511	0 408668	1448119 407028	1570230 0
	405.69	1.58	279266	392827	179786	Ő	ő	Ő	ŏ	ő	ő	ő	ő	316305	346105	290873	320717	341332	416925	564351	383123	202526	0
	272.16	2.92	257884	387278	284473	0	0	0	0	0	0	338726	253540	227157	309806	327270	286979	364493	179404	253616	202020	112176	0
	510.27	1.50	104359	294043	110043	0	0	0	0	0	0	0 190795	0 189693	167448	222399	1113021	268230	524694	158387	126083	131314	300238	0
	406.19 290.16	1.94 1.32	203053 197753	238427 216467	179119 152115	0	0	0	0	0	0	190795	189693	272956 177502	274319 227549	350573 310417	235753 202821	298792 348978	304645 224991	302031 167021	198489 185888	166590 216711	0
	290.16 855.45	5.88	0	0	0	0	0	0	139416	270140	299096	119115	157407	0	0	0	0	0	0	0	0	0	243550
	843.38	4.41	160391	143875	116861	0	ō	0	119398	128183	195715	128757	149272	0	ō	0	ō	ō	127475	166995	126728	0	157425
	619.33	3.63	0	0	0	0	0	0	765322	752744	691650	0	0	0	0	0	0	0	0	0	0	0	0
	708.38	4.82 2.97	0	0 167284	0	0	0	0	0	0	0	165798 0	291112	0	0 167189	0 465471	0 237824	0 360018	144121 175044	0	0 137679	0 146284	430029 0
	251.15	2.97	227258	241712	139190	0	0	0	0	0	0	0 0	0	218172	289739	400471	184452	0	175044	169619	13/6/9	171547	0
																-							

Figure S8 Comparative LC-MS data acquired using a Shimadzu IT-TOF and processed using Profiling Solution (Shimadzu). Numbers reflect ion intensities as calculated using Profiling Solution and most abundant ions are shown in each panel. Columns represent independent cultures. A. *S. albidoflavus* J1074 wild type versus pathway-disrupted *S. albidoflavus* J1074 mutant. Retention times differ to other experiments due to different chromatography conditions for this analysis. B. *S. coelicolor* M1146-pCAPSalbC versus biosynthetic gene mutants: $\Delta amiA$, $\Delta amiB$, $\Delta amiC$, $\Delta amiD$, $\Delta amiE$ and $\Delta amiX$. C. *S. coelicolor* M1146-pCAPSalbC versus versus mutants of other genes cloned in pCAPSalbC: iron transporter deletion ($\Delta amiF$), ABC transporter deletion ($\Delta amiT$), oxygenase deletion (Δoxy), MarR deletion ($\Delta marR$), peptide methionine sulfoxide reductase deletion ($\Delta metred$), and acetyltransferase deletion ($\Delta acy/T$).

Figure S9 Accurate MS/MS fragmentation data for streptamidine (m/z 324.16), proposed HLSAT amidine (m/z 510.27) and proposed HLSA amidine (m/z 409.22), obtained using a Thermo Q-Exactive. Fragments with proposed structures are labelled in red, while unannotated fragments that are common to two or more spectra are labelled in green. Parent ions are labelled in black. The following fragments are common to all spectra: m/z 110.07, m/z 178.13, m/z 251.15, m/z 290.16.

coelicolor M1146-pCAPSalbC and S. albidoflavus J1074. Spectra obtained on a Shimadzu IT-TOF.

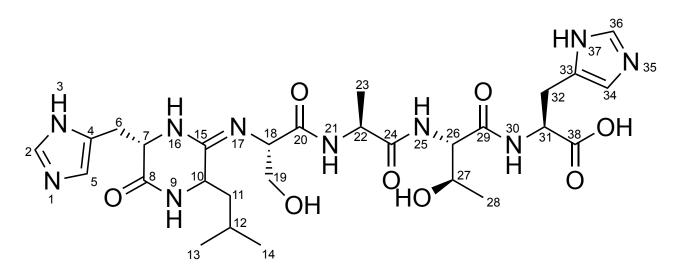
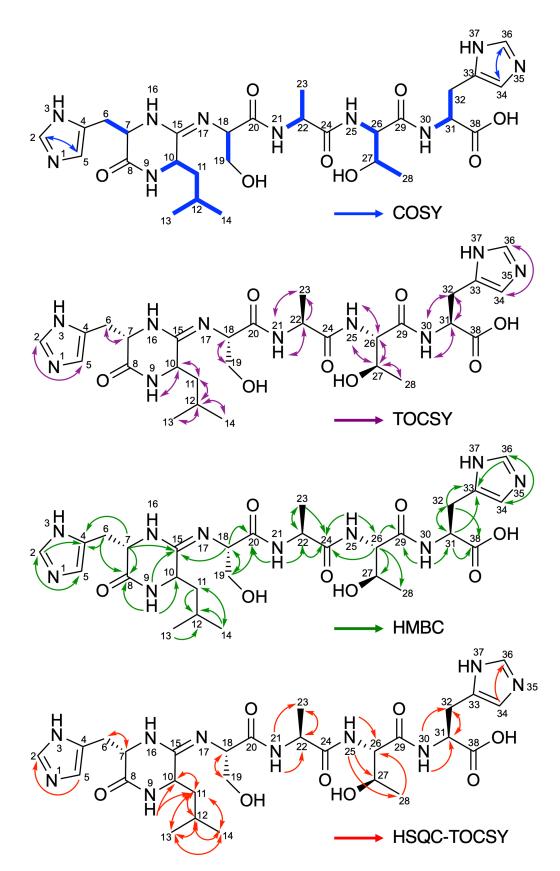
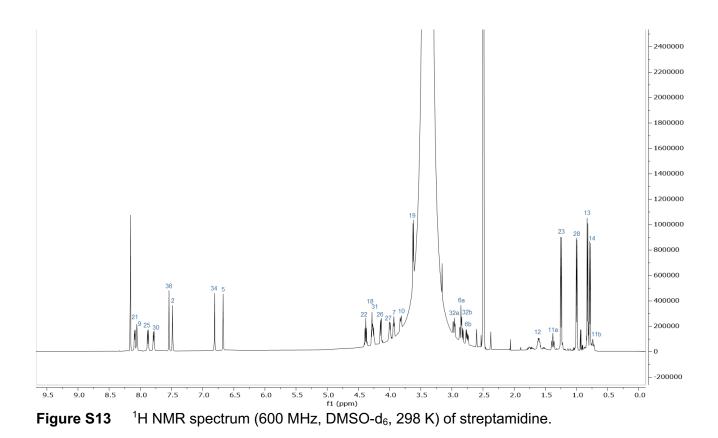
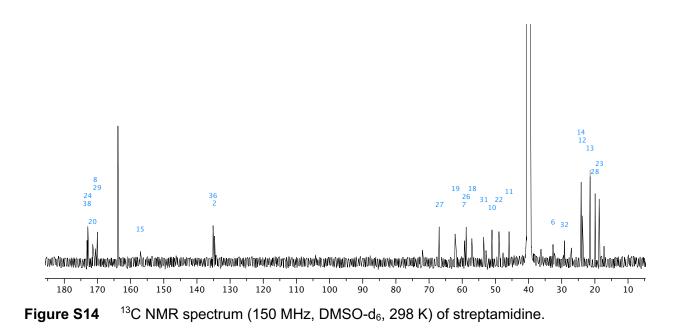
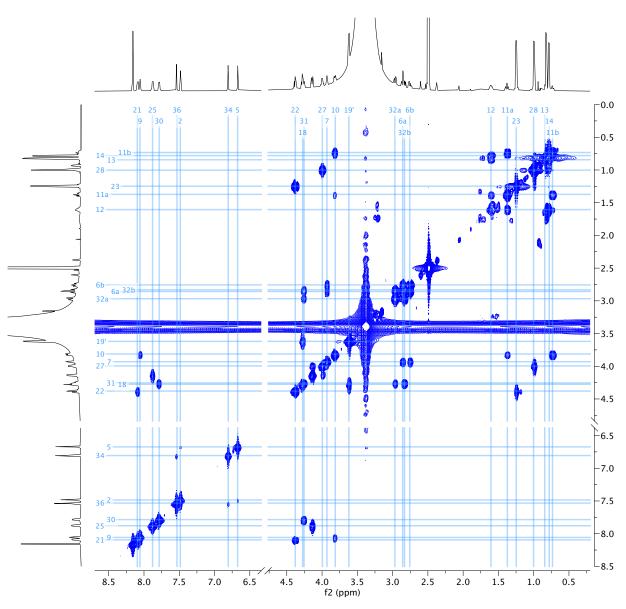
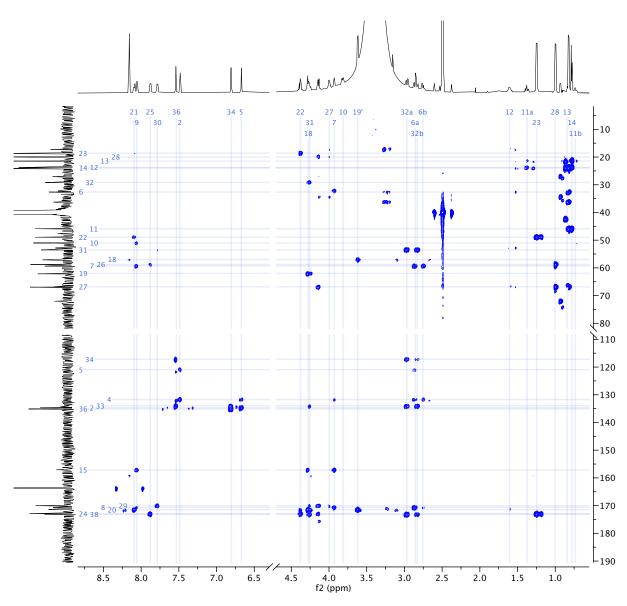



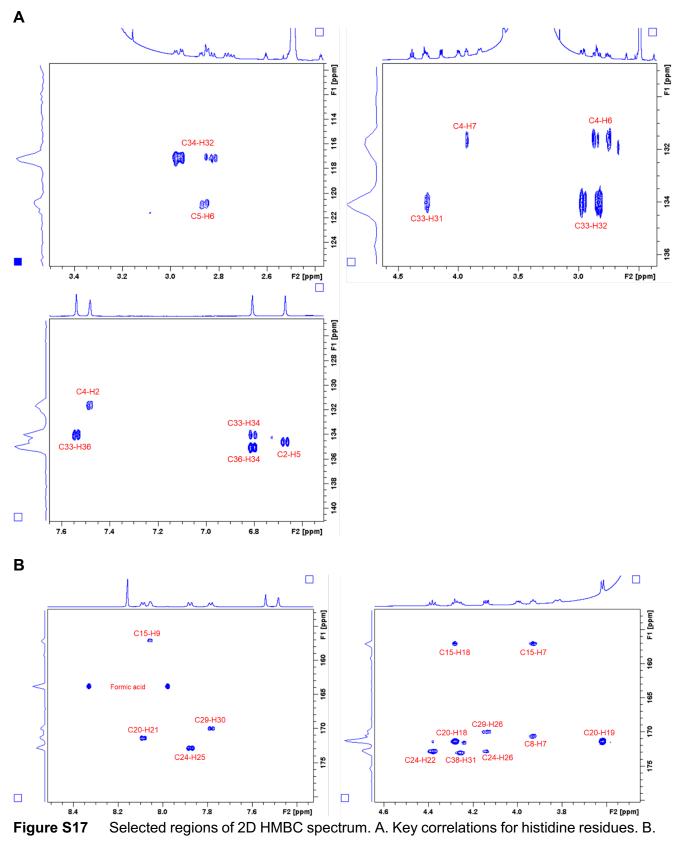
Figure S11 Structure of streptamidine with numbered atoms.


C/N number	Amino acid	δ _c (ppm)	δ _н (ppm)	Multiplicity	Coupling constant (Hz)		
1	His1						
2	His1	134.7	7.48	7.48 s			
3	His1						
4	His1	131.6ª					
5	His1	121.0 ^b	6.67	S			
6	His1	32.6	2.84 2.75	dd dd	$J_{6a,6b} = 14.1, J_{6a,7} = 5.2$ $J_{6a,6b} = 14.1, J_{6b,7} = 7.4$		
7	His1	58.8	3.95-3.91	m			
8	His1	170.7					
9	Leu2		8.05	S			
10	Leu2	51.0	3.82	d	<i>J</i> _{10,11a} = 10.8		
11	Leu2	45.9	1.41-1.35, 0.77-0.71	m, m			
12	Leu2	23.8	1.64-1.57	m			
13	Leu2	21.4	0.82	d	<i>J</i> _{12,13} = 6.4		
14	Leu2	24.1	0.78	d	$J_{12,14} = 6.6$		
15	Leu2	157.1					
16	His1						
17	Ser3						
18	Ser3	57.1	4.30-4.27	m			
19	Ser3	62.2	3.62	d	$J_{18,19} = 5.9$		
20	Ser3	171.4					
21	Ala4		8.09 d		<i>J</i> _{21,22} = 7.0		
22	Ala4	48.9	4.41-4.35	4.41-4.35 m			
23	Ala4	18.7	1.25	d	J _{22,23} = 7.1		
24	Ala4	172.9					
25	Thr5		7.88	d	<i>J</i> _{25,26} = 8.6		
26	Thr5	59.3	4.14	dd	$J_{25,26}$ = 8.6, $J_{26,27}$ = 3.6		
27	Thr5	66.9	4.02-3.98	m			
28	Thr5	19.9	1.00				
29	Thr5	170.0					
30	His6		7.78	d	<i>J</i> _{30,31} = 7.5		
31	His6	53.5	4.27-4.24	m			
32	His6	29.2	2.97 2.82	dd dd	$J_{32a,32b} = 14.8, J_{31,32a} = 5.7$ $J_{32a,32b} = 14.8, J_{31,32b} = 7.4$		
33	His6	134.1ª					
34	His6	117.1 ^b	6.81	S			
35	His6						
36	His6	135.1	7.54	s			
37	His6						
38	His6	173.1					


Table S9 NMR chemical shift assignments for streptamidine in DMSO-d₆.


a. ¹³C chemical shifts for His1(4) and His6(33) were obtained from HMBC, and match literature values expected for corresponding carbons in the histidine ring³² b. ¹³C chemical shifts for His1(5) and His6(34) were obtained from HMBC and HSQCed spectra, and match literature values expected for corresponding carbons in the histidine ring³²


Figure S12 NMR correlation data observed in 2D spectra (Figures S15 - S20). Double-headed arrows indicate where mutual correlations were observed; single-headed arrows to indicate where one-way correlations were observed (H to C).



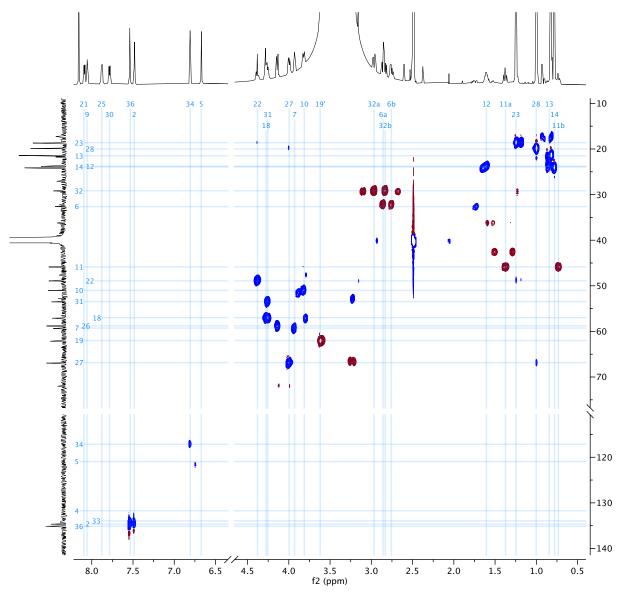
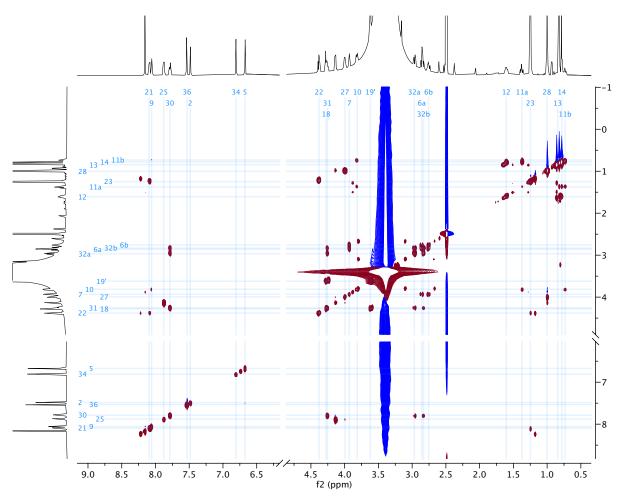

Figure S15 2D COSY spectrum (DMSO-d₆, 298 K) of streptamidine.

Figure S16 2D HMBC spectrum (DMSO-d₆, 298 K) of streptamidine.



Key correlations for amidine carbon and carbonyls.

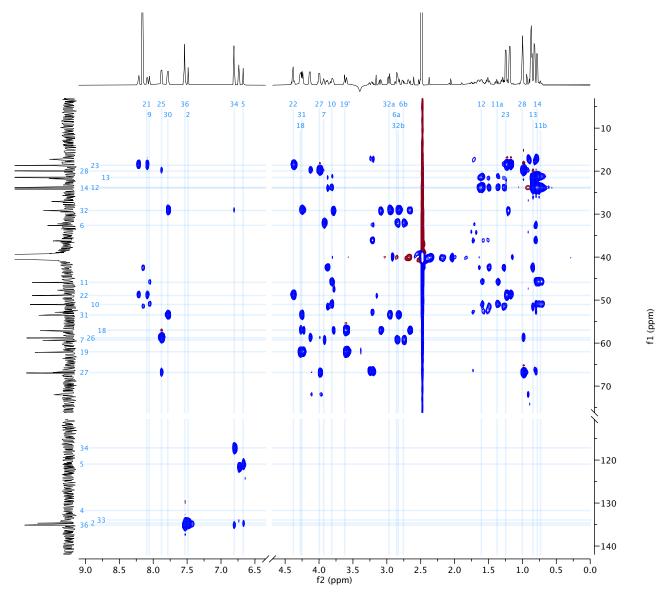
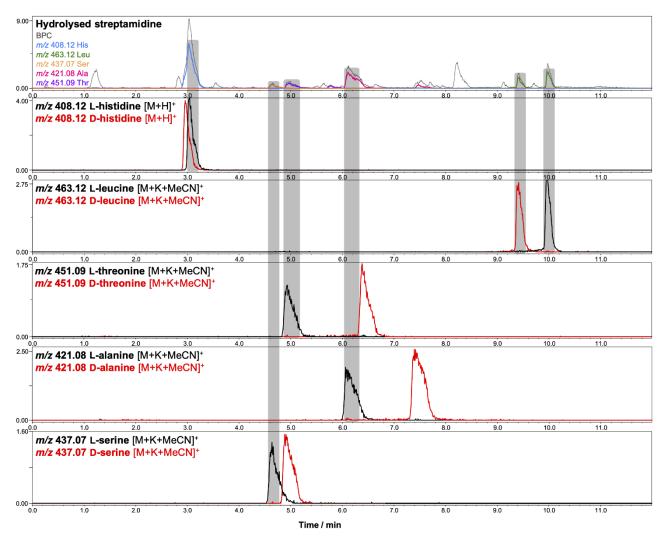
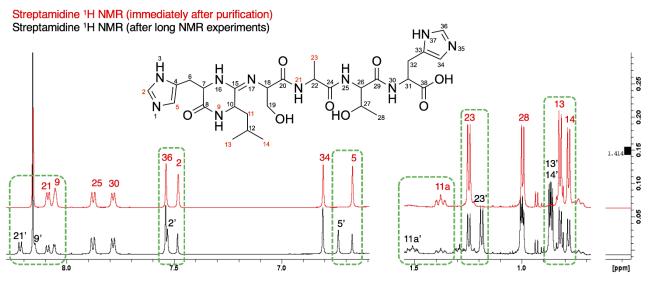

f1 (ppm)

Figure S18 2D HSQCed spectrum (DMSO-d₆, 298 K) of streptamidine.



f1 (ppm)


Figure S19 2D TOCSY spectrum (DMSO-d₆, 298 K) of streptamidine.

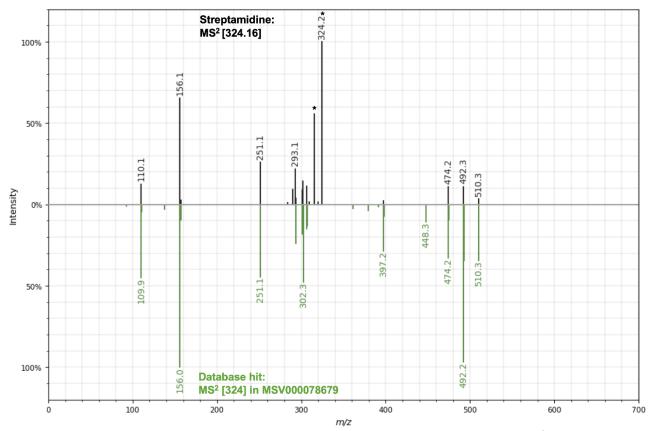

Figure S20 2D HSQC-TOCSY spectrum (DMSO-d₆, 298 K) of streptamidine. Some extra crosspeaks (e.g. for C5) are predicted to relate to an isomerisation during the acquisition of spectra.

Figure S21 LC-MS chromatograms following Marfey's analysis of streptamidine. The top panel shows the hydrolysed streptamidine sample where constituent amino acids have been derivatised with Marfey's reagent. Below this are the LC-MS chromatograms obtained from derivatisation of individual amino acid standards of L- and D- amino acids. With the exception of histidine, the unusual [M+K+MeCN]⁺ adducts were the dominant species detected in both the streptamidine sample and the amino acid standards.

Figure S22 Streptamidine isomerisation observed via NMR. The spectrum immediately after purification is shown as a red trace and the spectrum after long NMR experiments is shown in black. Protons shifts that significantly change are highlighted in red on the structure.

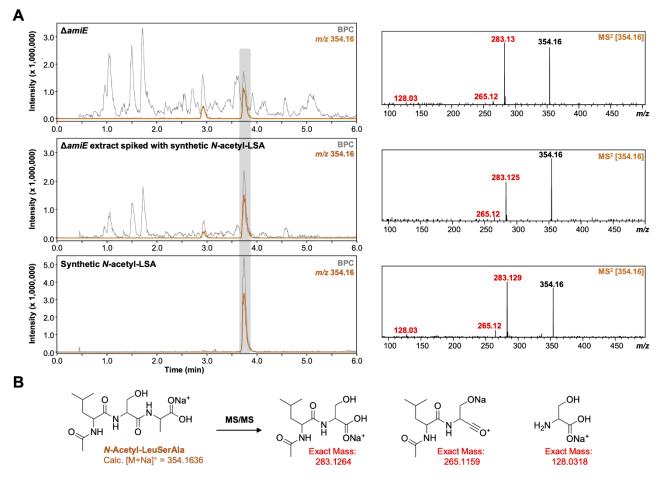
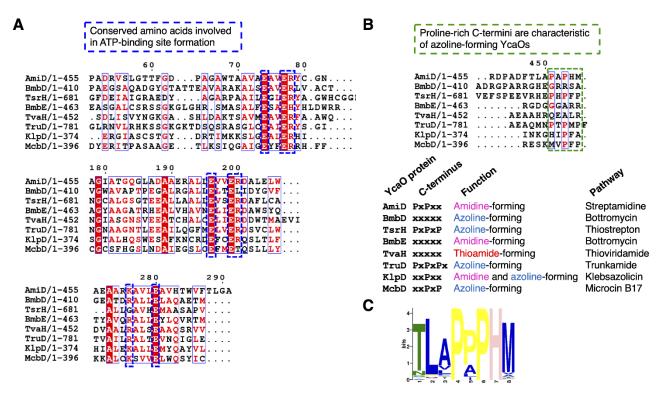
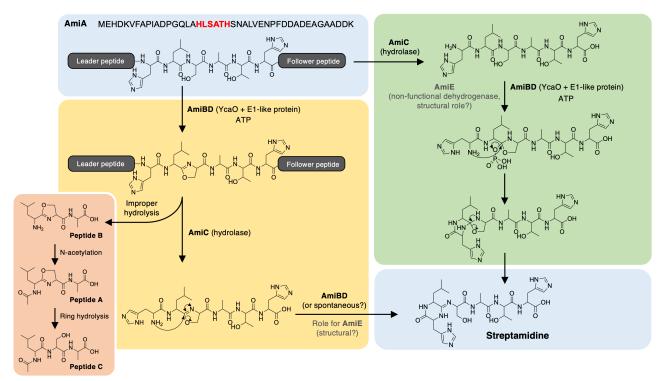
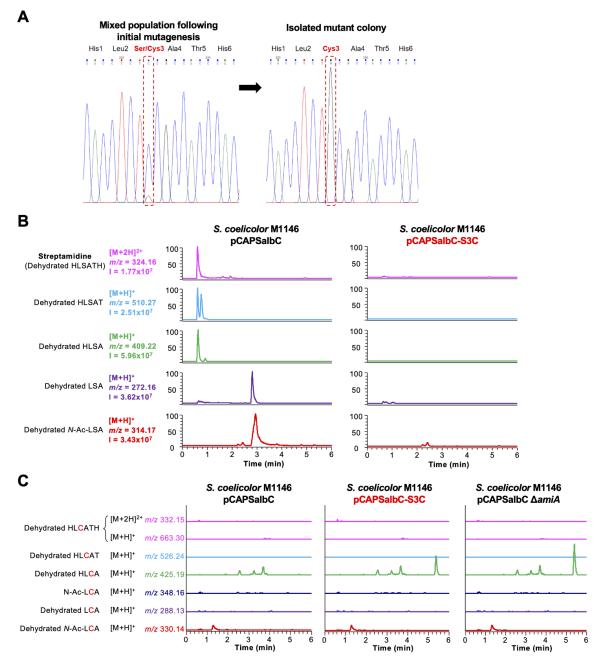

Figure S23 Spectral match to the MS/MS spectrum of [streptamidine+2H]²⁺ (*m*/*z* 324.16) identified using MASST (Mass Spectrometry Search Tool)²³ at GNPS (Global Natural Products Social Molecular Networking). The top spectrum (black) is from streptamidine and the mirror bottom spectrum (green) is the database hit. The hit is found in multiple samples of MassIVE Dataset MSV000078679 ("Zhang lab_microbes library_MS130001~9"), which is defined as an actinomycete dataset. Asterisks indicate non-matching peaks that feature a double charge: *m*/*z* 324.2 (unfragmented streptamidine) and *m*/*z* 315.2 (dehydrated streptamidine).

Table S10	Indicator strains tested in bioactivity assays.
-----------	---


Organism tested	Description	Inhibition observed
E. coli ATCC25922	Gram-negative bacterium	None
E. coli NR986	Gram-negative bacterium (mutant with increased membrane permeability) ³³	None
Pseudomonas aeruginosa PA01	Gram-negative bacterium	None
Pseudomonas fluorescens	Gram-negative bacterium	None
Bacillus subtilis 168	Gram-positive bacterium	None
Micrococcus luteus	Gram-positive bacterium	None
Mycobacterium smegmatis MC2155	Gram-positive bacterium	None
Streptomyces scabies	Gram-positive bacterium	None
Streptomyces cattleya	Gram-positive bacterium	None
Candida utilis	Fungus	None


Figure S24 MS/MS fragmentation data for predicted N-acetylated and cyclised LSA (*m/z* 314.17, peptide A) and predicted cyclised LSA (*m/z* 272.16, peptide B), obtained using a Thermo Q-Exactive.


Figure S25 Identity of *m/z* 354.16 (peptide C). A. LC-MS analysis (Shimadzu IT-TOF) of *S. coelicolor* M1146-SalbC $\Delta amiE$ culture extract versus a synthetic standard of *N*-acetylated LSA peptide (BPC = base peak chromatogram) and a mixed sample. Extracted ion chromatogram of *m/z* 354.16 (orange) corresponds to the mass of the sodium adduct of *N*-acetylated LSA. MS/MS spectra are shown for *m/z* 354.16 in the culture extract, the spiked sample, and the synthetic standard. B. Proposed MS/MS fragmentation for *m/z* 354.16. Fragments 283.13 and 128.03 represent examples of non-canonical MS/MS fragmentation of sodiated peptides that results in the generation of carboxylated fragments instead of conventional b ions^{34,35}.

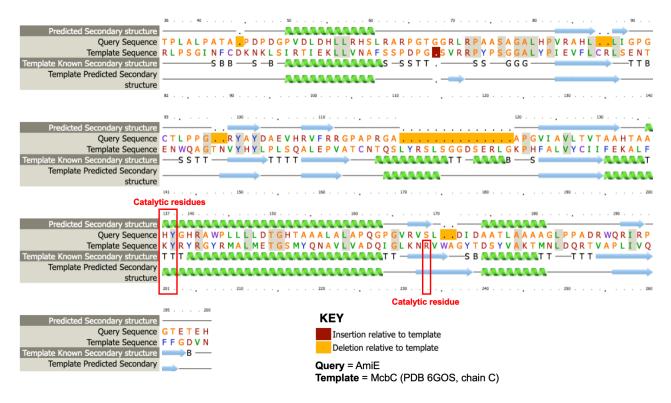

Figure S26 Multiple sequence alignment of YcaO proteins. A. Conserved ATP-binding residues across diverse YcaO proteins involved in RiPP biosynthesis. Sequences aligned using MUSCLE⁵ and visualised using Espript³⁶. B. Proline content of the C-termini of these proteins. C. MEME analysis¹⁴ of the C-termini of all YcaO proteins associated with streptamidine-like (motif A) precursor peptides.

Figure S27 Proposed mechanism of amidine ring formation in streptamidine based on predicted intermediates produced by dehydrogenase mutant. The yellow box represents a route that goes via a stable oxazoline intermediate prior to leader/follower peptide removal, where AmiE potentially has a structural role within an AmiBDE complex for proper amidine formation but is not needed for initial ATP-dependent oxazoline formation. The green box represents a route where the leader/follower peptide is removed first, thereby providing a free *N*-terminal amine for cyclisation via an *O*-phosphorylated hemiorthoamide. In the absence of AmiE, the final amidine forming step could potentially be disrupted. A possible shunt route to peptides A, B and C is proposed.

Figure S28 Site-directed mutagenesis of AmiA. A. Sequence files obtained following PCR screening of colonies following mutagenesis of pCAPSalbC. A mixed plasmid population of "wild type" and mutant pCAPSalbC is shown following transformation of *E. coli* HME68-pCAPSalbC with mutant oligonucleotide. A clean pCAPSalbC-S3C mutant was obtained following transformation of the mixed plasmid population into *E. coli* DH5 α and PCR screening of single colonies. B. EICs for masses corresponding to streptamidine and other pathway shunt metabolites in culture extracts from *S. coelicolor* M1146 containing the wild-type *ami* BCG (pCAPSalbC) or the AmiA-S3C mutant version (pCAPSalbC-S3C). Chromatograms in each row are normalised to the intensity (I) indicated to their left. C. EICs for predicted masses corresponding to cysteine-containing versions of pathway metabolites in culture extracts from *S. coelicolor* M1146 containing the *S. coelicolor* M1146 containing the second masses corresponding to cysteine-containing versions of pathway metabolites in culture extracts from *S. coelicolor* M1146 containing the S3C mutant (pCAPSalbC), the S3C mutant (pCAPSalbC-S3C) and the *DamiA* mutant (pCAPSalbC *DamiA*). All spectra obtained on a Thermo Q-Exactive.

Figure S29 Secondary structure alignment of AmiE with McbC (PDB 6GOS)³⁷ from the microcin B17 pathway generated with Phyre2¹⁸. Catalytic residues identified by Melby *et al.*³⁸ in McbC are highlighted.

REFERENCES

- 1 V. Noskov, N. Kouprina, S.-H. Leem, M. Koriabine, J. C. Barrett and V. Larionov, *Nucleic Acids Res.*, 2002, **30**, E8.
- 2 B. Gust, G. L. Challis, K. Fowler, T. Kieser and K. F. Chater, *Proc. Natl. Acad. Sci. U.S.A.*, 2003, **100**, 1541–1546.
- L. Y. Geer, M. Domrachev, D. J. Lipman and S. H. Bryant, *Genome Res.*, 2002, **12**, 1619– 1623.
- 4 R. Zallot, N. Oberg and J. A. Gerlt, *Biochemistry*, 2019, **58**, 4169–4182.
- 5 R. C. Edgar, *Nucleic Acids Res.*, 2004, **32**, 1792–1797.
- 6 A. Stamatakis, *Bioinformatics*, 2014, **30**, 1312–1313.
- 7 I. Letunic and P. Bork, *Nucleic Acids Res.*, 2016, 44, W242–W245.
- 8 J. Santos-Aberturas, G. Chandra, L. Frattaruolo, R. Lacret, T. H. Pham, N. M. Vior, T. H. Eyles and A. W. Truman, *Nucleic Acids Res.*, 2019, 47, 4624–4637.
- A. D. Moffat, J. Santos-Aberturas, G. Chandra and A. W. Truman, *Methods Mol. Biol.*, 2021, 2296, 227–247.
- 10 S. Halary, J. O. McInerney, P. Lopez and E. Bapteste, *BMC Evol. Biol.*, 2013, **13**, 146.
- 11 P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker, *Genome Res.*, 2003, **13**, 2498–2504.
- 12 J. D. Thompson, D. G. Higgins and T. J. Gibson, *Nucleic Acids Res.*, 1994, **22**, 4673–4680.
- 13 S. Kumar, G. Stecher and K. Tamura, *Mol. Biol. Evol.*, 2016, **33**, 1870–1874.
- T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li and W. S. Noble, *Nucleic Acids Res.*, 2009, **37**, W202–W208.
- 15 T. Carver, S. R. Harris, M. Berriman, J. Parkhill and J. A. McQuillan, *Bioinformatics*, 2012, **28**, 464–469.
- 16 G. Lu and E. N. Moriyama, *Brief Bioinform.*, 2004, **5**, 378–388.
- 17 M. H. Medema, E. Takano and R. Breitling, *Mol. Biol. Evol.*, 2013, **30**, 1218–1223.
- L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass and M. J. E. Sternberg, *Nat. Protoc.*, 2015, 10, 845–858.
- 19 E. L. C. de Los Santos, *Sci. Rep.*, 2019, **9**, 13406.
- X. Tang, J. Li, N. Millán-Aguiñaga, J. J. Zhang, E. C. O'Neill, J. A. Ugalde, P. R. Jensen, S. M. Mantovani and B. S. Moore, ACS Chem. Biol., 2015, 10, 2841–2849.
- S. A. Kautsar, K. Blin, S. Shaw, J. C. Navarro-Muñoz, B. R. Terlouw, J. J. J. van der Hooft, J.
 A. van Santen, V. Tracanna, H. G. Suarez Duran, V. Pascal Andreu, N. Selem-Mojica, M.
 Alanjary, S. L. Robinson, G. Lund, S. C. Epstein, A. C. Sisto, L. K. Charkoudian, J. Collemare,
 R. G. Linington, T. Weber and M. H. Medema, *Nucleic Acids Res.*, 2020, 48, D454–D458.
- 22 N. Costantino and D. L. Court, *Proc. Natl. Acad. Sci. U.S.A.*, 2003, **100**, 15748–15753.

- M. Wang, A. K. Jarmusch, F. Vargas, A. A. Aksenov, J. M. Gauglitz, K. Weldon, D. Petras, R. da Silva, R. Quinn, A. V. Melnik, J. J. J. van der Hooft, A. M. Caraballo-Rodríguez, L.-F. Nothias, C. M. Aceves, M. Panitchpakdi, E. Brown, F. Di Ottavio, N. Sikora, E. O. Elijah, L. Labarta-Bajo, E. C. Gentry, S. Shalapour, K. E. Kyle, S. P. Puckett, J. D. Watrous, C. S. Carpenter, A. Bouslimani, M. Ernst, A. D. Swafford, E. I. Zuniga, M. J. Balunas, J. L. Klassen, R. Loomba, R. Knight, N. Bandeira and P. C. Dorrestein, *Nat. Biotechnol.*, 2020, 38, 23–26.
- 24 D. B. Alexander and D. A. Zuberer, *Biol. Fert Soils*, 1991, **12**, 39–45.
- 25 G. Müller and K. N. Raymond, *J. Bacteriol.*, 1984, **160**, 304–312.
- 26 K. F. Chater and L. C. Wilde, J. Gen. Microbiol., 1980, 116, 323–334.
- J. P. Gomez-Escribano and M. J. Bibb, *Microb. Biotechnol.*, 2011, 4, 207–215.
- M. Bierman, R. Logan, K. O'Brien, E. T. Seno, R. N. Rao and B. E. Schoner, *Gene*, 1992, **116**, 43–49.
- 29 H.-J. Hong, M. I. Hutchings, L. M. Hill and M. J. Buttner, J. Biol. Chem., 2005, 280, 13055– 13061.
- 30 A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp and G. J. Barton, *Bioinformatics*, 2009, **25**, 1189–1191.
- 31 W. R. Taylor, *Protein Eng.*, 1997, **10**, 743–746.
- 32 V. Prabhu, B. Chatson, G. Abrams and J. King, J. Plant Physiol., 1996, 149, 246–250.
- 33 J. E. Button, T. J. Silhavy and N. Ruiz, *J. Bacteriol.*, 2007, **189**, 1523–1530.
- 34 R. P. Grese, R. L. Cerny and M. L. Gross, J. Am. Chem. Soc., 1989, 111, 2835–2842.
- 35 K. A. Newton and S. A. McLuckey, *J. Am. Soc. Mass Spectrom.*, 2004, **15**, 607–615.
- 36 X. Robert and P. Gouet, *Nucleic Acids Res.*, 2014, **42**, W320–W324.
- D. Ghilarov, C. E. M. Stevenson, D. Y. Travin, J. Piskunova, M. Serebryakova, A. Maxwell, D.
 M. Lawson and K. Severinov, *Mol. Cell*, 2019, **73**, 749-762.e5.
- 38 J. O. Melby, X. Li and D. A. Mitchell, *Biochemistry*, 2014, **53**, 413–422.