High-Yield and Sustainable Synthesis of Quinoidal Compounds Assisted by

Keto-Enol Tautomerism

Cheng Wang, Tian Du, Yunfeng Deng,* Jiarong Yao, Riqing Li, Xuxia Zhao, Yu

Jiang, Haipeng Wei, Yanfeng Dang,* Rongjin Li,* and Yanhou Geng

Table of contents

1.	General methods and materials	2
2.	Organic field-effect transistors (OFETs) fabrication and measurements	4
3.	Synthetic procedures	4
	Solvent screening for the synthesis of compound 5a	8
	Base screening for the synthesis of compound 5a	9
	Pd source screening for the synthesis of compound 5a	10
	General procedure for the synthesis of compounds 5a-5h with <i>t</i> BuXPhos-Pd-G3 as catalys	st11
	Synthesis of compound 5a	12
	Synthesis of compound 5b	13
	Synthesis of compound 5 c	14
	Synthesis of compound 5d	15
	Synthesis of compound 5e	16
	Synthesis of compound 5f	16
	Synthesis of compound 5 g	17
	Synthesis of compound 5h	18
4.	NMR study of the coupling product	19
5.	Supplementary Date	20
6.	X-ray crystallography	42
7.	Cartesian coordinates (Å) and energies for the optimized structures	44
8.	References	68

1. General methods and materials

¹H NMR and ¹³C NMR spectra were measured on a Bruker 400 MHz spectrometer in chloroformd (CDCl₃) or dimethyl sulfoxide- d_6 (DMSO- d_6) with tetramethylsilane (TMS) as internal standard at room temperature. The NMR spectra of compound 4 were measured using Low Pressure/Vacuum (LPV) NMR tube under argon. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), and multiplet (m). Matrix-assisted laser desorption ionization time-of-light (MALDI-TOF) mass spectra were recorded on a Bruker/AutoflexIII Smartbean MALDI mass spectrometer with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2enylodene]malononitrile (DCTB) or 2-5-dihydroxybenzoic acid (DHB) as the matrix in a reflection mode. UV-vis-NIR absorption spectra were measured on a Shimadzu UV-3600 plus spectrometer. Solution spectra were measured in toluene and thin-films were prepared by spincasting from their toluene solutions (5 mg/mL) on the quartz substrates. Optical bandgap were calculated from the onset of thin-film absorption spectrum according to the equation: $E_g =$ $1240/\lambda_{onset}$ eV. Cyclic voltamograms (CV) were measured using a CHI660 electrochemical analyzer with a three-electrode cell at a scan rate of 100 mV s⁻¹. Terabutylammonium hexafluorophosphate (Bu₄NPF₆, 0.1 mol L⁻¹) was used as the supporting electrolyte in anhydrous dichloromethane. A Pt disk with 2 mm diameter, a Pt wire and a saturated calomel electrode (SCE) were used as working, counter and reference electrodes, respectively. The potential was calibrated against ferrocene/ferrocenium (Fc/Fc⁺) that was measured under the same conditions. The highest occupied molecular orbital energy level (E_{HOMO}) and the lowest unoccupied molecular orbital energy level (E_{LUMO}) were calculated according to the equations:

$$E_{\text{HOMO}} = -(4.80 + \frac{E_{onset}}{onset}) \text{ eV}; E_{\text{HOMO}} = -(4.80 + \frac{E_{onset}}{onset}) \text{ eV}, \text{ in which } \frac{E_{onset}}{onset} \text{ and } \frac{E_{onset}}{onset} \text{ represent the}$$

oxidation and reduction onset-potentials. EPR measurements were carried out at room temperature using a Bruker EMX plus 6/1 spectrometer. Cross-polarized optical microscope images were obtained with Nikon ECLIPSE Ci-POL polarized optical microscopes.

Geometry optimizations and frequency calculations were carried out using the B3LYP¹⁻² functional and a mixed basis set of SDD³⁻⁴ for Pd and Br and 6-31G(d) for other atoms. Frequency outcomes were examined to confirm stationary points as minima (no imaginary frequencies) or transition states (only one imaginary frequency). Because the M06-L⁵⁻⁶ functional includes noncovalent interactions and can give more accurate energies for transition-metal systems, the energy were then refined by single-point calculations with M06-L and a mixed basis set of SDD for Pd and Br and 6-31++G(d,p) for other atoms, in which solvation energy corrections were calculated using the SMD⁷ model in 1,4-dioxane. The combined use of two DFT functional has been successfully applied to investigate various catalytic reactions.⁸⁻¹⁷ Free energies (kcal/mol) obtained in solution were discussed. All of the calculations were performed with Gaussian 09¹⁸.

Chemical reagents were purchased from Energy Chemical, Innochem or Aldrich, and used as received. All air and water sensitive reactions were performed under argon atmosphere. Tetrahydrofuran (THF) and toluene were distilled in standard method prior to use. Compounds S1¹⁹, S3²⁰ and S5²¹ were prepared according to the references. Compounds 1a-1b was purchased from Innochem, and compounds S7, 2e, and 2f were purchased from SunaTech Inc.

2. Organic field-effect transistor (OFET) devices fabrication and measurements

Top-gate and bottom-contact (TGBC) configuration OFETs were fabricated on bare Si/SiO₂ wafers. The substrate was first cleaned with deionized water, acetone and isopropanol in an ultrasonic bath and then dried under a nitrogen flow, followed by heating at 120 °C for 10 min. Gold source/drain electrodes were prepared by vacuum deposition through shadow mask to give a defined channel length (L = 50 µm) and channel width (W = 5.6 mm). Subsequently, the active layers were deposited by spin-coating 5 mg/mL chloroform solution in an argon filled glove-box with 2000 rpm for 40 s, followed by annealing at 120 °C for 10 min. As the gate dielectric, CYTOP (Asahi Glass, type CTL-809M) was spin-cast at 2000 rpm for 120 s and annealed at 100 °C for 40 min. Finally, Al (~80 nm) was vacuum-evaporated as the gate electrode. OTFT devices were measured under ambient conditions with Keysight B1500A source/measure units. The mobility was extracted from the saturation region by using the equation of: $I_{DS} = (\mu C_i W/2L)(V_{GS}-V_T)^2$, where W/L is the channel width/length, I_{DS} is the drain-source current, μ is the field-effect mobility, C_i is the capacitance per unit area of the gate dielectric layer, V_{GS} and V_T are the gate voltage and threshold voltage, respectively.

3. Single crystal OFET devices fabrication and measurements

Figure S1. Schematic showing the growth and transfer of micro-wires.

Glass weighing bottles (75 mm×35 mm) were cleaned twice by ethanol and were used as the

containers to grow micro-wires of 5g. 25 mL of glycerol was added into the glass weighing bottles as a liquid substrate. 50 μ L of 5g solution (0.2 mg mL⁻¹ in toluene) was slowly dropped on the glycerol surface (Figure S1a) and then the glass weighing bottles were placed in a cabinet with constant temperature and humidity (temperature: 15°C, humidity: 30%). Micro-wires gradually appeared on the surface of glycerol. After the solvent evaporated completely, micro-wires of 5g floating on the surface of glycerol were obtained (Figure S1b). SiO₂ (300 nm)/Si wafers were used as the substrates for OFET devices fabrication. They were cleaned by sonification with deionized water, acetone and isopropanol for 10 min successively. Then the substrates were treated with oxygen plasma at 80 W for 15 min followed by modification with octadecyltrichlorosilane (OTS) by a vapor phase method. The OTS modified SiO₂/Si substrates were cleaned by sonification in chloroform, n-hexane and isopropanol, successively. The micro-wires of 5g floating on the surface of glycerol were transferred to the OTS modified SiO₂/Si substrates by dipping the substrate upside-down and fishing the micro-wires out (Figure S1c). The SiO₂/Si substrate with micro-wires was gently rinsed by DI water to remove excess glycerol and dried. Bottom-gate/top-contact devices were fabricated on the SiO₂/Si substrate by stamping Au (80 nm) stripes on the microwires of 5g as the source and drain electrodes. The OFET devices were measured using a Keithley 4200 SCS in ambient environment at room temperature. The mobility was extracted from the saturation region by using the equation of: $I_{DS} = (\mu C_i W/2L)(V_{GS}-V_T)^2$, where I_{DS} is the drainsource current, μ is the mobility, C_i is the capacitance per unit area of the gate dielectric layer, V_{GS} and V_T are the gate voltage and threshold voltage, L and W are the channel length and width basing on an individual micro-wire in OFET devices, respectively.

4. Synthetic procedures

Synthesis of compound 2a

Compound S2: Compound **S1** (6.00 g, 19.98 mmol), anhydrous potassium carbonate (15.84 g, 59.93 mmol), 18-crown-6 (0.14 g, 1.00 mmol) and anhydrous DMF (200 mL) were added to a 500 mL three necked flask. The solution was stirred at 40 °C for 10 min, then 1-bromo-2-dodecyl-tetradecane (25.02 g, 59.93 mmol) was added dropwise. After stirring at 120 °C for 12 h, the solvent was removed under vacuum. The residue was dissolved in dichloromethane (CH₂Cl₂), washed with brine and dried anhydrous MgSO₄. After removal of the solvent, the crude product was purified by chromatography on silica gel using petroleum ether (PE)/CH₂Cl₂ = 2/1 (V/V) as the eluent, affording **S2** as a dark red solid in the yield of 33% (6.42 g). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.87 (dd, J_1 = 4.0 MHz, J_2 = 1.2 MHz, 2H), 7.62 (dd, J_1 = 5.2 MHz, J_2 = 1.2 MHz, 2H), 7.27 (m, 2H), 4.02 (d, J = 7.6 MHz, 4H), 1.90 (m, 2H), 1.21 (m, 80 H), 0.87 (m, 12H).

Compound 2a: To the solution of **S2** (6.40 g, 6.57 mmol) in chloroform (240 mL), *N*-bromosuccinimide (NBS) (3.51 g, 19.72 mmol) was added slowly at 0 °C. The mixture was stirred at room temperature for overnight in the absence of light. After removal of the solvent, the crude product was purified by chromatography on silica gel using PE/CH₂Cl₂ = 3/1 (V/V) as the eluent, affording compound **2a** as a dark purple solid in the yield of 80% (5.95 g). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.63 (d, *J* = 4.0 MHz, 2H), 7.22 (d, *J* = 4.4 MHz, 2H), 3.93 (d, *J* = 8.0 MHz, 2H), 1.87 (m, 2H), 1.22 (m, 80H), 0.87 (m, 12H).

Solvent screening for the synthesis of compound 5a

Compound **1a** (38.5 mg, 0.26 mmol), **2a** (140.8 mg, 0.12 mmol), Pd(OAc)₂ (0.56 mg, 2.49 μ mol, 2 mol%), *t*BuMePhos (1.55 mg, 4.98 μ mol, 4 mol%), sodium hydride (60% dispersion in mineral oil, 22.1 mg, 0.55 mmol) and anhydrous **solvent** (1.2 mL) were added in a schlenk tube. The mixture was stirred at 70 °C for 12 h in the absence of light, then the solvent was removed under vacuum. Subsequently, 15 mL HCl aqueous solution (0.05 M) was added, and the mixture was stirred in air for 10 min. The resulting precipitate was collected by filtration, and dissolved in CH₂Cl₂. After stirring in air for 20 min, the solution was washed with brine and dried by anhydrous MgSO₄. The crude product was purified by chromatography on silica gel using CH₂Cl₂ as the eluent.

Entry	Cat.	Ligand	Base	Solvent	Temp. [°C]	Time [h]	Yield [%] ^a
1	Pd(OAc) ₂	<i>t</i> BuMePhos	NaH	1,4-dioxane	70	12	40
2	Pd(OAc) ₂	<i>t</i> BuMePhos	NaH	THF	70	12	30
3	Pd(OAc) ₂	tBuMePhos	NaH	Toluene	110	12	10
4	Pd(OAc) ₂	tBuMePhos	NaH	NMP	70	12	<i>b</i> -
5	Pd(OAc) ₂	tBuMePhos	NaH	DMAc	70	12	b
6	Pd(OAc) ₂	tBuMePhos	NaH	DMAc:Dioxane (1:1)	70	12	_b

 Table S1: Solvent screening for the synthesis of compound 5a

^{*a*}Isolated yield for compound **5a**; ^{*b*}No product.

Base screening for the synthesis of compound 5a

Compound **1a** (38.5 mg, 0.26 mmol), **2a** (140.8 mg, 0.12 mmol), $Pd(OAc)_2$ (0.56 mg, 2.49 µmol, 2 mol%), *t*BuMePhos (1.55 mg, 4.98 µmol, 4 mol%), **base** (0.55 mmol) and anhydrous 1,4dioxane (1.2 mL) were added in a schlenk tube. The mixture was stirred at 70 °C for 12 h in the absence of light, then the solvent was removed under vacuum. Subsequently, 15 mL HCl aqueous solution (0.05 M) was added, and the mixture was stirred in air for 10 min. The resulting precipitate was collected by filtration, and dissolved in CH_2Cl_2 . After stirring in air for 20 min, the solution was washed with brine and dried by anhydrous MgSO₄. The crude product was purified by chromatography on silica gel using CH_2Cl_2 as the eluent.

	n · /		• •	1.5
	Roco corooning 1	or the synthesi	and of compo	und 50
1 200 5 32.	DANE NULCEIIIII I	UL LUC SVILLES	NIS OF COHIDO	JUHU . JA
1	Date ber eening .			

Entry	Cat.	Ligand	Base	Solvent	Temp. [°C]	Time [h]	Yield [%] ^a
1	Pd(OAc) ₂	<i>t</i> BuMePhos	NaH	1,4-dioxane	70	12	40
2	Pd(OAc) ₂	tBuMePhos	K_3PO_4	1,4-dioxane	70	12	18
3	Pd(OAc) ₂	tBuMePhos	NaO'Bu	1,4-dioxane	70	12	5
4	Pd(OAc) ₂	tBuMePhos	NaHMDS	1,4-dioxane	70	12	_b
5	Pd(OAc) ₂	tBuMePhos	Cs ₂ CO ₃	1,4-dioxane	70	12	10
6	Pd(OAc) ₂	tBuMePhos	Et ₃ N	1,4-dioxane	70	12	_b
7	Pd(OAc) ₂	tBuMePhos	Pyridine	1,4-dioxane	70	12	_b

^{*a*}Isolated yield for compound **5a**; ^{*b*}No product.

Pd source screening for the synthesis of compound 5a

Compound **1a** (38.5 mg, 0.26 mmol), **2a** (140.8 mg, 0.12 mmol), **Pd source** (2 mol%), *t*BuMePhos (1.55 mg, 4.98 µmol, 4 mol%), sodium hydride (60% dispersion in mineral oil, 22.1 mg, 0.55 mmol) and anhydrous 1,4-dioxane (1.2 mL) were added in a schlenk tube. The mixture was stirred at 70 °C for 12 h in the absence of light, then the solvent was removed under vacuum. Subsequently, 15 mL HCl aqueous solution (0.05 M) was added, and the mixture was stirred in air for 10 min. The resulting precipitate was collected by filtration, and dissolved in CH_2Cl_2 . After stirring in air for 20 min, the solution was washed with brine and dried by anhydrous MgSO₄. The crude product was purified by chromatography on silica gel using CH_2Cl_2 as the eluent.

Table S3: Pd source screening for the synthesis of compound 5a

Entry	Cat.	Ligand	Base	Solvent	Temp. [°C]	Time [h]	Yield [%] ^a
1	$Pd(OAc)_2$	tBuMePhos	NaH	1,4-dioxane	70	12	40
2	Pd(PPh ₃) ₄	tBuMePhos	NaH H	1,4-dioxane	70	12	_b
3	Herrmann	tBuMePhos	NaH	1,4-dioxane	70	12	11
4	Pd ₂ (dba) ₃	tBuMePhos	NaH	1,4-dioxane	70	12	17

^{*a*}Isolated yield for compound **5a**; ^{*b*}No product.

General procedure for the synthesis of compounds 5a-5h with tBuXPhos-Pd-G3 as catalyst

Compound **1a-1b** (2.2 equiv), **2a-2g** (1.0 equiv), *t*BuXPhos-Pd-G3 (2 mol%), sodium hydride (60% dispersion in mineral oil, 4.6 equiv) and anhydrous 1,4-dioxane (0.1 mmol ml⁻¹) were added in a schlenk tube. The mixture was stirred at 70 °C for 12 h in the absence of light, then the solvent was removed under vacuum. Subsequently, 15 mL HCl aqueous solution (0.05 M) was added, and the mixture was stirred in air for 10 min. The resulting precipitate was collected by filtration, and dissolved in CH_2Cl_2 . After stirring in air for 20 min, the solution was washed by brine and dried with anhydrous MgSO₄. The crude product was purified by chromatography on silica gel to afford the corresponding product.

Synthesis of compound 5a

Compound **5a** was obtained from **1a** (38.5 mg, 0.26 mmol) and **2a** (140.0 mg, 0.12 mmol) as a blue solid following the general procedure (141.8 mg, yield: 91%; eluent: CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.49 (d, *J* = 5.6 MHz, 2H), 8.43 (d, *J* = 5.6 MHz), 7.86 (m, 4H), 7.65 (m, 4H), 4.15 (d, *J* = 7.6 MHz, 4H), 2.07 (m, 2H), 1.21 (m, 80H), 0.84 (m, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 189.48, 186.79, 161.59, 158.89, 145.79, 141.55, 141.11, 134.55, 134.50, 134.42, 134.39, 133.47, 132.64, 122.86, 122.45, 119.45, 47.32, 38.24, 31.94, 31.92, 31.02, 30.17, 29.76, 29.74, 29.70, 29.67, 29.40, 29.38, 26.11, 22.68, 14.08. HRMS (MALDI-TOF): calcd for C₈₀H₁₁₀N₂O₆S₂ [M]⁺: 1258.7805, found: 1258.7843.

Compound S4: Compound **S4** was obtained from **S3** (200 mg, 0.75 mmol) as a red solid following the same procedure as **S2** (315.9 mg, yield: 45%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.33 (d, J = 3.6 MHz, 2H), 7.68 (m, 2H), 7.27 (m, 2H), 4.03 (d, J = 7.6 MHz, 4H), 1.79 (m, 2H), 1.22 (m, 80 H), 0.87 (m, 12H).

Compound 2b: Compound **2b** was obtained from **S4** (300.0 mg, 0.32 mmol) as a dark red solid following the same procedure as **2a** (241.5 mg, yield: 69%).¹H NMR (400 MHz, CDCl₃, ppm): δ 8.30 (d, *J* = 3.6 MHz, 2H), 6.62 (d, *J* = 3.6 MHz, 2H), 3.99 (d, *J* = 7.2 MHz, 2H), 1.77 (m, 2H),

1.22 (m, 80H), 0.87 (m, 12H).

Synthesis of compound 5b

Compound **5b** was obtained from **1a** (38.5 mg, 0.26 mmol) and **2b** (135.0 mg, 0.12 mmol) as a blue solid following the general procedure (134.2 mg, yield: 89%; eluent: CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.02 (d, *J* = 5.6 MHz, 2H), 8.04 (d, *J* = 5.6 MHz, 2H), 7.90 (m, 4H), 7.74 (m, 4H), 4.38 (d, *J* = 7.6 MHz, 4H), 1.92 (m, 2H), 1.18 (m, 80 H), 0.84 (m, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 188.99, 186.59, 164.94, 160.80, 145.03, 141.79, 141.40, 138.28, 134.72, 134.56, 134.24, 126.75, 122.51, 122.42, 121.57, 108.51, 47.66, 37.94, 31.89, 30.45, 30.04, 29.69, 29.65, 29.61, 29.34, 26.34, 22.65, 14.07. HRMS (MALDI-TOF): calcd for C₈₀H₁₁₀N₂O₈ [M]⁺: 1226.8262, found: 1226.8284.

Synthesis of compound 2c

Compound S6: Compound **S6** was obtained from **S5** (500 mg, 1.27 mmol) as a red solid following the same procedure as **S2** (378.0 mg, yield: 28%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.82 (dd, *J*₁ = 4.0 MHz, *J*₂ = 0.8 MHz, 2H), 8.38 (dd, *J*₁ = 5.6 MHz, *J*₂ = 0.8 MHz, 2H), 7.48 (m, 2H), 3.97 (d, *J* = 7.6 MHz, 4H), 1.91 (m, 2H), 1.21 (m, 80 H), 0.87 (m, 12H).

Compound 2c: Compound **2c** was obtained from **S6** (350.0 mg, 0.33 mmol) as a dark red solid following the same procedure as **2a** (301.3 mg, yield: 75%). ¹H NMR (400 MHz, CDCl₃, ppm): δ

8.40 (d, J = 4.4 MHz, 2H), 7.40 (d, J = 4.0 MHz, 2H), 3.89 (d, J = 8.0 MHz, 2H), 1.88 (m, 2H),
1.21 (m, 80H), 0.88 (t, J = 6.4 MHz, 12H).

Synthesis of compound 5c

Compound **5c** was obtained from **1a** (38.5 mg, 0.26 mmol) and **2c** (151.0 mg, 0.12 mmol) as a dark blue solid following the general procedure (158.5 mg, yield: 95%; eluent: CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.61 (d, *J* = 6.0 MHz, 2H), 8.43 (d, *J* = 6.4 MHz, 2H), 7.84 (m, 4H), 7.64 (m, 4H), 4.07 (d, *J* = 8.0 MHz, 4H), 2.07 (m, 2H), 1.21 (m, 80 H), 0.83 (m, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 190.33, 186.07, 162.28, 161.94, 148.71, 141.37, 140.92, 137.55, 135.68, 134.62, 134.33, 133.93, 133.20, 123.06, 122.52, 122.03, 122.01, 47.18, 38.20, 31.92, 31.91, 31.02, 30.10, 29.75, 29.69, 29.39, 29.37, 26.08, 22.67, 14.08. HRMS (MALDI-TOF): calcd for C₈₀H₁₁₀N₂O₆Se₂ [M]⁺: 1354.6694, found: 1354.6741.

Synthesis of compound 2d

Compound S8: To the solution of **S7** (200.0 mg 1.12 mmol) in anhydrous DMSO (5 mL), KI (5.6 mg, 0.034 mmol) and KOH (188.8 mg 3.37 mmol) were added. After stirring at room temperature for 1 h, 1-bromohexane (555.6 mg 3.37 mmol) was added. The mixture was stirred at room temperature for overnight, then poured into water, and extracted with ether. The organic layer was washed with brine and dried with anhydrous MgSO₄. After removal of the solvent, the crude

product was purified by chromatography on silica gel using PE as the eluent, affording compound **S8** as a yellow oil (330.5 mg, yield: 85%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.15 (d, J = 4.8 MHz, , 2H), 6.93 (d, J = 4.8 MHz, 2H), 1.82 (m, 4H), 1.13 (m, 12H), 0.94 (m, 4 H), 0.81 (t, J = 6.8 MHz, 6H).

Compound 2d: To the solution of **S8** (300.0 mg, 0.86 mmol) in DMF (8 mL), NBS (323.5 mg, 1.82 mmol) was added in one portion. The mixture was stirred at room temperature for 12 h in the absence of light, then poured into water and extracted with ether. The organic layer was washed with brine and dried with anhydrous MgSO₄. After removal of the solvent, the crude product was purified by chromatography on silica gel using PE as the eluent, affording compound **2d** as a yellow oil (375.5 mg, yield: 86%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.93 (s, 2H), 1.75 (m, 4H), 1.13 (m, 12H), 0.90 (m, 4 H), 0.83 (t, *J* = 6.8 MHz, 6H).

Synthesis of compound 5d

Compound **5d** was obtained from **1a** (76.5 mg, 0.52 mmol) and **2d** (120.0 mg, 0.24 mmol) as a purple solid following the general procedure (128.0 mg, yield: 85%; eluent: PE/DCM = 1/3). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.02 (s, 2H), 7.93 (m, 4H), 7.76 (m, 4H), 1.98 (m, 4H), 1.18 (m, 12 H), 1.06 (m, 4H), 0.81 (m, 6H).

Synthesis of compound 5e

Compound **5e** was obtained from **1a** (75.7 mg, 0.31 mmol) and **2e** (120.0 mg, 0.14 mmol) as a dark blue solid following the general procedure (118.8 mg, yield: 86%; eluent: PE/CH₂Cl₂ = 1/3). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.77 (s, 2H), 7.80 (m, 4H), 7.53 (m, 4H), 7.41 (d, *J* = 3.6 MHz, 4H), 6.94 (d, *J* = 3.2 MHz, 4H), 2.91 (d, *J* = 6.8 MHz, 2H), 1.78 (m, 2 H), 1.39 (m, 32H), 0.96 (m, 12 H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 189.68, 186.92, 157.32, 148.83, 146.82, 144.06, 141.48, 141.18, 134.41, 134.16, 133.63, 133.29, 131.01, 128.71, 126.33, 122.78, 122.20, 39.90, 34.83, 33.36, 32.97, 32.00, 29.74, 28.89, 26.69, 23.08, 22.72, 14.25, 14.26. HRMS (MALDI-TOF): calcd for C₆₀H₆₄O₄S₄ [M]⁺: 976.3721, found: 976.3710.

Synthesis of compound 5f

Compound **5f** was obtained from **1a** (41.7 mg, 0.29 mmol) and **2f** (140.0 mg, 0.13 mmol) as a purple solid following the general procedure (142.3 mg, yield: 92%; eluent: PE/DCM = 1/1). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.17 (s, 2H), 7.84 (m, 4H), 7.67 (m, 4H), 7.15 (M, 18 H), 2.59 (t, J = 7.6 MHz, 8H), 1.59 (m, 8 H), 1.31 (m, 24H), 0.87 (t, J = 6.8 MHz, 12H).

Synthesis of compound 2g

Compound S9: Compound **S9** was obtained from **S1** (500 mg, 1.66 mmol) as a red solid following the same procedure as **S2** (475 mg, yield: 38%).¹H NMR (400 MHz, CDCl₃, ppm): δ 8.87 (d, *J* = 2.8 MHz, 2H), 7.62 (d, *J* = 4.8 MHz, 2H), 7.27 (m, 2H), 4.03 (d, *J* = 8.0 MHz, 4H), 1.90 (m, 2H), 1.21 (m, 80 H), 0.84 (m, 12H).

Compound 2g: Compound **2g** was obtained from **S9** (400.0 mg, 0.53 mmol) as a dark red solid following the same procedure as **2a** (411.4 mg, yield: 85%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.62 (d, *J* = 4.0 MHz, 2H), 7.22 (d, *J* = 4.0 MHz, 2H), 3.93 (d, *J* = 8.0 MHz, 2H), 1.88 (m, 2H), 1.22 (m, 80H), 0.86 (m, 12H).

Synthesis of compound 5g

Compound **5g** was obtained from **1a** (46.1 mg, 0.31 mmol) and **2g** (130.0 mg, 0.14 mmol) as a dark blue solid following the general procedure (133.6 mg, yield: 90%; eluent: DCM). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.45 (d, *J* = 5.6 MHz, 2H), 8.37 (d, *J* = 12.8 MHz), 7.82 (m, 4H), 7.60 (m, 4H), 4.12 (d, *J* = 7.6 MHz, 4H), 2.04 (m, 2H), 1.29 (m, 48H), 0.83 (m, 12H).

Synthesis of compound 5h

Compound **5h** was obtained from **1b** (46.7 mg, 0.29 mmol) and **2a** (150.0 mg, 0.0.13 mmol) as a blue solid following the general procedure (147.1 mg, yield: 86%; eluent: DCM). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.45 (dd, $J_1 = 6.0$ MHz, $J_2 = 1.2$ MHz, 2H), 8.36 (t, J = 5.2 MHz, 2H), 7.72 (dd, $J_1 = 7.6$ MHz, $J_2 = 4.0$ MHz, 2H), 7.62 (s, 2H), 7.40 (dd, $J_1 = 11.2$ MHz, $J_2 = 8.0$ MHz, 2H), 4.12 (d, J = 7.6 MHz, 4H), 2.42 (d, J = 11.6 MHz, 6H), 2.04 (m, 2H), 1.21 (m, 80H), 0.83 (m, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 189.53, 189.19, 186.86, 186.56, 161.56, 158.25, 146.14, 145.95, 145.52, 141.95, 141.50, 139.41, 139.00, 135.37, 135.31, 133.21, 133.54, 123.10, 122.83, 122.69, 122.42, 119.88, 99.95, 47.23, 38.24, 31.92, 30.96, 30.19, 29.77, 29.71, 29.42, 29.40, 26.08, 22.69, 22.08, 14.11. HRMS (MALDI-TOF): calcd for C₈₂H₁₁₄N₂O₆Se₂ [M]⁺: 1286.8118, found: 1286.8085.

5. NMR study of the coupling product

Compound **1a** (38.5 mg, 0.26 mmol), **2a** (140 mg, 0.12 mmol), *t*BuXPhos-Pd-G3 (2.0 mg, 2.47 µmol, 2 mol%), sodium hydride (60% dispersion in mineral oil, 22.1 mg, 0.55 mmol) and anhydrous 1,4-dioxane (1.2 mL) were added in a schlenk tube. The mixture was stirred at 70 °C for 12 h in the absence of light, then the solvent was removed under vacuum. Subsequently, 15 mL HCl aqueous solution (0.05 M, degassed) was added, and the mixture was stirred for 10 min. The resulting precipitate was collected by filtration under argon, and then dried by argon flow. After that, 5 mg of the solid was transferred to a LPV-NMR tube in an argon-filled glovebox.

6. Supplementary Date

Figure S2. Free-energy profiles for the coupling of 1a and 2a with *t*BuMePhos (top) and *t*BuXPhos (bottom) as the ligand.

Figure S3. ¹H NMR (a) and ¹³C DEPT-135 NMR (b) spectra of compound 4 in DMSO-d₆; (\blacksquare) signal for 1,4-dioxane; (*) signal for the residual indandione.

Figure S4. MALDI-TOF mass spectrum of compound 4.

Figure S5. Time dependence of UV-vis-NIR spectra of compound 4 in solution (CH₂Cl₂, 1×10^{-5} mol L⁻¹) under bubbling air with the irradiation of UV light (254 nm).

Figure S6. The oxidation process of compound 4 by electrochemical method under argon

monitored by solution UV-vis-NIR absorption (in CH₂Cl₂, 1×10^{-5} mol L⁻¹).

Figure S7. Thin layer chromatography analysis of electrochemical oxidation of compound 4.

Figure S8. Free energy profiles for the formation of compound 5d.

Figure S9. Free-energy profiles for the oxidation of intermediates 3 and 4 to give quinoid 5a obtained from M06L/SMD-6-31++G(d,p)//M06L-6-31G(d,p) calculations.

Figure S10. Thin-film absorption spectra of 5a-5h.

Figure S11. Solution cyclic voltammograms (CVs) of 5a-5h.

Compound	$\lambda_{max}^{sol}[nm]^{a}$	$\lambda_{max}^{film} [nm]^{b}$	$E_{g}[eV]^{c}$	$E_{\rm LUMO}[\rm eV]^{\rm d}$	$E_{\rm HOMO}[\rm eV]^{\rm d}$
5a	721, 679	783, 676	1.45	-4.33	-5.74
5b	675, 641	725, 652	1.60	-4.23	-5.81
5c	715, 673	773, 637	1.42	-4.32	-5.69
5d	610, 562, 522	530	1.91	-4.06	-5.73
5e	661, 611	877, 710	1.26	-4.22	-5.62
5f	790, 727	851, 761	1.32	-4.29	-5.29
5g	721, 679	779, 660	1.45	-4.32	-5.74
5h	721, 680	799, 688	1.43	-4.27	-5.68

Table S4. Optical and electrochemical properties of 5a-5h.

^aIn toluene solution. ^bThin-films were prepared by spin-casting from toluene solutions on the quartz substrates ^cCalculated from the onset of thin-film absorption according to the equation of $E_g^{opt} = 1240/\lambda_{onset}$. ^dThe highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were calculated according to the equation of $E_{HOMO} = -(4.80 + E_{onset})^{ox})$ eV and $E_{LUMO} = -(4.80 + E_{onset})^{red})$ eV, in which E_{onset}^{ox} and E_{onset}^{red} represent the oxidation and reduction onset-potentials.

Figure S12. Output (a, c, e, g, i, k) and transfer (b, d, f, h, j, l) curves of the TGBC OFETs based

on **5a** (a, b), **5b** (c, d), **5c** (e, f), **5f** (g, h), **5g** (i, j) and **5h** (k, l).

Figure S13. The cross-polarized optical micrograph of the micro-wire of compound 5g with

rotation of 45°.

Figure S14. ¹H NMR spectrum of compound S2 (400 MHz, CDCl₃).

Figure S15. ¹H NMR spectrum of compound 2a (400 MHz, CDCl₃).

Figure S16. 1 H NMR spectrum of compound S4 (400 MHz, CDCl₃).

Figure S17. ¹H NMR spectrum of compound 2b (400 MHz, CDCl₃).

Figure S18. ¹H NMR spectrum of compound S6 (400 MHz, CDCl₃).

Figure S19. ¹H NMR spectrum of compound 2c (400 MHz, CDCl₃).

Figure S20. ¹H NMR spectrum of compound S8 (400 MHz, CDCl₃).

Figure S21. ¹H NMR spectrum of compound 2d (400 MHz, CDCl₃).

Figure S22. ¹H NMR spectrum of compound S9 (400 MHz, CDCl₃).

Figure S23. ¹H NMR spectrum of compound 2g (400 MHz, CDCl₃).

Figure S24. ¹H NMR spectrum of compound 5a (400 MHz, CDCl₃).

Figure S25. ¹³C NMR spectrum of compound 5a (100 MHz, CDCl₃).

Figure S26. MALDI-TOF mass spectrum of compound 5a.

Figure S27. ¹H NMR spectrum of compound 5b (400 MHz, CDCl₃).

Figure S28. ¹³C NMR spectrum of compound 5b (100 MHz, CDCl₃).

Figure S29. MALDI-TOF mass spectrum of compound 5b.

Figure S30. ¹H NMR spectrum of compound 5c (400 MHz, CDCl₃).

Figure S31. ¹³C NMR spectrum of compound 5c (100 MHz, CDCl₃).

Figure S32. MALDI-TOF mass spectrum of compound 5c.

Figure S33. ¹H NMR spectrum of compound 5d (400 MHz, CDCl₃).

Figure S34. ¹H NMR spectrum of compound 5e (400 MHz, CDCl₃).

Figure S35. ¹³C NMR spectrum of compound 5e (100 MHz, CDCl₃).

Figure S36. MALDI-TOF mass spectrum of compound 5e.

Figure S37. ¹H NMR spectrum of compound 5f (400 MHz, CDCl₃).

Figure S38. ¹H NMR spectrum of compound 5g (400 MHz, CDCl₃).

Figure S39. ¹H NMR spectrum of compound 5h (400 MHz, CDCl₃).

Figure S40. ¹³C NMR spectrum of compound 5g (100 MHz, CDCl₃).

Figure S41 MALDI-TOF mass spectrum of compound 5g.

7. X-ray crystallography

The single crystals of compound **5g** was grown by slow diffusion of methanol into their toluene solution. The data were collected on a "Bruker APEX-II CCD" diffractometer. In the Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation.

Figure S42. The molecular packing arrangement of compound 5g.

Identification code	190708dyf_2_0m	
Empirical formula	$C_{64}H_{78}N_2O_6S_2$	
Formula weight	1035.40	
Temperature	170.01 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 19.8786(11) Å	a= 90°.
	b = 5.1836(3) Å	b= 90.923(4)°.
	c = 27.5685(17) Å	$g = 90^{\circ}$.
Volume	2840.4(3) Å ³	
Z	2	
Density (calculated)	1.211 Mg/m ³	
Absorption coefficient	0.818 mm ⁻¹	
F(000)	1112	
Crystal size	0.1 x 0.02 x 0.01 mm ³	
Theta range for data collection	2.789 to 55.037°.	
Index ranges	-24<=h<=24, -3<=k<=6, -33<	<=l<=32
Reflections collected	19822	
Independent reflections	5234 [R(int) = 0.0500]	
Completeness to theta = 53.594°	96.5 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	0.7508 and 0.5864	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	5234 / 83 / 336	
Goodness-of-fit on F ²	0.886	
Final R indices [I>2sigma(I)]	R1 = 0.0946, wR2 = 0.2388	
R indices (all data)	R1 = 0.1385, wR2 = 0.2707	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.673 and -0.484 e.Å ⁻³	

Table S5. Crystal data and structure refinement for compound 5g.

8. Cartesian coordinates (Å) and energies for the optimized structures

IM1-A				Pd	1.891465	-0.302538	-0.630915
B3I	B3LYP SCF energy in gas phase: -2973.018581 a.u.				2.473259	-3.595170	-1.523725
M0	6-L SCF energ	y in 1,4-dioxai	ne: -2003.093021 a.u.	Р	3.370388	0.268045	1.137680
C	2 (02 412	1 524024	0 125221	С	2.620456	-0.003197	2.900357
C	-2.693413	-1.534824	-0.135221	С	3.568754	0.143682	4.105468
C	-3.567730	-0.488125	-0.451911	С	1.462155	1.007140	3.040562
C	-4.785342	-0.661928	0.262592	С	2.011171	-1.421665	2.934196
С	-5.633279	0.412275	0.000103	Н	4.379378	-0.590350	4.087816
Ν	-3.363178	-2.356805	0.768878	Н	4.004756	1.142372	4.191149
С	-4.681275	-1.868061	1.054052	Н	2.995280	-0.032692	5.025520
0	-5.452697	-2.448656	1.814765	Н	0.754463	0.918109	2.208481
С	-2.926192	-3.619873	1.338793	Н	0.912331	0.796891	3.967312
Н	-2.095967	-3.481706	2.038963	Н	1.813992	2.042235	3.086520
Н	-3.783522	-4.020384	1.883469	Н	1.481114	-1.556743	3.886822
Н	-2.628186	-4.325403	0.557419	Н	1.296265	-1.571731	2.122107
С	-1.370039	-1.752118	-0.645283	Н	2.768634	-2.206923	2.866884
С	-0.822565	-1.042932	-1.698391	С	5.137300	-0.493482	1.005248
S	-0.176244	-2.876112	0.053402	С	6.237289	0.185687	1.842429
С	0.545609	-1.345069	-1.987526	С	5.061505	-1.988346	1.375453
Н	-1.396180	-0.302858	-2.245735	С	5.532933	-0.377320	-0.482142
С	1.103521	-2.234867	-1.013728	Н	6.393802	1.225623	1.542728
Н	0.987652	-1.170594	-2.963443	Н	6.033903	0.161891	2.916103
С	-6.955266	0.627755	0.532225	Н	7.183744	-0.347098	1.678811
С	-7.614927	-0.241730	1.390461	Н	4.267641	-2.506628	0.828747
S	-7.972567	2.030398	0.203544	Н	6.013648	-2.469463	1.115201
С	-8.902514	0.210489	1.770651	Н	4.904870	-2.139978	2.447786
Н	-7.161089	-1.169286	1.725396	Н	6.508059	-0.858630	-0.634979
С	-9.235051	1.417726	1.211854	Н	4.802405	-0.864617	-1.135611
Н	-9.559463	-0.340545	2.434516	Н	5.631829	0.669619	-0.789879
Н	-10.148836	1.984945	1.330079	С	3.629041	2.108498	0.992525
Ν	-4.949990	1.253539	-0.880231	C	3.059018	2.811370	-0.096925
С	-5.401037	2.490992	-1.489385	С	4.337095	2.846152	1.962062
Н	-4.588701	2.820248	-2.140430	C	3 217127	4 208793	-0 162081
Н	-6.303313	2.338092	-2.090400	C	2 318402	2 208079	-1 266249
Н	-5.592785	3.264432	-0.738250	C	4 480039	4 229060	1 883826
С	-3.649682	0.740848	-1.198386	н	4 788335	2 331347	2 800168
0	-2.878334	1.324170	-1.966875	C	3.913077	4.917428	0.812120
Н Н Н С О	-4.588701 -6.303313 -5.592785 -3.649682 -2.878334	2.820248 2.338092 3.264432 0.740848 1.324170	-2.140430 -2.090400 -0.738250 -1.198386 -1.966875	C C C H C	3.217127 2.318402 4.480039 4.788335 3.913077	4.208793 2.208079 4.229060 2.331347 4.917428	-0.1620 -1.2662 1.8838 2.800 0.812

Н	2.784481	4.740010	-1.005571	С	-9.159362	0.784497	1.971188	
С	3.069636	1.732808	-2.368011	Н	-7.273777	-0.329799	2.344677	
С	0.924404	2.427676	-1.441622	С	-9.694283	1.529129	0.951224	
Н	5.030615	4.761514	2.654680	Н	-9.672064	0.602493	2.909209	
Н	4.015252	5.996234	0.730939	Н	-10.654775	2.025922	0.913639	
С	2.482477	1.514841	-3.613573	Ν	-5.658726	0.591057	-1.408588	
Н	4.138862	1.592367	-2.247279	С	-6.320492	1.326550	-2.470964	
C	0 351495	2 188866	-2 702749	Н	-5.627009	1.326869	-3.314313	
C	1 118200	1 760815	-3 784453	Н	-7.254375	0.841819	-2.773063	
н	3 002236	1 168703	-1 113787	Н	-6.526406	2.361465	-2.178202	
н ц	0.717280	2 241650	2 820754	С	-4.340855	0.069705	-1.626445	
п u	-0./1/200	1 608110	4 752511	0	-3.731376	0.234488	-2.686382	
С	0.050100	2.095225	-4.755511	Pd	2.224151	-0.906710	-0.265654	
C H	0.052377	2.985235	-0.339141	Br	2.143361	-3.723356	-0.925671	
н	0.0/4/11	4.083582	-0.335095	Р	4.143457	0.392665	0.377141	
Н	-0.985819	2.674422	-0.489669	С	4.700638	-0.254158	2.122277	
Н	0.378303	2.654254	0.650045	С	6.188393	-0.121588	2.505796	
				С	3.840071	0.474999	3.175376	
TS1-	·A			С	4.341205	-1.757737	2.180628	
B3L	YP SCF energ	y in gas phase	: -2973.009332 a.u.	Н	6.843553	-0.677493	1.829521	
M06	-L SCF energy	y in 1,4-dioxa	ne: -2972.964389 a.u.	Н	6.537803	0.912558	2.551767	
				Н	6.328321	-0.546410	3.508886	
С	-3.003681	-1.315121	0.254311	Н	2.771078	0.378469	2.955975	
С	-4.027908	-0.610516	-0.393712	Н	4.016977	0.021631	4.159530	
С	-5.136051	-0.479072	0.485624	Н	4.078268	1.539861	3.246858	
С	-6.137313	0.265376	-0.139517	Н	4.572501	-2.142092	3.183341	
Ν	-3.477025	-1.621447	1.530722	Н	3.275744	-1.926442	1.990212	
С	-4.807834	-1.130202	1.735374	Н	4.905176	-2.354325	1.458467	
0	-5.423450	-1.302312	2.785394	С	5.535668	0.127248	-0.933697	
С	-2.835261	-2.413144	2.564969	С	6.828996	0.938936	-0.736480	
Н	-1.957927	-1.904871	2.979369	С	5.874309	-1.375580	-0.997026	
Н	-3.576510	-2.537242	3.357061	С	4.917449	0.545069	-2.285627	
Н	-2.539374	-3.396497	2.186227	Н	6.643153	2.016112	-0.763510	
С	-1.723505	-1.663577	-0.275809	Н	7.347196	0.701075	0.195678	
С	-1.343462	-1.463441	-1.608949	Н	7.518407	0.705538	-1.558947	
S	-0.351080	-2.255115	0.665930	Н	4.977299	-1.991264	-1.124048	
С	-0.014457	-1.790437	-1.889308	Н	6.531314	-1.559334	-1.857432	
H	-2.037537	-1.063167	-2.341036	Н	6.405208	-1.720010	-0.104292	
C	0.715998	-2.161398	-0.745541	Н	5.640607	0.349713	-3.088684	
H	0.423638	-1.778858	-2.879701	Н	4.001643	-0.013202	-2.507164	
C	-7.415020	0.638761	0.410550	Н	4.679805	1.613543	-2.306161	
C	-7.870880	0.278255	1.672086	С	4.039340	2.251760	0.533003	
S	-8.627468	1.627274	-0.403959	С	2.936733	3.002397	0.051643	
				S44				

С	5.093436	2.955604	1.151627	С	0.259043	-0.361288	-0.588626
С	2.946935	4.401960	0.215571	Н	-0.095194	-0.771902	-2.690859
С	1.723854	2.473756	-0.663715	С	-8.399639	0.099966	0.272228
С	5.081429	4.338144	1.311884	С	-8.730469	0.201973	1.616408
Н	5.954111	2.412136	1.516978	S	-9.864112	0.149341	-0.709259
С	3.995056	5.071124	0.838163	С	-10.123985	0.316419	1.847123
Н	2.098963	4.965886	-0.163184	Н	-7.972705	0.193141	2.393819
С	1.723847	2.457739	-2.066584	С	-10.863377	0.303218	0.692655
С	0.519987	2.210793	0.030581	Н	-10.562350	0.404598	2.835176
Н	5.916889	4.833987	1.798709	Н	-11.937248	0.373156	0.580317
Н	3.964223	6.151884	0.947221	Ν	-6.691660	-0.138952	-1.579912
С	0.567202	2.162623	-2.788982	С	-7.540037	-0.181280	-2.755607
Н	2.639956	2.704606	-2.595730	Н	-6.865845	-0.292942	-3.607549
С	-0.630492	1.921099	-0.713581	Н	-8.226808	-1.033909	-2.728061
С	-0.619269	1.892782	-2.108876	Н	-8.115380	0.743219	-2.873027
Н	0.593111	2.160442	-3.875631	С	-5.265545	-0.246569	-1.734082
Н	-1.558936	1.718294	-0.185480	0	-4.728946	-0.363093	-2.836531
Н	-1.533369	1.659208	-2.646947	Pd	2.273439	-0.371650	-0.368631
С	0.447147	2.261629	1.539781	Br	1.861878	-2.826620	-0.022643
Н	0.866000	3.192423	1.938669	Р	4.675216	-0.469548	0.115009
Н	-0.589543	2.181546	1.881271	С	5.041990	-1.136247	1.891985
Н	1.010451	1.436640	1.992096	С	6.350760	-0.623177	2.525436
				С	3.864846	-0.645333	2.764085
IM2	2-A			С	5.062547	-2.678873	1.903771
B3L	YP SCF energ	y in gas phase	: -2973.040818 a.u.	Н	7.242438	-0.899823	1.954970
M06	5-L SCF energy	y in 1,4-dioxa	ne: -2972.998497 a.u.	Н	6.348521	0.460677	2.665610
				Н	6.449756	-1.080629	3.518442
С	-3.582051	-0.200732	0.359522	Н	2.909174	-1.050364	2.419110
С	-4.768550	-0.188823	-0.382945	Н	4.022931	-0.979705	3.797822
С	-5.875997	-0.056770	0.500383	Н	3.799101	0.448910	2.779164
С	-7.057023	-0.025911	-0.239098	Н	5.113014	-3.013539	2.948248
Ν	-3.950425	-0.077506	1.699929	Н	4.164105	-3.110180	1.457490
С	-5.372948	0.014292	1.853792	Н	5.942201	-3.082805	1.393259
0	-5.914528	0.122044	2.953188	С	5.794850	-1.291391	-1.221754
С	-3.102210	-0.101848	2.877216	С	7.278141	-1.456986	-0.836715
Н	-2.438289	0.768365	2.915315	С	5.216850	-2.680278	-1.570732
Н	-3.775349	-0.073141	3.736463	С	5.702601	-0.410974	-2.486588
Н	-2.500137	-1.014981	2.915626	Н	7.785120	-0.501896	-0.676238
С	-2.244184	-0.318483	-0.139055	Н	7.412010	-2.078654	0.052431
С	-1.910967	-0.532803	-1.473516	Н	7.798092	-1.959218	-1.663105
S	-0.755772	-0.166563	0.806352	Н	4.170199	-2.624977	-1.877805
С	-0.518623	-0.575484	-1.711619	Н	5.799272	-3.098739	-2.402368

Н -2.669953 -0.644476 -2.242353 Н 5.276566 -3.384068 -0.737750

Н	6.293046	-0.876641	-3.285875	С	2.099278	0.139453	0.180597
Н	4.671135	-0.336153	-2.847093	С	1.795874	0.822821	1.362467
Н	6.094729	0.598422	-2.326446	S	0.610937	-0.032883	-0.766808
С	5.178613	1.311824	0.174847	С	0.439882	1.177480	1.477547
С	4.183073	2.290166	-0.021696	Н	2.556729	1.048378	2.104275
С	6.502084	1.736788	0.406785	С	-0.373024	0.778512	0.414865
С	4.542109	3.651579	0.039690	Н	0.051570	1.741823	2.318247
С	2.751802	2.035653	-0.431963	С	8.131993	-1.226255	0.195148
С	6.842309	3.084983	0.461053	С	8.436033	-1.834578	-1.014372
Н	7.280796	1.002530	0.563499	S	9.586613	-1.124632	1.190862
С	5.851525	4.051047	0.281817	С	9.799404	-2.206611	-1.134370
Н	3.774550	4.401791	-0.129257	Н	7.678643	-1.996583	-1.775192
С	2.522662	1.733625	-1.806125	С	10.546807	-1.891129	-0.030069
С	1.679270	2.622981	0.321799	Н	10.210301	-2.692395	-2.013305
Н	7.872450	3.377132	0.644441	Н	11.601472	-2.059861	0.142464
Н	6.097910	5.108590	0.317499	Ν	6.493103	-0.127708	1.786694
С	1.321185	2.080872	-2.440926	С	7.347480	0.202973	2.907823
Н	3.360179	1.396412	-2.407706	Н	6.700069	0.694416	3.638151
С	0.497054	2.941934	-0.339188	Н	7.787764	-0.691269	3.363497
С	0.320920	2.703015	-1.710430	Н	8.150318	0.890936	2.619460
Н	1.191204	1.872064	-3.498329	С	5.094975	0.217812	1.840601
Н	-0.311729	3.396438	0.226202	О	4.598258	0.781667	2.819717
Н	-0.610161	2.989815	-2.189788	Pd	-2.320324	1.123366	0.065896
С	1.817170	2.907122	1.799569	Br	-4.803854	1.857198	-0.593160
Н	1.873037	1.971737	2.369245	Р	-3.240901	-0.795729	1.375887
Н	2.720535	3.479783	2.032050	С	-2.127204	-2.304770	1.911919
Н	0.952679	3.466673	2.167893	С	-2.933361	-3.461795	2.539342
				С	-1.450045	-2.856084	0.642664
IM3	-A			С	-1.005968	-1.872508	2.877762
B3L	YP SCF energ	y in gas phase:	: -3469.545875 a.u.	Н	-3.398415	-3.199356	3.491232
M06	-L SCF energy	v in 1,4-dioxan	ne: -3469.527456 a.u.	Н	-3.717675	-3.822311	1.867430
				Н	-2.248078	-4.299779	2.729615
С	3.396650	-0.320519	-0.175839	Н	-0.882874	-2.094111	0.106662
С	4.583036	-0.239346	0.578428	Н	-0.752290	-3.653297	0.935814
С	5.650190	-0.819476	-0.160363	Н	-2.171693	-3.287129	-0.048502
С	6.825750	-0.750899	0.582591	Н	-0.346760	-2.734884	3.048008
Ν	3.739489	-0.951797	-1.376661	Н	-0.396462	-1.068430	2.460030
С	5.126628	-1.283048	-1.428571	Н	-1.375291	-1.554565	3.855267
0	5.644859	-1.837924	-2.398641	С	-3.863825	0.069830	3.038565
С	2.886458	-1.240717	-2.515963	С	-4.101042	-0.841891	4.264321
Н	2.438379	-0.327351	-2.918786	С	-2.745621	1.075668	3.410708
Н	3.531327	-1.694852	-3.270842	С	-5.139484	0.912147	2.814555
Н	2.088208	-1.941806	-2.253177	Н	-4.875972	-1.598229	4.111343

Н	-3.196443	-1.352350	4.600561	
Н	-4.437036	-0.205732	5.094562	
Н	-2.611054	1.829848	2.628971	
Н	-3.038525	1.594100	4.334235	
Н	-1.780237	0.598098	3.592416	
Н	-5.315229	1.495726	3.729394	
Н	-5.031739	1.605550	1.980990	
Н	-6.033886	0.313860	2.629994	
С	-4.705427	-1.673734	0.567102	
С	-4.781319	-2.077813	-0.800197	
С	-5.832939	-1.920814	1.372568	
С	-6.003004	-2.590182	-1.276828	
С	-3.677528	-2.088564	-1.825346	
С	-7.021987	-2.456015	0.883126	
Н	-5.789832	-1.687937	2.425164	
С	-7.120015	-2.768310	-0.468090	
Н	-6.060794	-2.853030	-2.329368	
С	-3.193172	-0.898424	-2.383651	
С	-3.197857	-3.326119	-2.326173	
Н	-7.861051	-2.611443	1.556720	
Н	-8.043910	-3.157672	-0.888459	
С	-2.217721	-0.903408	-3.383844	
Н	-3.601824	0.045921	-2.046809	
С	-2.217190	-3.312257	-3.326475	
С	-1.722508	-2.118244	-3.852707	
Н	-1.854295	0.046393	-3.764727	
Н	-1.836709	-4.262362	-3.697731	
Н	-0.959054	-2.141556	-4.627142	
С	-3.700892	-4.666624	-1.826006	
Н	-4.660195	-4.941487	-2.283258	
Н	-2.984431	-5.458637	-2.070502	
Н	-3.859716	-4.676265	-0.742941	
С	0.447008	4.048331	-0.512636	
С	0.485366	3.464226	-1.780760	
С	1.625130	3.546232	-2.577573	
С	2.733430	4.228811	-2.069723	
С	2.694685	4.815756	-0.793758	
С	1.547242	4.732070	-0.001084	
С	-0.914199	3.832639	0.092439	
С	-1.695742	2.984897	-0.858651	
С	-0.846610	2.830054	-2.077963	
Н	1.636507	3.091764	-3.564522	
Н	3.639775	4.309254	-2.665422	

Н	3.572257	5.339440	-0.421943
Н	1.500818	5.182478	0.986484
0	-1.131665	2.325791	-3.159698
0	-1.268410	4.312500	1.163702
Η	-2.706366	3.338889	-1.057776

IM4-A

B3LYP SCF energy in gas phase: -3456.035650 a.u. M06-L SCF energy in 1,4-dioxane: -3455.993167 a.u.

С	3.282539	-0.127273	-0.414894
С	4.448722	-0.412129	0.303570
С	5.557993	-0.430768	-0.587171
С	6.718090	-0.730953	0.124720
Ν	3.664527	0.034221	-1.746962
С	5.077184	-0.140940	-1.919273
0	5.629100	-0.034619	-3.013657
С	2.841005	0.387906	-2.888706
Н	2.097881	-0.386454	-3.105446
Н	3.521961	0.475773	-3.737713
Н	2.330167	1.343163	-2.731929
С	1.948635	-0.016543	0.098661
С	1.604596	-0.110339	1.442211
S	0.479487	0.238103	-0.852130
С	0.216929	0.019078	1.687276
Н	2.349985	-0.272637	2.215569
С	-0.554208	0.185601	0.550050
Н	-0.200479	0.013718	2.686786
С	8.054975	-0.850307	-0.402976
С	8.401495	-0.665363	-1.734279
S	9.490429	-1.256029	0.537872
С	9.784119	-0.845524	-1.987306
Н	7.662447	-0.409435	-2.487265
С	10.499384	-1.166792	-0.862575
Н	10.232169	-0.740106	-2.969285
Н	11.560756	-1.356217	-0.771336
Ν	6.338420	-0.897525	1.455795
С	7.164812	-1.202389	2.608263
Н	6.487179	-1.228626	3.464365
Н	7.924560	-0.431615	2.775636
Н	7.653858	-2.177277	2.508922
С	4.923550	-0.707124	1.631742
0	4.377755	-0.799440	2.731705

Pd	-2.534096	0.443561	0.350743	С	-5.327057	3.401938	0.059876	
Р	-3.207630	-1.909492	0.296289	Н	-4.772029	3.696318	-1.997780	
С	-3.355556	-2.711301	2.049848	Н	-5.754603	2.801551	2.093300	
С	-3.481209	-4.246784	2.070348	С	-0.070271	3.699999	-0.174307	
С	-4.594375	-2.103148	2.739975	С	-0.013570	3.576195	1.218639	
С	-2.115546	-2.302093	2.870935	С	1.068374	4.073039	1.942373	
Н	-2.601000	-4.743578	1.654444	С	2.097884	4.697317	1.234636	
Н	-4.368827	-4.609043	1.544142	С	2.039170	4.825644	-0.163838	
Н	-3.572965	-4.573828	3.114441	С	0.950924	4.329111	-0.884534	
Н	-4.515632	-1.013964	2.818499	С	-1.348002	3.102990	-0.678490	
Н	-4.658121	-2.497819	3.762138	С	-2.064305	2.515779	0.502945	
Н	-5.527093	-2.353048	2.225293	С	-1.258871	2.901804	1.710048	
Н	-2.195440	-2.737594	3.875674	Н	1.098423	3.972545	3.023301	
Н	-2.056088	-1.216364	2.977793	Н	2.957920	5.092518	1.768786	
Н	-1.178031	-2.649358	2.430433	Н	2.853721	5.319839	-0.686951	
С	-2.174908	-3.010509	-0.906866	Н	0.889835	4.426192	-1.964730	
С	-2.785693	-4.365941	-1.319844	О	-1.558683	2.748808	2.886887	
С	-0.789273	-3.277838	-0.280709	О	-1.719922	3.134705	-1.847207	
С	-2.022645	-2.171475	-2.194891	Н	-3.101866	2.837770	0.580641	
Н	-3.692334	-4.246121	-1.917559	Н	-5.448140	4.464102	0.253984	
Н	-3.005449	-5.021471	-0.474050	Н	-5.608942	0.387355	1.578066	
Н	-2.051318	-4.886298	-1.948594	С	-4.434489	1.210883	-2.925276	
Н	-0.312263	-2.373960	0.099647	Н	-5.151200	1.594659	-3.661831	
Н	-0.131918	-3.703507	-1.049560	Н	-4.372349	0.127375	-3.046645	
Н	-0.847893	-4.006954	0.533649	Н	-3.455540	1.646600	-3.154575	
Н	-1.401626	-2.725527	-2.910895					
Н	-1.543440	-1.208830	-2.009668	TS2	2-A			
Н	-2.993705	-1.990717	-2.669700	B3I	YP SCF energ	y in gas phase	: -3456.010370) a.u.
С	-4.920355	-1.949238	-0.416439	M0	6-L SCF energy	in 1,4-dioxan	e: -3455.96540	65 a.u
С	-5.532717	-0.746697	-0.830014					
С	-5.622494	-3.156590	-0.607210	С	3.340050	0.052926	0.411617	
С	-6.776688	-0.807074	-1.488599	С	4.452525	-0.200332	-0.403190	
С	-5.076789	0.651116	-0.497465	С	5.587541	-0.455039	0.414301	
С	-6.862300	-3.196965	-1.238552	С	6.692440	-0.717296	-0.395150	
Н	-5.191453	-4.087932	-0.265653	Ν	3.786382	-0.045013	1.731976	
С	-7.433676	-2.013252	-1.704966	С	5.183136	-0.358190	1.799045	
Н	-7.240928	0.122155	-1.806473	О	5.782580	-0.485289	2.865966	
С	-4.825784	1.607659	-1.521586	С	3.037703	0.154810	2.958895	
С	-5.371979	1.115520	0.810047	Н	2.237770	-0.584901	3.069427	
Н	-7.372208	-4.147220	-1.370254	Н	3.753685	0.029170	3.773713	
Н	-8.394500	-2.025087	-2.212025	Н	2.607016	1.159943	3.008123	
С	-4.961654	2.966856	-1.215573	С	2.009137	0.352198	-0.009731	
С	-5.503620	2.475560	1.088573	С	1.610240	0.497612	-1.337958	

a.u.

S	0.604095	0.578877	1.047160	Н	-0.650068	-3.038563	2.938964
С	0.246663	0.792518	-1.500708	Н	-0.590530	-3.774377	1.336558
Н	2.313762	0.390331	-2.159147	Н	-2.616462	-1.878763	3.801093
С	-0.487146	0.834440	-0.308788	Н	-2.408413	-0.642250	2.541797
Н	-0.209170	0.987879	-2.463974	Н	-3.977488	-1.443753	2.758311
С	8.033161	-1.026122	0.035845	С	-4.782212	-2.316235	-0.050056
С	8.444801	-1.102626	1.359406	С	-5.657145	-1.213899	-0.207610
S	9.394094	-1.366477	-1.033619	С	-5.353349	-3.603203	0.033083
С	9.816785	-1.425776	1.505704	С	-7.045866	-1.448014	-0.259947
Н	7.758804	-0.928037	2.182496	C	-5.265600	0.225209	-0.411889
С	10.460306	-1.597866	0.307416	C	-6.727598	-3.816455	-0.024468
Н	10.309089	-1.526841	2.466783	Н	-4.711889	-4.464723	0.155038
Н	11.498383	-1.846221	0.130254	С	-7.584427	-2.726409	-0.167866
Ν	6.249676	-0.624810	-1.714319	Н	-7.707136	-0.595870	-0.391465
С	7.001061	-0.799021	-2.942674	С	-5.585215	1.221202	0.549006
Н	6.290246	-0.631624	-3.754752	C	-4.854556	0.627329	-1.702241
Н	7.816407	-0.072468	-3.024375	Н	-7.121634	-4.826744	0.043475
Н	7.409395	-1.811764	-3.027004	Н	-8.660468	-2.868712	-0.217600
С	4.850778	-0.301102	-1.783252	C	-5.497913	2.567093	0.169312
0	4.256906	-0.166165	-2.854975	С	-4.780530	1.975948	-2.059253
Pd	-2.434516	0.251865	-0.225890	C	-5.111900	2.949672	-1.117935
Р	-2.932243	-2.080547	0.047273	Н	-5.748826	3.331405	0.900922
С	-2.201507	-3.194212	-1.350695	Н	-4.458523	2.256379	-3.056687
С	-2.277330	-4.718690	-1.142557	C	-0.482364	4.188537	0.842866
С	-2.966368	-2.822966	-2.639497	С	-0.444617	4.346415	-0.548675
С	-0.719405	-2.806127	-1.546777	C	0.261745	5.393807	-1.136728
Н	-1.752257	-5.043510	-0.239721	С	0.939254	6.277878	-0.294285
Н	-3.302820	-5.094811	-1.106913	С	0.900242	6.120442	1.101726
Н	-1.788297	-5.211311	-1.993464	С	0.183865	5.074507	1.687405
Н	-2.897131	-1.750005	-2.850524	С	-1.325797	3.008500	1.194791
Н	-2.518307	-3.355886	-3.487915	С	-1.741875	2.361993	-0.105833
Н	-4.023925	-3.100933	-2.588950	С	-1.268714	3.286569	-1.203074
Н	-0.334400	-3.324917	-2.434627	Н	0.279741	5.506681	-2.216487
Н	-0.592878	-1.732492	-1.700238	Н	1.505472	7.101598	-0.720432
Н	-0.092564	-3.100046	-0.701291	Н	1.436373	6.825631	1.731032
С	-2.463970	-2.719997	1.807366	Н	0.141731	4.944073	2.764532
С	-3.135786	-4.026479	2.271125	0	-1.531413	3.215644	-2.392145
С	-0.934352	-2.893716	1.888248	0	-1.645307	2.660348	2.319843
С	-2.892579	-1.595983	2.776541	Н	-2.848163	2.283321	-0.135420
Н	-4.220479	-3.925103	2.359708	Н	-5.070321	4.002784	-1.381533
Н	-2.918013	-4.876161	1.617785	Н	-4.661241	-0.135887	-2.450014
Н	-2.749614	-4.277566	3.267981	С	-5.996461	0.876871	1.962903
Н	-0.397563	-2.016757	1.517782	Н	-6.474755	1.734021	2.446660

Н	-6.689348	0.031439	2.001549	С	2.606760	-2.370214	2.533928
Н	-5.120457	0.608459	2.566032	С	3.661612	-3.121116	3.371701
				С	1.734360	-1.536741	3.492978
IM1	-В			С	1.687045	-3.409219	1.854006
B3L	YP SCF energ	y in gas phase	: -3287.518286 a.u.	Н	4.284660	-3.787992	2.771436
M06	-L SCF energy	y in 1,4-dioxa	ne: -3287.468758 a.u	. Н	4.316027	-2.450845	3.936190
				Н	3.138154	-3.746850	4.107187
С	-3.106350	-1.442278	-0.750066	Н	0.918295	-1.039341	2.963441
С	-3.965985	-0.366467	-0.488693	Н	1.283086	-2.208655	4.234982
С	-5.214108	-0.866038	-0.024482	Н	2.311509	-0.781137	4.034328
С	-6.057663	0.201438	0.276798	Н	1.222713	-4.034742	2.628604
Ν	-3.816010	-2.602961	-0.449180	Н	0.890971	-2.925053	1.282121
С	-5.144533	-2.310087	0.006017	Н	2.227436	-4.074096	1.175295
0	-5.946963	-3.188461	0.314796	С	4.839944	-1.969095	0.335082
С	-3.404383	-3.986430	-0.615872	С	6.105054	-2.005749	1.214140
Н	-2.590297	-4.250763	0.066611	С	4.504520	-3.395961	-0.146030
Н	-4.279091	-4.593876	-0.375037	С	5.158398	-1.114315	-0.906724
Н	-3.094467	-4.187351	-1.645827	Н	6.438544	-1.001161	1.489098
С	-1.765675	-1.384218	-1.255485	Н	5.980559	-2.591928	2.127498
С	-1.159944	-0.222353	-1.696650	Н	6.915580	-2.471764	0.637891
S	-0.626341	-2.756017	-1.319800	Н	3.595713	-3.417920	-0.753995
С	0.204949	-0.363127	-2.092537	Н	5.329261	-3.759311	-0.773328
Н	-1.693396	0.722211	-1.721762	Н	4.392191	-4.103110	0.680075
С	0.702644	-1.683828	-1.847971	Н	6.008489	-1.559273	-1.441269
Н	0.685806	0.332112	-2.773478	Н	4.308892	-1.070176	-1.593480
С	-7.406834	0.130728	0.778979	Н	5.440095	-0.093894	-0.632982
С	-8.096549	-1.046767	1.035023	С	3.850933	0.351278	2.008123
S	-8.428429	1.516967	1.160174	С	3.366058	1.631567	1.628907
С	-9.409365	-0.836125	1.524284	С	4.745746	0.272069	3.093593
Н	-7.647556	-2.021084	0.868948	С	3.807244	2.754810	2.356834
С	-9.731846	0.491098	1.644753	С	2.388932	1.956985	0.513213
Н	-10.090917	-1.640871	1.776939	С	5.168664	1.396214	3.797933
Н	-10.659247	0.929641	1.988711	Н	5.122155	-0.694982	3.399754
Ν	-5.339220	1.366204	-0.000560	С	4.694147	2.651757	3.424430
С	-5.764677	2.748006	0.123994	Н	3.429741	3.732268	2.071112
Н	-4.917673	3.354726	-0.202450	С	2.883305	2.518530	-0.706513
Н	-6.627361	2.963218	-0.515009	С	0.995469	2.068234	0.800715
Н	-6.009009	3.002325	1.160612	Н	5.858791	1.288134	4.630285
С	-4.022354	1.072244	-0.482638	Н	5.005535	3.544377	3.960287
0	-3.217935	1.958769	-0.791810	С	1.990410	3.128762	-1.590562
Pd	1.615610	-0.442846	-0.411774	С	0.146822	2.682595	-0.138040
Br	1.947486	-2.557477	-3.155604	С	0.617985	3.227418	-1.330058
Р	3.261078	-1.190436	1.135672	Н	2.384396	3.564207	-2.504725

Н	-0.915629	2.748808	0.075817	С	-3.489184	-3.952929	-0.366153
С	0.411507	1.710829	2.168443	Н	-2.655506	-4.120105	0.324466
С	-0.867904	0.859477	2.080429	Н	-4.319741	-4.599612	-0.076090
С	0.146587	2.991787	2.988757	Н	-3.171744	-4.200482	-1.383837
Н	1.160206	1.130344	2.712720	С	-2.056875	-1.311444	-1.271566
Н	-0.694982	-0.060113	1.510870	С	-1.551069	-0.161070	-1.885159
Н	-1.205896	0.586149	3.087639	S	-0.788141	-2.533069	-1.129994
Н	-1.685386	1.398579	1.591195	С	-0.205182	-0.246500	-2.260480
Н	1.059716	3.582589	3.118094	Н	-2.163591	0.724352	-2.017622
Н	-0.599218	3.626472	2.496267	С	0.403657	-1.436466	-1.839691
Н	-0.233647	2.734869	3.984994	Н	0.332473	0.522745	-2.799540
С	4.374944	2.567332	-1.040090	С	-7.693842	0.011735	0.876093
С	4.945328	3.988330	-0.843576	С	-8.296296	-1.181628	1.252792
С	4.685558	2.070554	-2.465570	S	-8.773672	1.362585	1.222166
Н	4.897680	1.911116	-0.337771	С	-9.589770	-1.010152	1.803845
Н	4.813087	4.338208	0.184975	Н	-7.798631	-2.138553	1.129274
Н	6.018344	4.004247	-1.070439	С	-9.983613	0.302617	1.852228
Н	4.450444	4.705632	-1.508948	Н	-10.207050	-1.831280	2.151099
Н	4.250414	1.084836	-2.653439	Н	-10.915342	0.711883	2.219841
Н	4.299735	2.758673	-3.226390	Ν	-5.754016	1.299390	-0.113664
Н	5.769963	2.000392	-2.612641	С	-6.265527	2.657521	-0.089816
С	-0.332063	3.949339	-2.278417	Н	-5.481315	3.282659	-0.521572
С	-0.247613	3.426976	-3.724610	Н	-7.174986	2.755812	-0.691416
С	-0.097273	5.473111	-2.235697	Н	-6.468424	2.993833	0.932286
Н	-1.350480	3.756945	-1.919147	С	-4.444449	1.046198	-0.641081
Н	-0.460539	2.353569	-3.775497	Ο	-3.718058	1.945956	-1.070109
Н	-0.977797	3.943154	-4.358939	Pd	1.935183	-1.179438	-0.565343
Н	0.744436	3.594897	-4.161015	Br	1.878802	-2.377694	-3.123379
Н	-0.200431	5.861355	-1.216343	Р	3.729263	-1.058904	1.016223
Н	0.908423	5.728994	-2.591598	С	3.360254	-2.304203	2.467327
Н	-0.820973	5.994010	-2.874196	С	4.564783	-2.884519	3.235754
				С	2.430814	-1.597953	3.473763
TS1-	В			С	2.573250	-3.487225	1.856109
B3L	YP SCF energ	y in gas phase	: -3287.508575 a.u.	Н	5.239765	-3.457621	2.594623
M06	-L SCF energy	/ in 1,4 - dioxar	ne: -3287.455374 a.u.	Н	5.147634	-2.123709	3.761016
				Н	4.186830	-3.575891	4.000909
С	-3.374283	-1.419044	-0.727214	Н	1.528484	-1.217034	2.988037
С	-4.297645	-0.384200	-0.532448	Н	2.113788	-2.323270	4.234793
С	-5.486237	-0.917399	0.034342	Н	2.924317	-0.768314	3.988154
С	-6.380617	0.121307	0.294257	Н	2.276075	-4.173605	2.660772
Ν	-3.988254	-2.591593	-0.288076	Н	1.664564	-3.144566	1.349797
С	-5.315417	-2.345743	0.194184	Н	3.162625	-4.059041	1.134691
0	-6.045023	-3.242184	0.612381	С	5.371643	-1.566793	0.125781

С	6.683251	-1.415276	0.920084
С	5.233459	-3.024243	-0.362429
С	5.473629	-0.659608	-1.116548
Н	6.880351	-0.373237	1.186352
Н	6.711263	-2.017000	1.831777
Н	7.514247	-1.751163	0.285366
Н	4.305087	-3.179768	-0.922249
Н	6.068821	-3.251950	-1.037551
Н	5.272415	-3.749327	0.455724
Н	6.362488	-0.940757	-1.697306
Н	4.599828	-0.760605	-1.767497
Н	5.579968	0.392878	-0.840633
С	4.102495	0.574229	1.852439
С	3.432489	1.798232	1.570177
С	5.081624	0.579588	2.869127
С	3.783666	2.935227	2.329267
С	2.355097	2.089159	0.544576
С	5.412356	1.716580	3.599754
Н	5.604209	-0.337808	3.101513
С	4.751583	2.911418	3.327496
Н	3.263362	3.864360	2.116645
С	2.708157	2.705265	-0.684571
С	0.988722	2.030911	0.918646
Н	6.173684	1.662710	4.373214
Н	4.982467	3.815618	3.884298
С	1.698650	3.226365	-1.503206
С	0.020120	2.562191	0.058181
С	0.347431	3.178459	-1.151391
Н	1.985702	3.717452	-2.428792
Н	-1.027882	2.513782	0.343083
С	0.534000	1.490240	2.273181
С	-0.569215	0.423126	2.144729
С	0.073771	2.635821	3.198670
Н	1.394486	1.017340	2.754234
Н	-0.254708	-0.393830	1.484426
Н	-0.806533	0.000537	3.129110
Н	-1.495334	0.841398	1.735784
Н	0.871941	3.370735	3.351240
Н	-0.790069	3.161651	2.775572
Н	-0.218285	2.243933	4.180791
С	4.160994	2.914267	-1.114394
С	4.591988	4.384945	-0.931948
С	4.424758	2.461564	-2.563517

Η	4.796451	2.311517	-0.458373
Н	4.493814	4.706071	0.110084
Н	5.639272	4.518836	-1.229976
Н	3.978871	5.053212	-1.548154
Н	4.081393	1.436562	-2.733379
Н	3.917669	3.108526	-3.288353
Н	5.497949	2.505578	-2.785279
С	-0.737133	3.850698	-1.986913
С	-0.618138	3.578583	-3.496405
С	-0.753349	5.370006	-1.714572
Н	-1.700255	3.445402	-1.654086
Н	-0.634671	2.505745	-3.717809
Н	-1.457039	4.040425	-4.029831
Н	0.305111	3.994213	-3.917831
Η	-0.885155	5.579339	-0.647236
Н	0.186931	5.836988	-2.033719
Η	-1.572738	5.853265	-2.260689

IM2-B

B3LYP SCF energy in gas phase: -3287.539204 a.u. M06-L SCF energy in 1,4-dioxane: -3287.493428 a.u.

С	-3.762911	-0.995266	0.061639
С	-4.895373	-0.408748	-0.512989
С	-6.052544	-0.812958	0.208831
С	-7.172396	-0.173502	-0.319406
N	-4.212177	-1.768943	1.131447
С	-5.637390	-1.702036	1.272372
0	-6.247162	-2.321812	2.142158
С	-3.442787	-2.659516	1.981859
Н	-2.783265	-2.105310	2.658386
Н	-4.168756	-3.217665	2.576418
Н	-2.842852	-3.353420	1.385494
С	-2.399617	-0.836925	-0.347518
С	-1.994036	-0.224686	-1.529509
S	-0.968504	-1.265216	0.598949
С	-0.591502	-0.114335	-1.658119
Н	-2.708165	0.145254	-2.258031
С	0.122091	-0.590214	-0.571999
Н	-0.113186	0.302150	-2.537274
С	-8.536520	-0.295635	0.132041
С	-8.958657	-1.117385	1.168006
S	-9.913773	0.581099	-0.534972

С	-10.351887	-1.041660	1.415865	С	6.397978	1.116394	0.843209
Н	-8.264814	-1.742865	1.721215	C	4.443272	3.015606	1.270066
С	-11.000525	-0.169931	0.579750	С	2.564332	1.633391	0.497579
Н	-10.855184	-1.614839	2.186781	С	6.754242	2.358073	1.360839
Н	-12.053932	0.075175	0.548931	Н	7.179545	0.386560	0.680185
Ν	-6.719138	0.622747	-1.371670	С	5.766281	3.318123	1.575685
С	-7.484181	1.461509	-2.274479	Н	3.671897	3.761028	1.440815
Н	-6.761747	1.882043	-2.977433	С	2.014246	2.358656	-0.621085
Н	-8.230365	0.882828	-2.829016	С	1.708804	1.399952	1.634188
Н	-7.982704	2.279261	-1.743021	Н	7.793913	2.571060	1.593336
С	-5.295253	0.516463	-1.542116	Н	6.020962	4.294096	1.979633
0	-4.686964	1.129750	-2.420934	С	0.685076	2.775938	-0.585543
Pd	2.126554	-0.675844	-0.316664	С	0.383082	1.839837	1.594990
Br	1.815686	-2.911143	-1.427702	С	-0.148929	2.547908	0.515519
Р	4.566785	-0.879636	-0.112976	Н	0.292358	3.321188	-1.436659
С	5.246497	-2.156729	1.180965	Н	-0.251890	1.654658	2.457048
С	6.768372	-2.404132	1.133246	С	2.242812	0.844931	2.953579
С	4.891768	-1.648317	2.591797	С	1.449283	-0.375345	3.455290
С	4.516668	-3.502837	0.978591	С	2.280448	1.945136	4.036144
Н	7.107146	-2.805821	0.176429	Н	3.273559	0.526984	2.788548
Н	7.351000	-1.507718	1.361301	Н	1.432795	-1.176484	2.708649
Н	7.017996	-3.148529	1.900787	Н	1.902425	-0.767304	4.373833
Н	3.811885	-1.547996	2.721419	Н	0.409310	-0.118786	3.684841
Н	5.240156	-2.385502	3.326782	Н	2.888368	2.798751	3.719100
Н	5.368355	-0.692199	2.828429	Н	1.274468	2.313545	4.266617
Н	4.854516	-4.199857	1.757246	Н	2.712559	1.547885	4.962205
Н	3.432738	-3.395908	1.061679	С	2.870873	2.795063	-1.809120
Н	4.725603	-3.959854	0.009969	С	3.082287	4.324289	-1.820068
С	5.483672	-1.118899	-1.806091	С	2.287272	2.329447	-3.156907
С	6.928176	-0.583257	-1.841737	Н	3.857730	2.338112	-1.696380
С	5.483961	-2.608492	-2.211511	Н	3.567296	4.671206	-0.902118
С	4.668394	-0.345423	-2.861312	Н	3.717507	4.611201	-2.666475
Н	6.972212	0.495529	-1.667975	Н	2.129695	4.856495	-1.920856
Н	7.590210	-1.078534	-1.126684	Н	2.124177	1.247959	-3.170289
Н	7.337590	-0.770207	-2.843078	Н	1.330294	2.817705	-3.372963
Н	4.479163	-3.036580	-2.193391	Н	2.974899	2.582119	-3.972657
Н	5.861283	-2.682119	-3.239924	С	-1.573854	3.083901	0.607107
Н	6.139929	-3.218169	-1.585139	С	-2.195878	3.500549	-0.732514
Н	5.133379	-0.491627	-3.845267	С	-1.632526	4.255237	1.613659
Н	3.636850	-0.702163	-2.919696	Н	-2.186892	2.267962	1.014603
Н	4.659967	0.729250	-2.661597	Н	-2.194448	2.681688	-1.457050
С	5.063464	0.791121	0.526302	Н	-3.239222	3.795168	-0.578672
С	4.061342	1.763171	0.747476	Н	-1.676643	4.362175	-1.170845

Н	-1.247313	3.967741	2.597851	Р	-2.474923	-1.002242	2.143203
Н	-1.037422	5.104195	1.254998	С	-1.015835	-1.664632	3.262542
Н	-2.666159	4.596810	1.740401	С	-1.337406	-2.858563	4.187286
				С	0.090727	-2.150094	2.314645
IM3	8-B			С	-0.459827	-0.503639	4.111683
B3L	YP SCF energ	y in gas phase	: -3784.025744 a.u.	Н	-2.086584	-2.640413	4.947850
M06	6-L SCF energy	y in 1,4 - dioxar	ne: -3783.993039 a.u.	Н	-1.661389	-3.738031	3.624360
				Н	-0.412411	-3.131992	4.713968
С	4.001625	0.325508	-0.105032	Н	0.430123	-1.370902	1.635840
С	5.207298	0.676716	0.533989	Н	0.953568	-2.482404	2.908373
С	6.301690	0.145430	-0.202072	Н	-0.249798	-3.002117	1.725270
С	7.497078	0.474079	0.431859	Н	0.475251	-0.831997	4.586069
Ν	4.362225	-0.417992	-1.234707	Н	-0.226804	0.370588	3.502529
С	5.777004	-0.562856	-1.350769	Н	-1.139399	-0.199249	4.911521
0	6.311601	-1.176539	-2.275610	С	-3.843779	-0.322424	3.404218
С	3.496119	-0.973410	-2.258058	С	-3.909806	-0.912498	4.834603
Н	2.900943	-0.193213	-2.742187	С	-3.526441	1.182290	3.588324
Н	4.154832	-1.437511	-2.994788	С	-5.249360	-0.477290	2.783912
Н	2.821551	-1.730202	-1.847122	Н	-4.168048	-1.973556	4.880341
С	2.674630	0.645646	0.293230	Н	-2.993741	-0.757455	5.407863
С	2.353212	1.437620	1.400480	Н	-4.709883	-0.377701	5.364280
S	1.162743	0.111788	-0.472700	Н	-3.584210	1.732047	2.650023
С	0.971590	1.593314	1.604568	Н	-4.266940	1.613751	4.276558
Н	3.120960	1.880300	2.028660	Н	-2.536436	1.345330	4.024485
С	0.154603	0.909441	0.703065	Н	-5.957928	0.109366	3.385339
Н	0.557969	2.234170	2.374786	Н	-5.293669	-0.094927	1.764243
С	8.832752	0.124721	0.011969	Н	-5.591201	-1.516354	2.790632
С	9.149948	-0.604251	-1.125302	С	-3.178969	-2.634801	1.452805
S	10.313380	0.558905	0.870853	С	-3.040522	-3.190283	0.142656
С	10.543125	-0.806190	-1.298491	С	-3.900462	-3.400260	2.395394
Н	8.380882	-0.971921	-1.797669	С	-3.635209	-4.448626	-0.104069
С	11.300624	-0.240371	-0.306712	С	-2.299285	-2.657396	-1.069983
Н	10.967378	-1.353697	-2.133726	С	-4.477618	-4.635637	2.122539
Н	12.376714	-0.241822	-0.194500	Н	-4.007589	-3.019165	3.397978
Ν	7.150085	1.212450	1.564329	С	-4.343595	-5.171781	0.847047
С	8.012824	1.812485	2.560285	Н	-3.528766	-4.859657	-1.102533
Н	7.345790	2.314436	3.265354	С	-2.949824	-1.813046	-2.015607
Н	8.601575	1.059968	3.097200	С	-1.027418	-3.200322	-1.395182
Н	8.691497	2.551198	2.119243	Н	-5.018814	-5.164792	2.902891
С	5.722610	1.372878	1.680742	Н	-4.778739	-6.134522	0.590737
0	5.209830	1.999708	2.611974	С	-2.247548	-1.422661	-3.161013
Pd	-1.843837	1.007319	0.522197	С	-0.387192	-2.788614	-2.572399
Br	-4.371155	1.666730	0.123593	С	-0.960910	-1.878202	-3.454341

Н	-2.723329	-0.736522	-3.850194
Н	0.589110	-3.202612	-2.813278
С	-2.970772	4.211978	-1.659342
С	-2.649786	4.793799	-0.431579
С	-3.244018	5.984495	-0.020772
С	-4.174918	6.581432	-0.874142
С	-4.493157	5.998657	-2.112703
С	-3.889456	4.806874	-2.520315
С	-2.151173	2.969227	-1.855239
С	-1.335033	2.765267	-0.607567
С	-1.597893	3.972083	0.254889
Н	-2.980144	6.424981	0.936671
Н	-4.659014	7.510875	-0.582695
Н	-5.218760	6.486485	-2.759800
Н	-4.123141	4.344638	-3.475166
0	-1.050448	4.298196	1.301705
0	-2.114248	2.331408	-2.900477
Н	-0.279417	2.642590	-0.846679
С	-0.223050	-1.416609	-4.704059
С	0.135009	0.080455	-4.623498
С	-1.011057	-1.727365	-5.991221
Н	0.717618	-1.984512	-4.753016
Н	0.780714	0.280807	-3.762086
Н	0.661576	0.401317	-5.532073
Н	-0.756212	0.703467	-4.497011
Н	-1.251795	-2.794620	-6.063444
Н	-1.953109	-1.168132	-6.025208
Н	-0.427576	-1.446907	-6.877234
С	-0.352384	-4.316646	-0.589335
С	1.154166	-4.086123	-0.353438
С	-0.545361	-5.686012	-1.279067
Н	-0.839032	-4.380212	0.388187
Н	1.359244	-3.083562	0.029814
Н	1.538891	-4.816943	0.368727
Н	1.729625	-4.216007	-1.277701
Н	-1.602667	-5.945172	-1.387047
Н	-0.098116	-5.680431	-2.280283
Н	-0.060329	-6.480740	-0.697325
С	-4.424009	-1.404027	-1.895937
С	-5.365077	-2.566632	-2.292240
С	-4.804157	-0.186974	-2.759171
Н	-4.624281	-1.138294	-0.853051
Н	-5.277635	-3.431737	-1.632405

Η	-6.407568	-2.225559	-2.257192
Н	-5.155678	-2.896348	-3.318369
Н	-4.105294	0.642603	-2.643137
Н	-4.859651	-0.458320	-3.822716
Н	-5.793946	0.171226	-2.457993

IM4-B

B3LYP SCF energy in gas phase: -3770.535365 a.u. M06-L SCF energy in 1,4-dioxane: -3770.483507 a.u.

С	-4.067015	-0.120512	-0.378309
С	-5.181665	-0.094214	0.466897
С	-6.365088	-0.240717	-0.309295
С	-7.474526	-0.241454	0.534650
Ν	-4.554675	-0.275680	-1.676187
С	-5.986406	-0.354644	-1.699760
0	-6.625300	-0.484067	-2.743058
С	-3.813386	-0.305158	-2.923505
Н	-3.157049	-1.179713	-2.983034
Н	-4.559520	-0.366202	-3.718384
Н	-3.216177	0.602755	-3.054290
С	-2.688072	-0.015568	-0.001725
С	-2.236135	0.218831	1.291813
S	-1.289729	-0.185329	-1.075009
С	-0.827100	0.262592	1.404982
Н	-2.921418	0.347530	2.124734
С	-0.150092	0.032918	0.218081
Н	-0.321701	0.472977	2.340964
С	-8.858545	-0.373105	0.151584
С	-9.311505	-0.504396	-1.153909
S	-10.226439	-0.398106	1.264607
С	-10.720225	-0.621655	-1.252820
Н	-8.628705	-0.515255	-1.997909
С	-11.350161	-0.581454	-0.035676
Н	-11.247718	-0.731601	-2.193981
Н	-12.409077	-0.647646	0.176530
Ν	-6.989085	-0.092314	1.833121
С	-7.727236	-0.015421	3.079558
Н	-6.978769	0.118441	3.863540
Н	-8.414399	0.837189	3.090212
Н	-8.288593	-0.935365	3.274412
С	-5.554738	0.008578	1.854991
0	-4.920140	0.155750	2.899994

Pd	1.833192	-0.018441	-0.013887	С	4.927430	2.678926	0.724294
Р	2.180400	-2.440353	-0.208715	Н	5.504796	2.662147	-1.345373
С	1.301311	-3.635344	1.044149	Н	4.277562	2.349101	2.735437
С	1.471513	-5.147988	0.790968	С	-0.180829	3.251325	-1.322694
С	1.864008	-3.305369	2.440724	С	-0.237994	3.527872	0.047809
С	-0.211599	-3.323211	1.067016	С	-1.249348	4.324100	0.580704
Н	1.162090	-5.451467	-0.212372	С	-2.208225	4.836951	-0.295944
Н	2.491959	-5.496106	0.965028	С	-2.148990	4.562317	-1.673040
Н	0.830447	-5.686281	1.501244	С	-1.131197	3.765900	-2.202778
Н	1.696100	-2.256697	2.701212	С	1.017162	2.399457	-1.607033
Н	1.342131	-3.919108	3.186304	С	1.669980	2.086518	-0.293414
Н	2.933610	-3.522691	2.521670	С	0.930230	2.887553	0.735976
Н	-0.667559	-3.903908	1.879648	Н	-1.280481	4.533396	1.645899
Н	-0.412030	-2.268766	1.257647	Н	-3.012378	5.459387	0.087586
Н	-0.717551	-3.607222	0.143143	Н	-2.907073	4.979107	-2.331036
С	1.860173	-3.023495	-2.035799	Н	-1.070286	3.549658	-3.265485
С	2.720609	-4.215998	-2.496370	0	1.223460	3.054399	1.913433
С	0.376232	-3.386765	-2.244506	0	1.381913	2.052982	-2.726265
С	2.191871	-1.820167	-2.941618	Н	2.745607	2.263575	-0.290526
Н	3.790716	-3.995385	-2.463832	С	4.011980	-0.308688	2.915279
Н	2.535011	-5.123927	-1.915410	С	2.774250	0.194747	3.679611
Н	2.462931	-4.441722	-3.539437	С	5.246499	-0.330046	3.842164
Н	-0.298749	-2.595322	-1.912532	Н	3.816866	-1.340590	2.615440
Н	0.207550	-3.534055	-3.319370	Н	1.890968	0.209224	3.034700
Н	0.096794	-4.318752	-1.745119	Н	2.573378	-0.459756	4.536464
Н	1.997524	-2.096457	-3.986588	Н	2.910999	1.211221	4.062615
Н	1.587631	-0.938804	-2.707423	Н	6.125062	-0.743127	3.335394
Н	3.244589	-1.536756	-2.871144	Н	5.499234	0.678973	4.187747
С	4.008367	-2.695898	0.073790	Н	5.045297	-0.946960	4.726056
С	4.872393	-1.608369	0.351757	С	5.380572	0.101642	-2.064454
С	4.561490	-3.994145	0.063810	С	6.913512	0.092751	-2.248216
С	6.226506	-1.882076	0.637144	С	4.713673	0.839279	-3.243610
С	4.547487	-0.126509	0.387389	Н	5.050477	-0.941685	-2.085904
С	5.902213	-4.240722	0.342326	Н	7.414384	-0.496243	-1.473689
Н	3.935012	-4.839524	-0.179593	Н	7.173819	-0.338579	-3.222164
С	6.744259	-3.172372	0.641909	Н	7.318497	1.110940	-2.214434
Н	6.880634	-1.045076	0.862168	Н	3.634968	0.959654	-3.106599
С	4.986068	0.687636	-0.708026	Н	5.141212	1.840053	-3.378098
С	4.302485	0.497809	1.650954	Н	4.891463	0.287905	-4.174865
Н	6.280132	-5.259157	0.324227	C	5.183995	4.165752	0.931046
Н	7.793343	-3.337587	0.871346	C	4.268986	5.043858	0.056430
С	5.157589	2.059823	-0.511086	C	6.668186	4.516501	0.707113
С	4.475300	1.881623	1.776015	Н	4.946300	4.388742	1.979320

Η	3.214331	4.852800	0.276842	0	-4.881585	0.009503	2.893835
Н	4.468390	6.105359	0.244541	Pd	1.733111	-0.164736	0.042745
Н	4.434376	4.857625	-1.011500	Р	2.046276	-2.515005	-0.312026
Н	7.321348	3.916753	1.350852	С	1.099376	-3.692522	0.907427
Н	6.969226	4.341554	-0.332690	С	0.959959	-5.170609	0.488116
Н	6.847700	5.574617	0.930372	С	1.821178	-3.638431	2.268318
				С	-0.317244	-3.108423	1.107361
TS	2-В			Н	0.409318	-5.295970	-0.447120
B31	LYP SCF energ	y in gas phase	: -3770.510995 a.u.	Н	1.920303	-5.684915	0.397784
M0	6-L SCF energ	y in 1,4-dioxar	ne: -3770.459932 a.u.	Н	0.391855	-5.695938	1.267247
				Н	1.887324	-2.614693	2.645251
С	-4.044125	0.132697	-0.398797	Н	1.243029	-4.219854	2.998287
С	-5.149636	-0.023383	0.448940	Н	2.829113	-4.061906	2.225752
С	-6.324586	-0.189667	-0.334255	Н	-0.845408	-3.714677	1.855289
С	-7.423323	-0.356569	0.508106	Н	-0.284434	-2.078522	1.469303
N	-4.534859	0.064891	-1.705304	Н	-0.915935	-3.122023	0.193677
С	-5.953634	-0.134518	-1.730563	С	1.635747	-3.002620	-2.140259
0	-6.591809	-0.218896	-2.779116	С	2.233621	-4.332350	-2.637994
С	-3.807918	0.192776	-2.954646	С	0.104468	-3.031167	-2.322072
Н	-3.075439	-0.611515	-3.080629	С	2.195831	-1.873097	-3.027239
Н	-4.555051	0.120973	-3.747762	Н	3.327021	-4.318280	-2.630445
Н	-3.297558	1.158502	-3.026079	Н	1.893184	-5.199611	-2.066689
С	-2.681084	0.322007	-0.017683	Н	1.917055	-4.485994	-3.678222
С	-2.231662	0.435551	1.297530	Н	-0.366439	-2.114193	-1.957804
S	-1.294144	0.428219	-1.116060	Н	-0.118582	-3.116072	-3.393880
С	-0.843628	0.614265	1.419044	Н	-0.364919	-3.885260	-1.826926
Н	-2.916868	0.389005	2.139676	Н	1.931392	-2.075219	-4.074021
С	-0.145505	0.591551	0.206028	Н	1.786340	-0.895130	-2.756126
Н	-0.347104	0.776619	2.368112	Н	3.286031	-1.818794	-2.970302
С	-8.796581	-0.557151	0.117494	С	3.862481	-2.907720	-0.082996
С	-9.251179	-0.603995	-1.193363	С	4.824335	-1.906749	0.221403
S	-10.148970	-0.783863	1.227138	С	4.301805	-4.244802	-0.162911
С	-10.648327	-0.816088	-1.298711	С	6.158319	-2.306716	0.440514
Н	-8.577559	-0.487690	-2.036735	С	4.606429	-0.412818	0.356597
С	-11.268655	-0.932438	-0.081609	С	5.626386	-4.615472	0.051256
Н	-11.174765	-0.879893	-2.244774	Н	3.588716	-5.022117	-0.399875
Н	-12.317762	-1.095999	0.126464	С	6.565600	-3.634675	0.360517
Ν	-6.936845	-0.293113	1.813493	Н	6.888098	-1.540373	0.684582
С	-7.665100	-0.395937	3.063693	С	4.974258	0.449693	-0.717275
Н	-6.920638	-0.281220	3.854503	С	4.370622	0.152055	1.643264
Н	-8.415895	0.395459	3.160232	Н	5.915685	-5.660385	-0.020005
Η	-8.152018	-1.371260	3.169194	Н	7.604864	-3.896803	0.539217
С	-5.515060	-0.083261	1.840553	С	5.051273	1.828618	-0.490984

С	4.457893	1.540474	1.805801	Н	4.460707	4.113315
С	4.799597	2.400802	0.760110	Н	3.291233	4.580358
Н	5.339535	2.471867	-1.316475	Н	4.458045	5.845051
Н	4.269198	1.966644	2.787191	Н	4.852992	4.662410
С	0.159549	3.877421	-1.110440	Н	6.908762	3.628233
С	0.106502	4.100024	0.272126	Н	7.039348	4.026168
С	-0.521824	5.227159	0.797758	Н	6.599890	5.286709
С	-1.106462	6.125322	-0.097804			
С	-1.052477	5.902936	-1.484470	3		
С	-0.414163	4.776499	-2.007751	B	3LYP SCF energ	y in gas phas
С	0.903188	2.613936	-1.389103	М	06-L SCF energ	y in 1,4 - dioxa
С	1.237039	1.994494	-0.053137			
С	0.823179	3.003985	0.991511	C	-1.696891	-0.389568
Н	-0.552217	5.389161	1.870945	C	-0.576383	0.411990
Н	-1.610808	7.010924	0.279036	C	0.576362	-0.412184
Н	-1.515186	6.620995	-2.156048	C	1.696880	0.389389
Н	-0.362110	4.595148	-3.077038	Ν	-1.248986	-1.709394
0	1.062206	2.968570	2.186653	C	0.169651	-1.789668
0	1.201087	2.181625	-2.491623	0	0.774999	-2.859941
Н	2.331059	1.816765	0.027065	C	-2.010359	-2.929561
С	4.134487	-0.708483	2.883334	Н	-2.494900	-2.945341
С	2.899676	-0.267927	3.691053	Н	-1.288540	-3.746928
С	5.390591	-0.728572	3.779551	Н	-2.766976	-3.065108
Н	3.962147	-1.735039	2.550331	C	-3.056513	0.050862
Н	2.006343	-0.233784	3.058058	C	-3.466545	1.376161
Н	2.718652	-0.969106	4.514737	S	-4.438622	-1.007962
Н	3.028363	0.727771	4.128815	C	-4.857002	1.538642
Н	6.264892	-1.103351	3.236334	Н	-2.770067	2.192913
Н	5.628793	0.275755	4.149040	C	-5.531385	0.351029
Н	5.228739	-1.377136	4.648937	Н	-5.355393	2.499348
С	5.375648	-0.076600	-2.095517	C	3.056531	-0.050987
С	6.909018	-0.050569	-2.274275	C	3.466604	-1.376278
С	4.698977	0.688743	-3.250258	S	4.438643	1.007941
Н	5.063119	-1.123452	-2.158197	C	4.857099	-1.538668
Н	7.416765	-0.658904	-1.519128	Н	2.770137	-2.193084
Н	7.183908	-0.439539	-3.262179	C	5.531468	-0.350997
Н	7.293846	0.973262	-2.197411	Н	5.355530	-2.499349
Н	3.619205	0.783343	-3.104657	Ν	1.248975	1.709214
Н	5.108977	1.699836	-3.356763	C	2.010334	2.929365
Н	4.878868	0.169040	-4.198961	Н	1.288484	3.746722
С	4.976361	3.892113	1.022053	Н	2.495002	2.944945
С	4.357056	4.790428	-0.062018	Н	2.766847	3.065104
С	6.469933	4.227393	1.218349	С	-0.169667	1.789481

H	4.460707	4.113315	1.966005
Н	3.291233	4.580358	-0.200049
Н	4.458045	5.845051	0.219155
H	4.852992	4.662410	-1.031295
H	6.908762	3.628233	2.023744
H	7.039348	4.026168	0.302640
Н	6.599890	5.286709	1.470489

phase: -2664.853382 a.u. -dioxane: -2664.780303 a.u.

-0.283577

-0.059447

0.060015

0.284062

-0.303339 -0.093849

-0.074177

-0.503556 -1.485137

-0.447908

0.275786

-0.465398 -0.435212

-0.735149

-0.632939

-0.272979

-0.803510

-0.661252

0.465804

0.435803

0.735125

0.633338

0.273805

0.803570

0.661755 0.303782

0.504152

0.448758

1.485671 -0.275261

0.094323

С	-3.466545	1.376161
S	-4.438622	-1.007962
С	-4.857002	1.538642
Н	-2.770067	2.192913
С	-5.531385	0.351029
Н	-5.355393	2.499348
С	3.056531	-0.050987
С	3.466604	-1.376278
S	4.438643	1.007941
С	4.857099	-1.538668
Н	2.770137	-2.193084
С	5.531468	-0.350997
Н	5.355530	-2.499349
Ν	1.248975	1.709214
С	2.010334	2.929365
Н	1.288484	3.746722
Н	2.495002	2.944945
Н	2.766847	3.065104
С	-0.169667	1.789481

0	-0.775038	2.859742	0.074711	С	-0.120435	1.796008	0.000123
С	6.997015	-0.153971	1.092127	0	-0.705052	2.878788	0.000062
С	7.640600	1.098957	0.452349	С	2.113635	2.901626	-0.000232
С	7.925243	-1.309449	0.643734	Н	2.744112	2.965823	-0.892727
С	8.915928	0.681905	-0.182107	Н	1.406222	3.733314	-0.000495
С	9.078641	-0.703837	-0.073585	Н	2.743946	2.966269	0.892355
С	9.869328	1.474262	-0.823151	С	3.088122	-0.100168	0.000037
С	10.201336	-1.342484	-0.601846	С	3.462293	-1.442907	0.000071
С	10.992835	0.839192	-1.352421	S	4.514693	0.932728	-0.000026
Н	9.728293	2.547768	-0.902498	С	4.852204	-1.636239	0.000038
С	11.157008	-0.553921	-1.242811	Н	2.729918	-2.244266	0.000124
Н	10.313527	-2.418624	-0.512679	С	5.585358	-0.454233	-0.000018
Н	11.754517	1.425000	-1.859312	Н	5.322695	-2.611059	0.000041
Н	12.042525	-1.018705	-1.667252	С	-3.088121	0.100152	0.000286
С	-6.996896	0.154099	-1.092328	С	-3.462286	1.442892	0.000370
С	-7.640627	-1.098850	-0.452744	S	-4.514696	-0.932740	0.000143
С	-7.925123	1.309586	-0.643957	С	-4.852196	1.636229	0.000279
С	-8.915988	-0.681781	0.181636	Н	-2.729910	2.244250	0.000454
С	-9.078621	0.703978	0.073203	С	-5.585355	0.454227	0.000126
С	-9.869486	-1.474137	0.822534	Н	-5.322685	2.611051	0.000314
С	-10.201335	1.342642	0.601405	Ν	-1.309753	-1.692078	0.000289
С	-10.993010	-0.839050	1.351749	С	-2.113635	-2.901647	0.000398
Н	-9.728514	-2.547657	0.901810	Η	-1.406221	-3.733334	0.000492
С	-11.157104	0.554080	1.242226	Н	-2.744046	-2.965972	0.892933
Н	-10.313464	2.418794	0.512308	Н	-2.744011	-2.966163	-0.892150
Н	-11.754768	-1.424858	1.858526	С	0.120435	-1.796029	0.000287
Н	-12.042636	1.018876	1.666620	Ο	0.705052	-2.878809	0.000268
0	7.181466	2.223211	0.481105	С	-7.014129	0.290970	-0.000002
0	7.762385	-2.494006	0.855923	С	-7.715540	-1.026571	-0.000321
0	-7.762210	2.494147	-0.856086	С	-7.991696	1.257127	0.000131
0	-7.181568	-2.223133	-0.481577	С	-9.190982	-0.733829	-0.000357
Н	7.140731	-0.045101	2.181704	С	-9.343084	0.663864	-0.000077
Н	-7.140441	0.045335	-2.181936	С	-10.279007	-1.581103	-0.000604
				С	-10.606595	1.237215	-0.000039
4				С	-11.566306	-1.006401	-0.000567
B3I	LYP SCF energ	y in gas phase	: -2664.835688 a.u.	Н	-10.138392	-2.657974	-0.000818
M0	6-L SCF energy	y in 1,4-dioxar	ne: -2664.775799 a.u.	С	-11.722815	0.378054	-0.000289
				Н	-10.758899	2.315026	0.000175
С	1.729667	0.361774	0.000092	Н	-12.443321	-1.646882	-0.000756
С	0.570206	-0.422321	0.000328	Н	-12.721295	0.805909	-0.000265
С	-0.570207	0.422301	0.000347	С	7.014130	-0.290970	-0.000065
С	-1.729667	-0.361794	0.000305	С	7.715531	1.026578	-0.000156
Ν	1.309753	1.692057	-0.000023	С	7.991705	-1.257119	-0.000020

С	9.190974	0.733847	-0.000180	Н	3.183584	2.225475	-0.352125
С	9.343088	-0.663844	-0.000089	С	5.983361	0.408488	-0.742532
С	10.278993	1.581130	-0.000280	Н	5.785578	2.553032	-0.562283
С	10.606604	-1.237184	-0.000090	С	-2.648822	-0.026377	-0.023170
С	11.566297	1.006439	-0.000280	С	-3.048685	-1.374365	-0.106106
Н	10.138372	2.658000	-0.000352	S	-4.057405	1.019632	0.186667
С	11.722817	-0.378015	-0.000186	С	-4.422214	-1.554931	0.002614
Н	10.758917	-2.314994	-0.000028	Н	-2.332946	-2.178161	-0.244690
Н	12.443306	1.646929	-0.000353	С	-5.139232	-0.358822	0.159329
Н	12.721301	-0.805862	-0.000192	Н	-4.928072	-2.511154	-0.035527
0	-7.199677	-2.131760	-0.000529	Ν	-0.852464	1.731783	-0.040518
0	-7.758982	2.581758	0.000419	С	-1.627300	2.950364	0.134533
0	7.758999	-2.581750	0.000079	Н	-0.906618	3.770067	0.137738
0	7.199659	2.131759	-0.000212	Н	-2.333982	3.095932	-0.687901
Н	-8.600334	3.066427	0.000454	Н	-2.170220	2.945037	1.084403
Н	8.600353	-3.066415	0.000158	С	0.569139	1.813125	-0.161494
				0	1.181912	2.875872	-0.127677
O_2				С	-6.556793	-0.213765	0.346007
B3L	YP SCF energ	y in gas phase	: -150.316605 a.u.	С	-7.532343	-1.283393	-0.102522
M06	5-L SCF energy	y in 1,4 - dioxar	ne: -150.319562 a.u.	С	-7.237946	1.106487	0.099568
				С	-8.826263	-0.582673	-0.356572
0	0.000000	0.000000	0.607148	С	-8.656514	0.803151	-0.238200
0	0.000000	0.000000	-0.607148	С	-10.061833	-1.131141	-0.689553
				С	-9.716185	1.681417	-0.449723
TS1				С	-11.129398	-0.254250	-0.898856
B3L	YP SCF energ	y in gas phase	: -2815.136497 a.u.	Н	-10.178964	-2.206563	-0.780780
M06	-L SCF energy	y in 1,4 - dioxar	ne: -2815.075540 a.u.	С	-10.959106	1.135096	-0.780244
				Н	-9.569745	2.753384	-0.358874
С	2.138634	-0.365113	-0.484079	Н	-12.107576	-0.649427	-1.158779
С	0.989802	0.431876	-0.314362	Н	-11.808072	1.791500	-0.950113
С	-0.152085	-0.388126	-0.280249	С	7.465737	0.232526	-0.935192
С	-1.304717	0.414896	-0.109205	С	8.070903	-1.063189	-0.345685
Ν	1.699311	-1.679712	-0.554491	С	8.358074	1.353485	-0.344424
С	0.271584	-1.766242	-0.433563	С	9.315015	-0.695773	0.373039
0	-0.330270	-2.835285	-0.469747	С	9.478535	0.694813	0.376441
С	2.477257	-2.895860	-0.727026	С	10.238705	-1.534366	0.998510
Н	3.182317	-3.039682	0.097303	С	10.572343	1.291617	1.004532
Н	1.758644	-3.717440	-0.731628	С	11.333626	-0.940857	1.626870
Н	3.022111	-2.889935	-1.676028	Н	10.097473	-2.610690	0.991532
С	3.496938	0.085611	-0.570234	С	11.498551	0.456408	1.629716

S60

Н

Н

Н

10.685470

12.071825

12.361176

2.371279

-1.563226

0.887562

1.002172

2.124659

2.129828

С

S

С

3.894613

4.902105

5.290556

1.416350

-0.959422

1.590700

-0.486379

-0.774766

-0.590797

0	8.190878	2.549867	-0.465432
0	7.602619	-2.177838	-0.464929
0	-6.720547	2.210727	0.164868
0	-7.324772	-2.477337	-0.232117
Н	7.686048	0.203054	-2.017023
Н	-6.765870	-0.319424	1.706706
0	-7.032351	-0.449734	2.902231
0	-8.157332	-1.053959	2.989067

Int-1

B3LYP SCF energy in gas phase: -2815.172195 a.u. M06-L SCF energy in 1,4-dioxane: -2815.100577 a.u.

С	2.232185	-0.280106	-0.487073
С	1.108877	0.575216	-0.376068
С	-0.060546	-0.186052	-0.324157
С	-1.191443	0.681676	-0.209533
Ν	1.734443	-1.573376	-0.503354
С	0.304868	-1.589709	-0.403869
0	-0.345865	-2.630495	-0.398820
С	2.459536	-2.830509	-0.604425
Н	3.143044	-2.964956	0.239165
Н	1.705663	-3.619405	-0.584630
Н	3.019743	-2.892136	-1.542211
С	3.606405	0.107151	-0.567020
С	4.061721	1.423854	-0.538535
S	4.968482	-1.006739	-0.693372
С	5.464380	1.532043	-0.622606
Н	3.384968	2.268521	-0.457216
С	6.107416	0.314262	-0.703784
Н	6.001769	2.471781	-0.628361
С	-2.537828	0.311056	-0.129074
С	-2.998493	-1.038636	-0.153484
S	-3.909872	1.427223	0.016578
С	-4.360992	-1.163632	-0.061545
Н	-2.309713	-1.872918	-0.238144
С	-5.052053	0.082430	0.040984
Н	-4.905920	-2.098497	-0.063042
Ν	-0.669776	1.978786	-0.194486
С	-1.389442	3.240225	-0.096495
Н	-0.632298	4.025771	-0.121570
Н	-2.074658	3.373688	-0.938552
Н	-1.947454	3.308164	0.841833

С	0.747988	1.985827	-0.294712
0	1.417200	3.013292	-0.301391
С	-6.417368	0.287466	0.147014
С	-7.461442	-0.741240	0.177554
С	-7.056897	1.609715	0.246644
С	-8.765817	-0.021420	0.297867
С	-8.527627	1.362916	0.338431
С	-10.058046	-0.533774	0.366099
С	-9.571018	2.271814	0.447769
С	-11.112045	0.382787	0.476409
Н	-10.241492	-1.605619	0.334790
С	-10.874490	1.763667	0.516724
Н	-9.371809	3.338803	0.477810
Н	-12.133370	0.016235	0.531741
Н	-11.714655	2.447473	0.602582
С	7.583677	0.066603	-0.855532
С	8.118472	-1.232621	-0.208572
С	8.513858	1.167759	-0.285239
С	9.368815	-0.896418	0.513959
С	9.594459	0.485067	0.472589
С	10.245848	-1.752906	1.180980
С	10.705534	1.054213	1.095926
С	11.358127	-1.187007	1.804399
Н	10.056889	-2.821536	1.208820
С	11.585400	0.200823	1.762204
Н	10.866833	2.127078	1.058807
Н	12.061221	-1.823895	2.333593
Н	12.459935	0.610363	2.259734
0	8.397700	2.365544	-0.445020
0	7.597528	-2.327024	-0.292055
0	-6.490332	2.698377	0.252447
0	-7.300745	-1.967383	0.115921
Н	7.825092	-0.011095	-1.930485
Н	-8.346588	-3.329348	0.134527
0	-8.848216	-4.196101	0.134869
0	-10.130987	-3.859875	0.235477

TS2

B3LYP SCF energy in gas phase: -2815.137609 a.u. M06-L SCF energy in 1,4-dioxane: -2815.077847 a.u.

С	2.155178	-0.363483	-0.003047
С	0.993279	0.449010	0.092219

С	-0.150284	-0.364392	0.049692
С	-1.305273	0.438466	0.143553
N	1.696833	-1.679239	-0.104234
С	0.274289	-1.750824	-0.076812
0	-0.344820	-2.807273	-0.150928
С	2.474234	-2.903959	-0.222298
Н	3.121427	-3.050697	0.647271
Н	1.750564	-3.719360	-0.272564
Н	3.080918	-2.904826	-1.132498
С	3.496708	0.066233	0.003735
С	3.894328	1.427018	0.115775
S	4.913686	-0.987587	-0.122051
С	5.256694	1.610906	0.102882
Н	3.166687	2.227447	0.202397
С	6.001000	0.400654	-0.021325
Н	5.765585	2.563514	0.177548
С	-2.669950	-0.007583	0.141227
С	-3.061150	-1.343236	0.035851
S	-4.076211	1.044666	0.252415
С	-4.453689	-1.516223	0.052866
Н	-2.341720	-2.151210	-0.051961
С	-5.161404	-0.324478	0.155456
Н	-4.953879	-2.473913	-0.013702
Ν	-0.867642	1.749886	0.243167
С	-1.649836	2.970412	0.366369
Н	-0.929421	3.788488	0.420174
Н	-2.297456	3.118615	-0.502895
Н	-2.256140	2.964828	1.277076
С	0.565261	1.829443	0.217091
0	1.167944	2.896307	0.292590
С	-6.608076	-0.156274	0.255157
С	-7.552378	-1.229303	-0.268445
С	-7.247422	1.168285	-0.116261
С	-8.777635	-0.525656	-0.735097
С	-8.607230	0.861923	-0.635408
С	-9.964935	-1.074069	-1.215912
С	-9.617636	1.742634	-1.014812
С	-10.980746	-0.194832	-1.596681
Н	-10.083934	-2.150572	-1.289973
С	-10.809582	1.196673	-1.496479
Н	-9.472112	2.815419	-0.934752
Н	-11.918930	-0.588453	-1.977522
Н	-11.618825	1.854591	-1.800470

С	7.376526	0.262691	-0.063208
С	8.088600	-1.019328	-0.193290
С	8.372250	1.356348	0.015503
С	9.547983	-0.696815	-0.192953
С	9.713092	0.690909	-0.070368
С	10.643741	-1.547064	-0.290665
С	10.978780	1.265136	-0.041722
С	11.920158	-0.973924	-0.262531
Н	10.502604	-2.619599	-0.384947
С	12.085536	0.414116	-0.139439
Н	11.092698	2.340799	0.053852
Н	12.797831	-1.610259	-0.336569
Н	13.088823	0.830985	-0.120185
0	8.176732	2.560648	0.127913
0	7.580653	-2.133633	-0.283671
0	-6.734006	2.268143	-0.012865
0	-7.370134	-2.435560	-0.257199
Н	-6.890176	-0.265567	1.507957
0	-7.213916	-0.560817	2.719965
0	-8.294229	-1.417112	2.613199
Н	-7.876717	-2.300130	2.537638

TS3

B3LYP SCF energy in gas phase: -2815.143313 a.u. M06-L SCF energy in 1,4-dioxane: -2815.088909 a.u.

С	2.156861	-0.529046	-0.012829
С	0.964048	0.228091	-0.051583
С	-0.142449	-0.632239	-0.026186
С	-1.339849	0.132291	-0.064672
N	1.767560	-1.862560	0.035736
С	0.341165	-1.998634	0.029985
0	-0.219119	-3.090721	0.067181
С	2.598827	-3.053326	0.085610
Н	3.219680	-3.069681	0.986786
Н	1.912272	-3.901743	0.108143
Н	3.237818	-3.131376	-0.799458
С	3.491849	-0.031004	-0.020897
С	3.835738	1.324289	-0.073528
S	4.950816	-1.020970	0.034757
С	5.215228	1.557730	-0.069728
Η	3.081938	2.104375	-0.112714
С	5.982666	0.395435	-0.014000

Н	5.672200	2.537684	-0.106081	
С	-2.663001	-0.356451	-0.056582	
С	-3.007867	-1.726073	-0.008447	
S	-4.125908	0.637161	-0.102728	
С	-4.371733	-1.960458	-0.008797	
Н	-2.251224	-2.503452	0.023940	
С	-5.153562	-0.785616	-0.053449	
Н	-4.837175	-2.936807	0.024347	
Ν	-0.940264	1.467195	-0.113061	
С	-1.770108	2.660962	-0.164456	
Н	-1.082761	3.508326	-0.191283	
Н	-2.393237	2.674972	-1.063628	
Н	-2.406566	2.742563	0.721662	
С	0.481044	1.598399	-0.107616	
0	1.051725	2.683668	-0.145360	
С	-6.560849	-0.707031	-0.052433	
С	-7.345706	0.465634	-0.087431	
С	-7.485715	-1.873914	-0.002005	
С	-8.780910	0.105482	-0.064810	
С	-8.871573	-1.297330	-0.007709	
С	-9.924581	0.896065	-0.110793	
С	-10.094682	-1.942467	0.014590	
С	-11.167323	0.242645	-0.087040	
Н	-9.864323	1.978006	-0.171095	
С	-11.255006	-1.150860	-0.022277	
Н	-10.144698	-3.026479	0.055122	
Н	-12.077729	0.834562	-0.118432	
Н	-12.231824	-1.626032	-0.002876	
С	7.414919	0.306939	0.003482	
С	8.218037	-0.808112	0.058253	
С	8.333218	1.494219	-0.038520	
С	9.648628	-0.455911	0.056108	
С	9.734129	0.945504	-0.002752	
С	10.796028	-1.235799	0.099262	
С	10.950944	1.595972	-0.019738	
С	12.040698	-0.578903	0.082223	
Н	10.762301	-2.322668	0.145016	
С	12.120427	0.811898	0.023723	
Н	10.995166	2.680021	-0.065362	
Η	12.952359	-1.168342	0.115234	
Н	13.093506	1.293740	0.011696	
0	-6.855755	1.654897	-0.174990	
Н	-7.428413	2.503389	0.295866	

0	-7.206344	-3.062553	0.042503
0	8.034104	2.673541	-0.091210
0	7.750933	-2.065913	0.107437
Η	8.485890	-2.699994	0.140986
0	-7.964778	3.529460	0.896272
0	-8.843520	4.003514	0.083318

Int-2

B3LYP SCF energy in gas phase: -2815.164239 a.u. M06-L SCF energy in 1,4-dioxane: -2815.098815 a.u.

С	2.159845	-0.552098	0.000080
С	0.956101	0.200014	0.000047
С	-0.139597	-0.661815	0.000048
С	-1.351093	0.102121	-0.000002
Ν	1.776496	-1.887356	0.000119
С	0.353300	-2.029371	0.000090
0	-0.203428	-3.123811	0.000117
С	2.614334	-3.075245	0.000266
Н	3.244261	-3.118108	0.894049
Н	1.933069	-3.928051	0.000419
Н	3.244193	-3.118392	-0.893552
С	3.488008	-0.046280	0.000063
С	3.823837	1.314367	0.000091
S	4.954723	-1.028230	-0.000050
С	5.200192	1.556243	0.000060
Н	3.064620	2.090146	0.000124
С	5.976592	0.396958	-0.000001
Н	5.651090	2.539669	0.000090
С	-2.659294	-0.387851	0.000034
С	-2.995416	-1.774803	0.000117
S	-4.134919	0.599594	0.000127
С	-4.343713	-2.022112	0.000113
Н	-2.229163	-2.543292	0.000143
С	-5.149829	-0.842495	0.000054
Н	-4.806402	-3.000660	0.000157
Ν	-0.949184	1.441088	-0.000060
С	-1.783305	2.634045	-0.000199
Н	-1.099536	3.484561	-0.000320
Н	-2.413097	2.678829	-0.893409
Н	-2.413066	2.679068	0.893021
С	0.465242	1.574288	-0.000019
0	1.039473	2.657605	-0.000069

С	-6.533388	-0.780404	-0.000021	Ν	0.903392	1.446148	-0.066048
С	-7.318802	0.447162	-0.000104	С	-0.520944	1.590179	-0.064956
С	-7.460932	-1.935367	0.000032	0	-1.076122	2.684574	-0.092485
С	-8.756485	0.056266	-0.000085	С	1.742099	2.633869	-0.099853
С	-8.839619	-1.346199	0.000013	Н	2.367454	2.655091	-0.997434
С	-9.900257	0.849405	-0.000294	Н	1.060479	3.486145	-0.117572
С	-10.066910	-1.994330	-0.000047	Н	2.376732	2.699286	0.788990
С	-11.139408	0.195614	-0.000368	С	2.614543	-0.393511	-0.023087
Н	-9.831505	1.935051	-0.000509	С	2.947996	-1.759701	0.014886
С	-11.223324	-1.203654	-0.000224	S	4.077741	0.591866	-0.057357
Н	-10.116109	-3.079089	0.000022	С	4.316739	-2.002339	0.016546
Н	-12.052749	0.784153	-0.000576	Н	2.187369	-2.533439	0.039809
Н	-12.200344	-1.679436	-0.000286	С	5.099998	-0.835277	-0.019952
С	7.408272	0.319034	-0.000028	Н	4.774538	-2.982448	0.042769
С	8.220500	-0.791750	-0.000090	С	-3.539252	-0.035179	-0.009989
С	8.317596	1.514422	0.000029	С	-3.865782	1.344195	-0.048577
С	9.647813	-0.428219	-0.000092	S	-5.006031	-1.023047	0.025811
С	9.722252	0.975188	-0.000026	С	-5.221249	1.594565	-0.049781
С	10.801494	-1.200310	-0.000142	Н	-3.098149	2.111063	-0.074171
С	10.934138	1.635317	-0.000014	С	-6.022279	0.419553	-0.011816
С	12.040776	-0.533556	-0.000127	Н	-5.681564	2.573960	-0.076440
Н	10.776276	-2.288351	-0.000191	Ν	-1.828924	-1.869709	0.033219
С	12.109538	0.859251	-0.000065	С	-2.666295	-3.059639	0.067097
Н	10.969948	2.720616	0.000036	Н	-1.983938	-3.911166	0.085155
Н	12.957122	-1.116576	-0.000166	Н	-3.292135	-3.080733	0.963993
Н	13.078868	1.348695	-0.000055	Н	-3.300718	-3.125252	-0.821552
0	-6.848997	1.596008	-0.000033	С	-0.406924	-2.009896	0.031831
Н	-7.529522	3.167197	0.000655	Ο	0.154111	-3.099912	0.059345
0	-7.193628	-3.130591	0.000056	С	-7.407202	0.345111	-0.003336
0	8.008790	2.692346	0.000066	С	-8.181982	-0.905431	0.037052
0	7.762495	-2.053500	-0.000146	С	-8.346749	1.488771	-0.033363
Н	8.501768	-2.683535	-0.000188	С	-9.624022	-0.512320	0.031267
0	-7.811761	4.128495	0.000605	С	-9.719700	0.886770	-0.010092
0	-9.141508	4.104265	-0.000127	С	-10.760938	-1.312009	0.059461
				С	-10.955387	1.523210	-0.024401
TS4	4			С	-12.007648	-0.676115	0.045255
B3I	LYP SCF energ	y in gas phase	: -2815.151888 a.u.	Н	-10.673293	-2.393875	0.091261
M0	6-L SCF energy	y in 1,4 - dioxar	ne: -2815.095918 a.u.	С	-12.103523	0.723219	0.003771
				Н	-11.015727	2.606941	-0.056494
С	1.285937	0.110173	-0.031469	Н	-12.916179	-1.271782	0.066478
С	0.086730	-0.642317	-0.006945	Н	-13.085013	1.189384	-0.006466
С	-1.014180	0.225219	-0.026621	С	6.514934	-0.761393	-0.027154
С	-2.216473	-0.532804	-0.001599	С	7.305181	0.402557	-0.062651

С	7.429667	-1.933197	0.007245	С	3.456512	-1.405699	0.000169
С	8.741870	0.035853	-0.058726	S	4.503449	1.025504	-0.000004
С	8.821193	-1.368179	-0.012865	С	4.804192	-1.600269	0.000125
С	9.896072	0.812790	-0.080786	Н	2.717617	-2.200490	0.000227
С	10.036641	-2.025972	0.013044	С	5.572206	-0.384311	0.000029
С	11.132683	0.147497	-0.050955	Н	5.305513	-2.559934	0.000156
Н	9.849549	1.896938	-0.115766	Ν	1.289562	1.736260	0.000121
С	11.206153	-1.246994	-0.005706	С	2.072656	2.964907	0.000180
Н	10.073684	-3.110618	0.047997	Н	1.354561	3.786376	0.000264
Н	12.048986	0.730769	-0.068413	Н	2.699399	3.034439	0.893577
Н	12.177715	-1.732682	0.011082	Н	2.699333	3.034575	-0.893254
0	-7.729951	-2.046951	0.069054	С	-0.119719	1.806440	0.000150
0	-8.090343	2.686610	-0.069924	0	-0.747890	2.857208	0.000156
0	7.143983	-3.120210	0.045018	С	6.939545	-0.268899	-0.000033
0	6.810530	1.595498	-0.085040	С	7.672193	1.010637	-0.000130
Н	7.510833	2.438025	-0.146685	С	7.921750	-1.381333	-0.000010
0	8.302333	3.528995	-0.243437	С	9.125746	0.667289	-0.000170
0	7.746718	4.371919	0.706610	С	9.270546	-0.728405	-0.000101
Н	8.273230	5.186488	0.588223	С	10.234392	1.507006	-0.000259
				С	10.528459	-1.321199	-0.000120
5a				С	11.502047	0.915027	-0.000278
B3I	LYP SCF energ	y in gas phase	: -2663.661943 a.u.	Н	10.109147	2.585580	-0.000311
M0	6-L SCF energ	y in 1,4-dioxa	ne: -2663.589519 a.u	u. C	11.647185	-0.481050	-0.000209
				Н	10.626942	-2.402578	-0.000066
С	-1.752511	-0.414395	0.000108	Н	12.389155	1.542426	-0.000347
С	-0.556032	0.400281	0.000185	Н	12.644472	-0.912359	-0.000226
С	0.556033	-0.400250	0.000186	С	-6.939548	0.268891	0.000025
С	1.752513	0.414423	0.000143	С	-7.672186	-1.010650	-0.000070
Ν	-1.289558	-1.736231	0.000058	С	-7.921761	1.381318	0.000093
С	0.119722	-1.806409	0.000109	С	-9.125742	-0.667313	-0.000121
0	0.747897	-2.857175	0.000100	С	-9.270552	0.728380	-0.000047
С	-2.072650	-2.964879	0.000040	С	-10.234381	-1.507038	-0.000236
Н	-2.699364	-3.034464	-0.893373	С	-10.528469	1.321164	-0.000093
Н	-1.354555	-3.786347	0.000021	С	-11.502041	-0.915069	-0.000278
Н	-2.699357	-3.034496	0.893457	Н	-10.109129	-2.585612	-0.000294
С	-3.064644	0.020253	0.000097	С	-11.647189	0.481007	-0.000208
С	-3.456524	1.405718	0.000174	Н	-10.626961	2.402542	-0.000032
S	-4.503442	-1.025493	-0.000011	Н	-12.389144	-1.542475	-0.000369
С	-4.804205	1.600278	0.000157	Н	-12.644480	0.912309	-0.000243
Н	-2.717635	2.200514	0.000234	0	7.178125	2.133982	-0.000171
С	-5.572209	0.384314	0.000060	0	7.709019	-2.586996	0.000055
Н	-5.305533	2.559939	0.000210	О	-7.709039	2.586983	0.000077
С	3.064643	-0.020231	0.000115	0	-7.178110	-2.133991	-0.000135

9. References

 Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. *Physical Review B* 1988, *37* (2), 785-789.

2. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. **1993**, *98* (7), 5648-5652.

3. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H., Energy-adjustedab initio pseudopotentials for the second and third row transition elements. *Theoretica chimica acta* **1990**, *77* (2), 123-141.

4. Roy, L. E.; Hay, P. J.; Martin, R. L., Revised Basis Sets for the LANL Effective Core Potentials. *Journal of Chemical Theory and Computation* **2008**, *4* (7), 1029-1031.

5. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120* (1), 215-241.

6. Zhao, Y.; Truhlar, D. G., Density Functionals with Broad Applicability in Chemistry. *Accounts of Chemical Research* **2008**, *41* (2), 157-167.

7. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *The Journal of Physical Chemistry B* 2009, *113* (18), 6378-6396.

 Liu, P.; Xu, X.; Dong, X.; Keitz, B. K.; Herbert, M. B.; Grubbs, R. H.; Houk, K.
 N., Z-Selectivity in Olefin Metathesis with Chelated Ru Catalysts: Computational Studies of Mechanism and Selectivity. *J. Am. Chem. Soc.* 2012, *134* (3), 1464-1467.

Herbert, M. B.; Lan, Y.; Keitz, B. K.; Liu, P.; Endo, K.; Day, M. W.; Houk, K. N.;
 Grubbs, R. H., Decomposition Pathways of Z-Selective Ruthenium Metathesis
 Catalysts. J. Am. Chem. Soc. 2012, 134 (18), 7861-7866.

10. Giri, R.; Lan, Y.; Liu, P.; Houk, K. N.; Yu, J.-Q., Understanding Reactivity and Stereoselectivity in Palladium-Catalyzed Diastereoselective sp3 C–H Bond Activation: Intermediate Characterization and Computational Studies. *J. Am. Chem. Soc.* **2012**, *134* (34), 14118-14126.

11. Miyazaki, H.; Herbert, M. B.; Liu, P.; Dong, X.; Xu, X.; Keitz, B. K.; Ung, T.; Mkrtumyan, G.; Houk, K. N.; Grubbs, R. H., Z-Selective Ethenolysis with a Ruthenium Metathesis Catalyst: Experiment and Theory. *J. Am. Chem. Soc.* 2013, *135* (15), 5848-5858.

12. Xu, X.; Liu, P.; Shu, X.-z.; Tang, W.; Houk, K. N., Rh-Catalyzed (5+2) Cycloadditions of 3-Acyloxy-1,4-enynes and Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity. *J. Am. Chem. Soc.* **2013**, *135* (25), 9271-9274.

13. Cannon, J. S.; Zou, L.; Liu, P.; Lan, Y.; O'Leary, D. J.; Houk, K. N.; Grubbs, R. S68 H., Carboxylate-Assisted C(sp3)–H Activation in Olefin Metathesis-Relevant Ruthenium Complexes. J. Am. Chem. Soc. 2014, 136 (18), 6733-6743.

Haynes, M. T.; Liu, P.; Baxter, R. D.; Nett, A. J.; Houk, K. N.; Montgomery, J.,
 Dimer Involvement and Origin of Crossover in Nickel-Catalyzed Aldehyde–Alkyne
 Reductive Couplings. J. Am. Chem. Soc. 2014, 136 (50), 17495-17504.

15. Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P., Computational Study of Rh-Catalyzed Carboacylation of Olefins: Ligand-Promoted Rhodacycle Isomerization Enables Regioselective C–C Bond Functionalization of Benzocyclobutenones. *J. Am. Chem. Soc.* **2015**, *137* (25), 8274-8283.

16. Dang, Y.; Qu, S.; Wang, Z.-X.; Wang, X., A Computational Mechanistic Study of an Unprecedented Heck-Type Relay Reaction: Insight into the Origins of Regioand Enantioselectivities. *J. Am. Chem. Soc.* **2014**, *136* (3), 986-998.

17. Dang, Y.; Deng, X.; Guo, J.; Song, C.; Hu, W.; Wang, Z.-X., Unveiling Secrets of Overcoming the "Heteroatom Problem" in Palladium-Catalyzed Aerobic C–H Functionalization of Heterocycles: A DFT Mechanistic Study. *J. Am. Chem. Soc.*2016, *138* (8), 2712-2723.

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.

 Zou, Y.; Gendron, D.; Badrou-Aïch, R.; Najari, A.; Tao, Y.; Leclerc, M., A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications. *Macromolecules* 2009, *42* (8), 2891-2894. Li, Y.; Li, H.; Chen, H.; Wan, Y.; Li, N.; Xu, Q.; He, J.; Chen, D.; Wang, L.; Lu,
 J., Controlling Crystallite Orientation of Diketopyrrolopyrrole-Based Small
 Molecules in Thin Films for Highly Reproducible Multilevel Memory Device: Role
 of Furan Substitution. *Advanced Functional Materials* 2015, *25* (27), 4246-4254.

21. Dou, L.; Chang, W.-H.; Gao, J.; Chen, C.-C.; You, J.; Yang, Y., A Selenium-Substituted Low-Bandgap Polymer with Versatile Photovoltaic Applications. *Advanced Materials* **2013**, *25* (6), 825-831.