Supporting Information for:

Electrochemical Studies of Tris(cyclopentadienyl) Thorium and Uranium

Complexes in the +2, +3, and +4 Oxidation States

Justin C. Wedal, Jeffrey M. Barlow, Joseph W. Ziller, Jenny Y. Yang,* and William J. Evans*

Department of Chemistry, University of California, Irvine, California 92697, United States

Email: j.yang@uci.edu, wevans@uci.edu

*To whom correspondence should be addressed

Table of Contents	
Experimental Details	S4
UV-Visible spectra of [Li(crypt)][Cp"3Th], [Na(crown)2][Cp"3Th],	
[Rb(crypt)][Cp"3Th], and [Cs(crypt)][Cp"3Th] in THF	S10
NMR Spectra of [Li(crypt)][Cp"3Th], [Na(crown)2][Cp"3Th],	
[Rb(crypt)][Cp" ₃ Th], and [Cs(crypt)][Cp" ₃ Th]	S11
Electrochemical data for	
(C5H5)2Fe and (C5Me5)2Fe under present conditions	S22
Cp″ ₃ U	S23
Cp′3U	S24
Cp ^{tet} ₃ U	S26
[K(crypt)][Cp'3U]	S28
[K(crown)(THF)2][Cp"3U]	S29
[K(crypt)][Cp ^{tet} ₃ U]	S31
Cp″3ThBr	S32
Cp″3ThCl	S 34
Cp′3ThCl	S 35
Cp″3Th	\$37
Cp ^{tet} ₃ ThBr	S 39
Cp ^{tet} ₃ Th	S41
[K(crown)(THF)2][Cp"3Th]	S43
[K(crypt)][Cp″3Th]	S46

KCp ^{tet} , KCp, KCp', KCp", [K(crown)][Cp"], [K(crypt)][Cp"]		
Crystallographic Data for		
[K(crown)][Cp"]	S53	
[Na(crown)2][Cp"3Th]	S60	
[Rb(crypt)][Cp"3Th]	S68	
[Cs(crypt)][Cp"3Th]	S76	
References and Definitions	S84	

Experimental Details

Caution! ²³²Th and ²³⁸U are α emitters with half-lives of approximately 1.41×10¹⁰ and 4.47 x 10⁹ years, respectively. Samples should be prepared and handled only in laboratories appropriately equipped to handle radioactive materials.

All syntheses and manipulations were conducted under an Ar atmosphere with rigorous exclusion of air and water using standard glovebox and vacuum line techniques. Solvents were sparged with UHP argon and dried by passage through columns containing Q-5 and molecular sieves prior to use. Deuterated NMR solvents were dried over NaK alloy, degassed by three freeze-pump-thaw cycles, and vacuum transferred prior to use. NMR spectra were recorded on an AVANCE600 MHz spectrometer at 298 K and referenced to residual proteo-solvent resonances. Cp'₃U,¹ [K(crypt)][Cp'₃U],¹ Cp''₃U,² [K(crown)(THF)₂][Cp''₃U],² Cp^{tet}₃U,³ U(NR₂)₃,⁴ Cp''₃ThBr,⁵ Cp'₃ThCl,⁶ Cp^{tet}₃ThBr,⁷ Cp''₃Th,^{5,8} Cp^{tet}₃Th,⁷ [K(crown)(THF)₂][Cp''₃U],⁹ [K(crypt)][Cp''₃Th],⁹ KCp^{tet},³ KCp',¹⁰ and KCp''¹⁰ were synthesized according to literature procedures. 18-crown-6 (Alfa Aesar) was sublimed at 30 °C at 10⁻⁵ Torr before use. 2.2.2-cryptand (Aldrich) was dried under vacuum at 10⁻⁵ Torr before use. Electrochemical grade (>99%) ["Bu₄N][BPh₄] (Sigma) and electrochemical grade (>99.9%) ["Bu₄N][PF₆] (Sigma) were recrystallized from acetone three times and dried at 80 °C and 10⁻⁵ Torr overnight before use. (C₅Me₅)₂Fe was purified by sublimation before use.

All actinide compounds were purified by recrystallization and dried before data collection. Electrochemical measurements were collected with a freshly made THF solution of supporting electrolyte with a glassy carbon working electrode, platinum wire counter electrode, and silver wire pseudo-reference electrode with a Princeton Applied Research PARSTAT 2273 Advanced Electrochemical System and referenced with internal standard (C_5Me_5)₂Fe. Internal resistance was measured for each solution and resistance was manually compensated by approximately 90% of the measured value. All scans were measured in the cathodic direction except for the isolated U(II) and Th(II) complexes and KC_5R_5 compounds which were measured in the anodic direction. UVvisible spectroelectrochemical measurements were made using a Pine Instruments UV-visible kit with a Pt working and counter electrode and Ag wire pseudo-reference and an Agilent Cary 60 UV-visible spectrophotometer fitted with an Agilent fiber optic coupler connected to an Ocean Optics CUV 1 cm cuvette holder inside the glovebox. UV-visible measurements were made using an Agilent Cary 60 spectrophotometer in THF in a 1 mm cuvette.

Although the highest purity of commercially available ["Bu₄N][BPh₄] was used, it reacted with some actinide compounds. The Th(IV) compounds Cp'₃Th^{IV}Cl¹¹ and Cp^{tet}₃Th^{IV}Br⁷ showed no noticeable decomposition while in the presence of this material, but purple Cp^{tet}₃Th^{III 7} immediately decomposed to a yellow solution and brown Cp^{tet}₃U^{III 12} turned orange when added to commercial [ⁿBu₄N][BPh₄] in THF. Hence, multiple recrystallizations of the commercial electrolyte were required until no reaction was observed with the actinide complexes and reproducible data were obtained. Fresh electrolyte solutions were made immediately before data collection, as small amounts of precipitate formed if the electrolyte solution sat for an extended period of time, even overnight. These samples caused decomposition with some actinide samples upon mixing. Small events were present in the voltammograms of $Cp'_{3}U$ and $Cp^{tet_{3}}U$ that are attributed to either decomposition or impurities in the sample, despite recrystallization immediately prior to data collection. These events were present across multiple runs with different batches of material. The solubility limit of ["Bu₄N][BPh₄] in THF was roughly 100 mM which is the concentration used for most experiments. Exceptions are Cp'_3U^{III} and $[K(crypt)][Cp'_3U^{II}]$ in which 50 mM concentrations were used since the compounds appeared to decompose in higher

concentration solutions. [^{*n*}Bu₄N][PF₆] was used at a concentration of 200 mM to determine if peak separations would be smaller than 100–200 mV. They were not.

General Electrochemistry Procedure. Inside the glovebox, a stock electrolyte solution was freshly prepared in THF. Between 1–2 mL of this solution was transferred to a 20 mL scintillation vial and a voltammogram of this solution was collected to verify the electrolyte solution was free of impurities. Roughly 10–15 mg of actinide compound was dissolved in the same electrolyte solution to yield approximately a 5 mM solution. Electrodes were placed into the vial and the vial was left open to the box atmosphere during data collection. The internal resistance was measured and cyclic voltammetry experiments were recorded. Decamethylferrocene, $(C_5Me_5)_2Fe$ was added to the same solution following all data collection, and a single scan was recorded to measure the internal standard redox event.

Synthesis of [Li(crypt)][Cp"₃Th]. Cp"₃Th (50 mg, 0.058 mmol) and crypt (23 mg, 0.061 mmol) were dissolved in THF (1 mL) and transferred to a vial containing a Li smear (~5 mg) and placed in the freezer at -35 °C overnight. The inky blue/green solution was filtered and dried under vacuum. The solids were dissolved in Et₂O (3 mL) and layered under hexane at -35 °C. Dark blue needles grew overnight (60 mg, 83%). ¹H NMR (THF-*d*₈): δ 5.10 (s, 9H, C₅*H*₃R₂), 3.66 (m, 11H, crypt), 3.57 (m, 14H, crypt) (overlapping with THF), 2.68 (m, 11H, crypt), 0.60 ppm (s, 42H, Si*Me*₃). ¹³C (THF-*d*₈): δ 119.5 (C₅*H*₃R₂), 114.6 (C₅*H*₃R₂), 113.0 (C₅*H*₃R₂), 71.2 (crypt), 69.2 (crypt), 54.6 (crypt), 1.5 ppm (Si*Me*₃). ⁷Li NMR (THF-*d*₈): δ -1.19 ppm. IR: 2943m, 2881m, 1233s, 1168s, 1071s, 910s, 820s, 743s, 675s cm⁻¹. UV-visible (THF): 657 nm (15,000 M⁻¹cm⁻¹). Anal Calcd for C₅₁H₉₉N₂O₆Si₆ThLi: C 49.25, H 8.02, N 2.25. Found: C 43.76, H 7.09, N 1.68. Low values were observed across multiple runs and suggests incomplete combustion

which has been problematic for high silicon-containing actinide species. 1,2,5,9,13 The calculated C:H:N ratio of C₅₁H_{98.5}N_{1.5} is close to the expected value.

Synthesis of [Na(crown)2][Cp"3Th]. Cp"3Th (48 mg, 0.056 mmol) and 18-crown-6 (28 mg, 0.11 mmol) were dissolved in THF (1 mL) and transferred into a vial containing a Na (22 mg, 0.96 mmol) smear along the wall. The vial was placed in the freezer at -35 °C overnight. The inky blue/green solution was filtered and dried under vacuum. The solids were dissolved in Et₂O (3 mL) and layered under hexane at -35 °C. Dark blue crystals suitable for X-ray diffraction grew overnight (58 mg, 73%). ¹H NMR (THF-*d*₈): δ 4.42 (s, 9H, C₅H₃R₂), 3.58 (s, 35H, OCH₂CH₂O) 0.18 ppm (s, 54H, Si*Me*₃). ¹³C (THF-*d*₈): δ 120.07 (C₅H₃R₂), 115.33 (C₅H₃R₂), 114.22 (C₅H₃R₂), 70.64 (OCH₂CH₂O), 1.76 ppm (Si*Me*₃). IR: 2943m, 2886m 1352m, 1233s, 1169s, 1105s, 1072s, 965m, 910s, 822s, 783s, 742m, 673m cm⁻¹. UV-visible (THF): 658 nm (12,000 M⁻¹cm⁻¹). Anal Calcd for C₅₇H₁₁₁O₁₂Si₆ThNa: C 48.48, H 7.92. Found: C 44.23, H 6.87. Low values were observed across multiple runs and suggests incomplete combustion which has been problematic for high silicon-containing actinide species.^{1,2,5,9,13} The calculated C:H ratio was C₅₇H_{105,5}. The combustion values are suggestive of bulk formulation as [Na(crown)(THF)_x][Cp"₃Th] but crystallization repeatedly afforded single crystals of [Na(crown)₂][Cp"₃Th].

Synthesis of [Rb(crypt)][Cp"₃Th]. As above, Cp"₃Th (50 mg, 0.058 mmol) and crypt (22 mg, 0.058 mmol) were reacted with a Rb (14 mg, 0.16 mmol) smear at -35 °C. Dark blue/red dichroic crystals were grown overnight from Et₂O/hexane at -35 °C (47 mg, 61%). ¹H NMR (THF-*d*₈): δ 4.84 (s, 9H, C₅*H*₃R₂), 3.54 (s, 14H, OC*H*₂C*H*₂O), 3.49 (m, 13H, crypt), 2.51 (m, 15H, crypt), 0.44 ppm (s, 53H, Si*Me*₃). ¹³C (THF-*d*₈): δ 120.4 (C₅*H*₃R₂), 114.9 (C₅*H*₃R₂), 111.9 (C₅*H*₃R₂), 71.3 (crypt), 68.4 (crypt), 54.9 (crypt), 2.2 ppm (Si*Me*₃). ²⁹Si NMR (THF-*d*₈): δ -15.69 ppm (*Si*Me₃). UV-visible (THF): 656 nm (19,000 M⁻¹cm⁻¹). IR: 2944m, 2884m, 2810m,

1352m, 1296m, 1233s, 1171s, 1102s, 1070s, 947s, 909s, 818s, 782m, 742s, 674s cm⁻¹. Anal Calcd for $C_{51}H_{99}N_2O_6Si_6ThRb$: C 46.32, H 7.55, N 2.12. Found: C 43.80, H 7.20, N 2.53. Low C values were observed across multiple runs and suggests incomplete combustion or carbide formation which has been problematic for high silicon-containing actinide species.^{1,2,5,9,13} The calculated C:H:N ratio of $C_{51}H_{99,9}N_{2.5}$ is close to the expected value.

Synthesis of [Cs(crypt)][Cp"3Th]. As above, Cp"3Th (52 mg, 0.060 mmol) and crypt (22 mg, 0.058 mmol) were reacted with a Cs (10 mg, 0.075 mmol) smear at -35 °C. Dark blue/red dichroic crystals were grown overnight from Et₂O/hexane at -35 °C (43 mg, 54%). ¹H NMR (THF-*d*₈): δ 5.51 (s, 9H, C₅H₃R₂), 3.57 (m, 18H, OCH₂CH₂O) (overlapping with THF), 3.50 (m, 7H, crypt), 2.54 (m, 9H, crypt), 0.87 ppm (s, 37H, Si*Me*₃). ¹³C (THF-*d*₈): δ 121.9 (C₅H₃R₂), 117.0 (C₅H₃R₂), 115.2 (C₅H₃R₂), 71.4 (OCH₂CH₂O), 68.3 (crypt), 54.6 (crypt), 1.5 ppm (Si*Me*₃). ²⁹Si NMR (THF-*d*₈): δ -14.88 ppm (*Si*Me₃). ¹³Cs NMR (THF-*d*₈): δ 20 ppm (br, *v*_{1/2} = 3600 Hz). UV-visible (THF): 658 nm (14,000 M⁻¹cm⁻¹). IR: 2944m, 2884m, 2809m, 1349m, 1295m, 1233s, 1171s, 1098s, 1064s, 942m, 909s, 817s, 782m, 742s, 674s cm⁻¹. Anal Calcd for C₅₁H₉₉N₂O₆Si₆ThCs: C 44.72, H 7.28, N 2.05. Found: C 40.81, H 6.59, N 1.57. Low values were observed across multiple runs and suggests incomplete combustion which has been problematic for high silicon-containing actinide species.^{1,2,5,9,13} The calculated C:H:N ratio of C₅₁H_{98,1}N_{1.7} is close to the expected value.

Synthesis of [K(crown)(THF)₂**][Cp''**₃**Th] from Cp''**₃**ThCl.** Cp''₃ThCl (77 mg, 0.093 mmol) and 18-crown-6 (24 mg, 0.091 mmol) were dissolved in THF (3 mL). Pre-cooled KC₈ (31 mg, 0.229 mmol) was added and the reaction was stirred for approximately 5 minutes. The initially colorless solution turned bright blue, followed by the change to inky blue/green. Black solids were removed via centrifugation and the solution was dried under vacuum. The product was extracted

in Et₂O, filtered, and dried. The solids were washed with hexane to remove Cp^{''}₃Th and dried. Dark blue crystals of [K(crown)(THF)₂][Cp^{''}₃Th]⁹ were grown overnight from Et₂O/hexane at -35 °C (58 mg, 50%).

Reaction of Cp''₃ThBr with Ba. Cp''₃ThBr (47 mg, 0.054 mmol) was dissolved in THF (3 mL). Freshly shaved Ba powder (excess) was added and the solution was stirred vigorously. After approximately four hours of stirring, the solution began to turn blue. No further color changes were observed after an additional 5 hours of stirring. Cp''₃Th was identified by UV-visible spectroscopy.^{5,8}

Reaction of Cp"₃Th with Ba. Cp"₃Th (26 mg, 0.030 mmol) was dissolved in THF (3 mL). Freshly shaved Ba powder (excess) was added and the solution was placed in the freezer overnight. The solution was stirred vigorously for approximately two hours of stirring at which point the solution began to turn dark blue/green. The solution was dried and the solids were washed with hexane to remove Cp"₃Th. The remaining solids were extracted into THF and the presence of $[Cp"_3Th]^{1-}$ was confirmed by UV-visible spectroscopy.

Reaction of Cp"₃**ThBr with Ba and crown.** Cp"₃ThBr (42 mg, 0.048 mmol) and crown (13 mg, 0.049 mmol) were dissolved in THF (3 mL). Freshly shaved Ba powder (excess) was added and the solution was stirred vigorously. After approximately 10 minutes of stirring, the solution began to turn blue. The solution was placed in the freezer overnight and maintained the dark blue color of Cp"₃Th. The solution was stirred again at which point a dark blue/green color developed. The solution was stirred for one hour and the presence of $[Cp"_3Th]^{1-}$ was confirmed by UV-Visible spectroscopy.

Synthesis of [K(crown)][Cp"]. In a J-Young NMR tube, 18-crown-6 (8.7 mg, 0.033 mmol) was added to a solution of KCp" (8.2 mg, 0.033 mmol) in THF- d_8 (1 mL). The solution

was mixed by inversion multiple times before the spectrum was collected. ¹H spectroscopy showed quantitative conversion to [K(crown)][Cp"]. ¹H NMR (THF- d_8): $\delta 6.10$ (s, 1H, C₅H₃(SiMe₃)₂), 5.95 (m, 2H, C₅H₃(SiMe₃)₂), 3.51 (s, 24H, O–CH₂CH₂–O), 0.06 ppm (s, 18H, Si*Me*₃). Cf. KCp" ¹H NMR (THF- d_8): $\delta 6.09$ (s, 1H, C₅H₃(SiMe₃)₂), 6.00 (m, 2H, C₅H₃(SiMe₃)₂), 0.07 ppm (s, 18H, Si*Me*₃).

Figure S1: UV-Visible spectra of [Li(crypt)][Cp"₃Th] (black), [Na(crown)₂][Cp"₃Th] (red), [Rb(crypt)][Cp"₃Th] (blue), and [Cs(crypt)][Cp"₃Th] (green) in THF. The peak at 510 nm is due to Cp"₃Th.^{5,8}

Figure S2: ¹H NMR spectrum of [Li(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S3: ¹³C NMR spectrum of [Li(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S4: ⁷Li NMR spectrum of [Li(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S5: ¹H NMR spectrum of [Rb(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S6: ¹³C NMR spectrum of [Rb(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S7: ²⁹Si NMR spectrum of [Rb(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S8: ¹H NMR spectrum of [Cs(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S9: ¹³C NMR spectrum of [Cs(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S10: ²⁹Si NMR spectrum of [Cs(crypt)][Cp"₃Th] in THF-*d*₈.

Figure S11: ¹³⁹Cs NMR spectrum of [Cs(crypt)][Cp"₃Th] in THF-*d*₈.

Table S1: Reduction potentials of tris(cyclopentadienyl) thorium complexes with 200 mM

	Th(IV)/Th(III)			Th(III)/Th(II)			
	$E_{\rm PC}$ (V)	$E_{\rm PA}\left({ m V} ight)$	$E_{1/2}(V)$	$E_{\rm PC}$ (V)	$E_{\mathrm{PA}}\left(\mathrm{V}\right)$	$E_{1/2}(V)$	$\Delta E_{\rm pp} {\rm Fc} ({\rm V})$
Cp″ ₃ Th ^{IV} Br	-2.99	-2.73	-2.86				0.17
Cp' ₃ Th ^{IV} Cl	-3.39	-2.70	-3.04				0.14
Cp ^{tet} ₃ Th ^{IV} Br	-3.29	-3.20	-3.24				0.13
Cp″ ₃ Th ^{III}				-2.94	-2.73	-2.84	0.18
Cp ^{tet} ₃ Th ^{III}				-3.28	-3.22	-3.25	0.15
[K(crown)(THF) ₂][Cp" ₃ Th ^{II}]				-2.89	-2.73	-2.81	0.13
$[K(crvpt)][Cp''_{3}Th^{II}]$				-2.88	-2.75	-2.82	0.06

["Bu₄N][PF₆] supporting electrolyte

Electrochemical Data

Figure S12: Voltammogram of $(C_5Me_5)_2Fe$ and $(C_5H_5)_2Fe$ (marked with asterisk) in the experimental cell at v = 200 mV/s in 100 mM TBABPh₄ / THF. Fc* has a potential of -0.495 V vs Fc⁺/Fc under these conditions. ΔE_{pp} (Fc) = 0.20 V, ΔE_{pp} (Fc*) = 0.10 V.

Figure S13: Voltammogram of $(C_5Me_5)_2Fe$ and $(C_5H_5)_2Fe$ (marked with asterisk) in the experimental cell at v = 200 mV/s in 200 mM TBAPF₆ / THF. Fc* has a potential of -0.47 V vs Fc⁺/Fc under these conditions. ΔE_{pp} (Fc) = 0.24 V, ΔE_{pp} (Fc*) = 0.18 V.

Figure S14: Voltammogram of 4.6 mM Cp^{''}₃U at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF. The event centered at -0.495 V is due to internal standard (C₅Me₅)₂Fe^{II}.

Figure S15: Scan rate dependence plot on the 3/2 couple of Cp^{''}₃U.

Figure S16: Scan rate dependence plot on the 4/3 couple of $Cp''_{3}U$ in 100 mM TBABPh₄ / THF.

Cp′3U

Figure S17: Voltammogram of 11 mM Cp'₃U at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 50 mM TBABPh₄ / THF. The event centered at -0.495 V is due to internal standard (C₅Me₅)₂Fe^{II}.

Figure S18: Scan rate dependence plot on the 3/2 couple of Cp'₃U in 50 mM TBABPh₄ / THF.

Figure S19: Scan rate dependence plot on the 3/2 couple of Cp'₃U in 50 mM TBABPh₄ / THF.

Figure S20: Voltammogram of 7.2 mM $Cp^{tet}_{3}U$ at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S21: Scan rate dependence plot on the 3/2 couple of Cp^{tet}₃U in 100 mM TBABPh₄ / THF.

Figure S22: Scan rate dependence plot on the 4/3 couple of Cp^{tet}₃U in 100 mM TBABPh₄ / THF.

Figure S23: Voltammogram of 7.2 mM $Cp^{tet}_{3}U$ at v = 200 mV/s over 5 cycles in 100 mM TBABPh₄ / THF.

[K(crypt)][Cp'₃U]

Figure S24: Voltammogram of 7.7 mM [K(crypt)][Cp'₃U] at v = 200 (black), 400 (orange), 600 (grey), and 1000 (yellow) mV/s in 100 mM TBABPh₄ / THF. The peak centered at -0.495 V is due to internal standard (C₅Me₅)₂Fe.

[K(crown)(THF)₂][Cp"₃U]

Figure S25: Voltammogram of 3.0 mM [K(crown)(THF)₂][Cp"₃U] at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S26: Voltammogram of 3.0 mM [K(crown)(THF)₂][Cp"₃U] at v = 200 mV/s over 5 cycles in 100 mM TBABPh₄ / THF.

Figure S27: Scan rate dependence plot on the 3/2 couple of [K(crown)(THF)₂][Cp"₃U] in 100 mM TBABPh₄ / THF.

Figure S28: Scan rate dependence plot on the 4/3 couple of [K(crown)(THF)₂][Cp"₃U] in 100 mM TBABPh₄ / THF.

[K(crypt)][Cp^{tet}₃U]

Figure S29: Voltammogram of $[K(crypt)][Cp^{tet}_{3}U]$ at v = 200 mV/s in 100 mM TBABPh₄ / THF. The event centered at -0.495 V is due to internal standard $(C_5Me_5)_2Fe^{II}$.

Figure S30: Voltammogram of 7.4 mM Cp^{\prime}₃ThBr at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S31: Scan rate dependence plot on the 4/3 couple of Cp"₃ThBr in 100 mM TBABPh₄ / THF.

Figure S32: Voltammogram of 8.0 mM Cp^{\prime}₃ThBr at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 200 mM TBAPF₆ / THF.

Figure S33: Scan rate dependence plot on the 4/3 couple of Cp"₃ThBr in 200 mM TBAPF₆ / THF.

Figure S34: Voltammogram of 12 mM Cp^{$\prime\prime_3$}ThCl at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S35: Scan rate dependence plot on the 4/3 couple of Cp''_{3} ThCl in 100 mM TBABPh₄ / THF.

Figure S36: Voltammogram of 8.1 mM Cp'₃ThCl at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow), 1000 (blue), and 2000 (green) mV/s in 200 mM TBAPF₆ / THF.

Figure S37: Scan rate dependence plot on the EPC value of Cp'₃ThCl in 200 mM TBAPF₆ / THF.

Figure S38: Voltammogram of 14 mM Cp'₃ThCl at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow), 1000 (blue), and 2000 (green) mV/s in 100 mM TBABPh₄ / THF.

Figure S39: Scan rate dependence plot on the 4/3 couple of $Cp'_{3}ThCl$ in 100 mM TBABPh₄ / THF.

Figure S40: Voltammogram of 4.9 mM Cp^{\prime}₃Th at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S41: Scan rate dependence plot on the 3/2 couple of Cp"₃Th in 100 mM TBABPh₄ / THF.

Figure S42: Voltammogram of 5.8 mM Cp^{\prime}₃Th at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow), 1000 (blue), and 1500 (green) mV/s in 200 mM TBAPF₆ / THF.

Figure S43: Scan rate dependence plot on the 3/2 couple of Cp"₃Th in 200 mM TBAPF₆ / THF.

Figure S44: Voltammogram of 22 mM Cp^{tet}_{3} ThBr at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S45: Scan rate dependence plot on the 4/3 couple of $Cp^{tet}_{3}ThBr$ in 100 mM TBABPh₄ / THF.

Figure S46: Voltammogram of 6.7 mM Cp^{tet}_{3} ThBr at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 200 mM TBAPF₆ / THF.

Figure S47: Scan rate dependence plot on the 4/3 couple of Cp^{tet}₃ThBr in 200 mM TBAPF₆ / THF.

Cp^{tet}₃Th

Figure S48: Voltammogram of 6.7 mM Cp^{tet}_{3} Th at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S49: Scan rate dependence plot on the 3/2 couple of Cp^{tet}₃Th in 200 mM TBABPh₄ / THF.

Figure S50: Voltammogram of 10 mM Cp^{tet}_{3} Th at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 200 mM TBAPF₆ / THF.

Figure S51: Scan rate dependence plot on the 3/2 couple of Cp^{tet}₃Th in 200 mM TBAPF₆ / THF.

Figure S52: Voltammogram of 4.6 mM [K(crown)(THF)₂][Cp"₃Th] at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S53: Scan rate dependence plot on the 3/2 couple of [K(crown)(THF)₂][Cp"₃Th] in 100 mM TBABPh₄ / THF.

Figure S54: Voltammogram of 4.6 mM [K(crown)(THF)₂][Cp"₃Th] at v = 200 mV/s over 5 cycles in 100 mM TBABPh₄ / THF.

Figure S55: Voltammogram of 4.3 mM [K(crown)(THF)₂][Cp"₃Th] at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 200 mM TBAPF₆ / THF.

Figure S56: Scan rate dependence plot on the 3/2 couple of [K(crown)(THF)₂][Cp"₃Th] in 200 mM TBAPF₆ / THF.

Figure S57: Voltammogram of 4.3 mM [K(crown)(THF)₂][Cp"₃Th] at v = 200 mV/s over 5 cycles in 200 mM TBAPF₆ / THF.

[K(crypt)][Cp"3Th]

Figure S58: Voltammogram of 3.1 mM [K(crypt)][Cp"₃Th] at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 200 mM TBAPF₆ / THF.

Figure S59: Scan rate dependence plot on the 3/2 couple of [K(crypt)][Cp"₃Th] in 200 mM TBAPF₆ / THF.

Figure S60: Voltammogram of 3.1 mM [K(crypt)][Cp"₃Th] at v = 200 mV/s over 5 cycles in 200 mM TBAPF₆ / THF.

Figure S61: Voltammogram of 3.9 mM [K(crypt)][Cp"₃Th] at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow) and 1000 (blue) mV/s in 100 mM TBABPh₄ / THF.

Figure S62: Scan rate dependence plot on the 3/2 couple of [K(crypt)][Cp"₃Th] in 100 mM TBABPh₄ / THF.

Figure S63: Voltammogram of xx mM Cp'₃Th^{IV}Br at v = 200 (black), 400 (orange), 600 (grey), 800 (yellow), 1000 (blue) and 2000 (green) mV/s in 100 mM TBABPh₄ / THF.

Figure S64: Scan rate dependence plot on the cathodic event of $Cp'_3Th^{IV}Br$ in 100 mM TBABPh₄ / THF.

Figure S65: Voltammogram of 15 mM $Cp'_{3}Th^{IV}Br$ and 14.6 mM $(C_{5}Me_{5})_{2}Fe$ in 100 mM TBABPh₄ / THF. The ratio of current passed for $Cp'_{3}Th^{IV}Br$ to $(C_{5}Me_{5})_{2}Fe$ is 0.77, suggesting a one-electron process is occurring for $Cp'_{3}Th^{IV}Br$.

Potassium Cyclopentadienide Salts. To probe the ligand effects further and to help identify the events around -1.5 V in the voltammograms of the thorium complexes, the voltammograms for the ligands as potassium salts, KCp^{tet}, KCp, KCp', and KCp", were examined with ["Bu₄N][PF₆] as supporting electrolyte. Irreversible anodic processes were observed for each species, Table S2 and Figure S56. The irreversibility of these events is consistent with a chemical process occurring after oxidation such as dimerization of the *in-situ* generated radical.¹⁸ This series of reduction potentials for simple potassium cyclopentadienyl salts does not match the trend observed in the thorium complexes above and in related zirconium systems.¹⁹ However, it was noted that trends in cyclopentadienyl donor strength are system dependent.

	$E_{\mathrm{PA}}\left(\mathrm{V} ight)$
KCp ^{tet}	-1.17
КСр	-0.50
KCp'	-0.63
KCp″	-0.71
[K(crown)][Cp"]	-0.76
[K(crypt)][Cp"]	-0.77

Table S2: Peak anodic potentials for potassium cyclopentadienide salts

Addition of one equivalent of crown to KCp" shifts the event slightly negative, Figure S57, from -0.71 V to -0.76 V. The addition of crypt to KCp" shifts the oxidation event in a similar fashion to -0.77 V. Although the structure of KCp" in THF in the presence of the chelate and the supporting electrolyte is not known, information on the chelate-potassium interaction is known in the solid state. The X-ray crystal structure of [K(crypt)][Cp'] shows a distinct ion pair in the solid state with no K⁺....[Cp']^{1–} interaction.²⁰ However, the crystal structure of [K(crown)][Cp"] is reported as part of this study, Figure S58, and shows clear interaction of the K⁺ ion with the [Cp"]^{1–} anion in the solid state. The shifted potentials of the solutions containing chelate are consistent with chelation of the potassium ion in solution diminishing the interaction with the cyclopentadienyl ring, thus facilitating oxidation compared to KCp". It would be expected, based on the solid state structures, that crypt would have a greater effect than crown, but in solution, it is possible that the crown system contains solvated $[K(crown)(THF)_x]^{1+}$ moieties and thus has less interaction with the cyclopentadienyl than expected.^{21–27} The [K(crown)][Cp"]/ferrocene system was also examined in THF- d_8 by ¹H NMR spectroscopy and no evidence for ligand exchange between KCp" and ferrocene was observed.

The irreversible anodic events around -1.5 V observed in the thorium systems are thus assigned as cyclopentadienide-based events. Interestingly, these types of irreversible anodic events were not observed in the cyclopentadienyl-uranium systems. Previous electrochemical studies of organoactinide complexes also observed irreversible anodic events in thorium complexes and not the analogous uranium systems that were thus attributed to ligand-based processes or ligand-distribution processes.^{28–31} Clearly, the Lewis acidity of the metal influences the potential for these cyclopentadienide oxidations. There will be a shift in the observed oxidation potential whether the cyclopentadienyl ring is bound to K⁺, [K(chelate)]⁺, or An^{*n*+}.

Figure S66: Voltammogram of KCp^{tet} (solid, 15 mM), KCp'' (dashed, 17 mM), KCp' (dotted, 14 mM), and KCp (dotted dash, 22 mM) at v = 200 mV/s in 200 mM [^{*n*}Bu₄N][PF₆] / THF. The event centered at -0.495 V in the voltammogram of KCp^{tet} is due to internal standard (C₅Me₅)₂Fe^{II}.

Figure S67: Voltammogram of 17 mM KCp" (solid), [K(crown)][Cp"] (dashed), and [K(crypt)][Cp"] (dotted) at 200 mV/s in 200 mM ["Bu₄N][PF₆] / THF. The event centered at -0.495 V is due to internal standard (C₅Me₅)₂Fe^{II}.

Crystallographic Details

X-ray Data Collection, Structure Solution and Refinement for [K(crown)][Cp"].

A blue crystal of approximate dimensions 0.129 x 0.144 x 0.191 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2³² program package was used to determine the unit-cell parameters and for data collection (180 sec/frame scan time for a hemisphere of diffraction data). The raw frame data was processed using SAINT³³ and SADABS³⁴ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL³⁵ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors³⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. There were two molecules of the formulaunit present (Z = 8). C(41) and C(42) were disordered and included using multiple components with partial site-occupancy factors.

Least-squares analysis yielded wR2 = 0.0996 and Goof = 1.010 for 608 variables refined against 14783 data (0.73 Å), R1 = 0.0500 for those 10223 data with I > 2.0σ (I). The structure was refined as a two-component twin (BASF = 0.43).

Figure S68: Thermal ellipsoid plot of [K(crown)][Cp"] drawn at the 50% probability level. Hydrogen atoms have been removed for clarity.

Table S2.	Crystal data	and structure	e refinement fo	r [K	(crown))[C]	p″].
-----------	--------------	---------------	-----------------	------	---------	---------------	------

Identification code	rrl39	
Empirical formula	C23 H45 K O6 Si2	
Formula weight	512.87	
Temperature	88(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 18.737(4) Å	$\alpha = 90^{\circ}.$
	b = 18.571(4) Å	$\beta = 90.149(3)^{\circ}.$
	c = 16.803(3) Å	$\gamma = 90^{\circ}$.
Volume	5847(2) Å ³	
Z	8	
Density (calculated)	1.165 Mg/m ³	
Absorption coefficient	0.295 mm ⁻¹	

F(000)	2224
Crystal color	blue
Crystal size	0.191 x 0.144 x 0.129 mm ³
Theta range for data collection	1.212 to 29.206°
Index ranges	$-25 \le h \le 25, -24 \le k \le 25, -22 \le l \le 23$
Reflections collected	51430
Independent reflections	14783 [R(int) = 0.0719]
Completeness to theta = 25.500°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8016 and 0.7190
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	14783 / 0 / 608
Goodness-of-fit on F ²	1.010
Final R indices [I>2sigma(I) = 10223 data]	R1 = 0.0500, wR2 = 0.0872
R indices (all data, 0.73 Å)	R1 = 0.0964, wR2 = 0.0996
Largest diff. peak and hole	0.442 and -0.493 e.Å ⁻³

Table S3. Bond lengths [Å] and angles [°] for [K(crown)][Cp"].

K(1)-Cnt1	2.904	Si(2)-C(9)	1.862(3)
K(1)-O(3)	2.792(2)	Si(2)-C(11)	1.870(3)
K(1)-O(2)	2.857(2)	Si(2)-C(10)	1.874(3)
K(1)-O(6)	2.8574(19)	O(1)-C(12)	1.425(3)
K(1)-O(5)	2.889(2)	O(1)-C(23)	1.432(3)
K(1)-O(1)	3.0122(18)	O(2)-C(13)	1.428(3)
K(1)-O(4)	3.031(2)	O(2)-C(14)	1.429(3)
K(1)-C(4)	3.034(3)	O(3)-C(15)	1.422(3)
K(1)-C(3)	3.073(3)	O(3)-C(16)	1.431(3)
K(1)-C(5)	3.151(3)	O(4)-C(17)	1.414(4)
K(1)-C(2)	3.186(2)	O(4)-C(18)	1.430(3)
K(1)-C(1)	3.269(2)	O(5)-C(20)	1.422(3)
Si(1)-C(1)	1.848(3)	O(5)-C(19)	1.432(3)
Si(1)-C(8)	1.868(3)	O(6)-C(21)	1.416(3)
Si(1)-C(6)	1.880(3)	O(6)-C(22)	1.438(3)
Si(1)-C(7)	1.883(3)	C(1)-C(5)	1.417(4)
Si(2)-C(3)	1.855(3)	C(1)-C(2)	1.420(4)

C(2)-C(3)	1.419(4)	O(10)-C(41)	1.429(7)
C(3)-C(4)	1.425(4)	O(10)-C(41B)	1.517(8)
C(4)-C(5)	1.394(4)	O(11)-C(43)	1.374(5)
C(12)-C(13)	1.489(4)	O(11)-C(42)	1.452(6)
C(14)-C(15)	1.521(4)	O(11)-C(42B)	1.570(8)
C(16)-C(17)	1.499(4)	O(12)-C(45)	1.421(4)
C(18)-C(19)	1.492(4)	O(12)-C(44)	1.438(4)
C(20)-C(21)	1.506(4)	C(24)-C(25)	1.417(4)
C(22)-C(23)	1.487(4)	C(24)-C(28)	1.423(4)
K(2)-Cnt2	2.884	C(25)-C(26)	1.412(4)
K(2)-O(11)	2.810(2)	C(26)-C(27)	1.435(4)
K(2)-O(7)	2.820(2)	C(27)-C(28)	1.393(4)
K(2)-O(8)	2.868(2)	C(35)-C(36)	1.499(4)
K(2)-O(10)	2.903(2)	C(37)-C(38)	1.493(4)
K(2)-O(9)	2.9549(19)	C(39)-C(40)	1.486(4)
K(2)-O(12)	2.981(2)	C(41)-C(42)	1.510(9)
K(2)-C(24)	3.038(3)	C(41B)-C(42B)	1.455(10)
K(2)-C(28)	3.039(3)	C(43)-C(44)	1.470(6)
K(2)-C(25)	3.142(2)	C(45)-C(46)	1.506(5)
K(2)-C(27)	3.154(3)		
K(2)-C(26)	3.249(2)	Cnt1-K(1)-O(1)	141.6
Si(3)-C(24)	1.826(3)	Cnt1-K(1)-O(2)	107.0
Si(3)-C(29)	1.870(3)	Cnt1-K(1)-O(3)	107.9
Si(3)-C(30)	1.872(3)	Cnt1-K(1)-O(4)	113.4
Si(3)-C(31)	1.881(3)	Cnt1-K(1)-O(5)	101.3
Si(4)-C(26)	1.835(3)	Cnt1-K(1)-O(6)	108.0
Si(4)-C(32)	1.876(3)	O(3)-K(1)-O(2)	60.23(6)
Si(4)-C(33)	1.876(3)	O(3)-K(1)-O(6)	144.13(6)
Si(4)-C(34)	1.890(3)	O(2)-K(1)-O(6)	108.15(6)
O(7)-C(46)	1.416(4)	O(3)-K(1)-O(5)	113.78(6)
O(7)-C(35)	1.417(4)	O(2)-K(1)-O(5)	151.46(5)
O(8)-C(37)	1.426(3)	O(6)-K(1)-O(5)	58.69(6)
O(8)-C(36)	1.427(3)	O(3)-K(1)-O(1)	93.30(6)
O(9)-C(38)	1.419(3)	O(2)-K(1)-O(1)	56.40(5)
O(9)-C(39)	1.443(3)	O(6)-K(1)-O(1)	57.10(5)
O(10)-C(40)	1.422(4)	O(5)-K(1)-O(1)	98.53(5)

O(3)-K(1)-O(4)	57.74(6)	O(2)-K(1)-C(1)	101.82(6)
O(2)-K(1)-O(4)	113.06(6)	O(6)-K(1)-C(1)	128.94(6)
O(6)-K(1)-O(4)	107.09(6)	O(5)-K(1)-C(1)	105.73(6)
O(5)-K(1)-O(4)	56.23(6)	O(1)-K(1)-C(1)	153.46(6)
O(1)-K(1)-O(4)	104.98(5)	O(4)-K(1)-C(1)	97.46(6)
O(3)-K(1)-C(4)	129.04(7)	C(4)-K(1)-C(1)	42.50(7)
O(2)-K(1)-C(4)	122.98(7)	C(3)-K(1)-C(1)	43.19(7)
O(6)-K(1)-C(4)	86.45(6)	C(5)-K(1)-C(1)	25.43(7)
O(5)-K(1)-C(4)	83.39(7)	C(2)-K(1)-C(1)	25.37(7)
O(1)-K(1)-C(4)	133.02(7)	C(1)-Si(1)-C(8)	112.82(13)
O(4)-K(1)-C(4)	114.20(7)	C(1)-Si(1)-C(6)	110.65(14)
O(3)-K(1)-C(3)	121.26(7)	C(8)-Si(1)-C(6)	108.31(16)
O(2)-K(1)-C(3)	96.15(7)	C(1)-Si(1)-C(7)	111.77(13)
O(6)-K(1)-C(3)	92.53(6)	C(8)-Si(1)-C(7)	104.93(15)
O(5)-K(1)-C(3)	108.95(7)	C(6)-Si(1)-C(7)	108.07(13)
O(1)-K(1)-C(3)	118.25(6)	C(3)-Si(2)-C(9)	109.28(14)
O(4)-K(1)-C(3)	136.41(6)	C(3)-Si(2)-C(11)	112.24(13)
C(4)-K(1)-C(3)	26.97(7)	C(9)-Si(2)-C(11)	108.74(17)
O(3)-K(1)-C(5)	105.60(6)	C(3)-Si(2)-C(10)	112.99(13)
O(2)-K(1)-C(5)	125.93(6)	C(9)-Si(2)-C(10)	107.92(16)
O(6)-K(1)-C(5)	107.65(6)	C(11)-Si(2)-C(10)	105.48(15)
O(5)-K(1)-C(5)	82.46(6)	C(12)-O(1)-C(23)	112.1(2)
O(1)-K(1)-C(5)	158.96(6)	C(12)-O(1)-K(1)	115.48(14)
O(4)-K(1)-C(5)	93.11(6)	C(23)-O(1)-K(1)	116.11(15)
C(4)-K(1)-C(5)	25.97(7)	C(13)-O(2)-C(14)	113.0(2)
C(3)-K(1)-C(5)	43.40(7)	C(13)-O(2)-K(1)	120.00(15)
O(3)-K(1)-C(2)	95.33(7)	C(14)-O(2)-K(1)	106.44(15)
O(2)-K(1)-C(2)	85.48(6)	C(15)-O(3)-C(16)	112.2(2)
O(6)-K(1)-C(2)	118.54(6)	C(15)-O(3)-K(1)	121.14(16)
O(5)-K(1)-C(2)	122.97(6)	C(16)-O(3)-K(1)	122.78(16)
O(1)-K(1)-C(2)	128.84(6)	C(17)-O(4)-C(18)	111.1(2)
O(4)-K(1)-C(2)	122.04(6)	C(17)-O(4)-K(1)	105.57(15)
C(4)-K(1)-C(2)	42.38(7)	C(18)-O(4)-K(1)	106.08(16)
C(3)-K(1)-C(2)	26.12(7)	C(20)-O(5)-C(19)	113.5(2)
C(5)-K(1)-C(2)	41.65(7)	C(20)-O(5)-K(1)	120.24(16)
O(3)-K(1)-C(1)	86.75(7)	C(19)-O(5)-K(1)	122.48(16)

C(21)-O(6)-C(22)	113.8(2)	O(6)-C(22)-C(23)	108.2(2)
C(21)-O(6)-K(1)	109.56(15)	O(1)-C(23)-C(22)	107.3(2)
C(22)-O(6)-K(1)	111.09(15)	Cnt2-K(2)-O(7)	107.1
C(5)-C(1)-C(2)	105.2(2)	Cnt2-K(2)-O(8)	103.7
C(5)-C(1)-Si(1)	126.1(2)	Cnt2-K(2)-O(9)	138.6
C(2)-C(1)-Si(1)	128.1(2)	Cnt2-K(2)-O(10)	109.8
C(5)-C(1)-K(1)	72.64(13)	Cnt2-K(2)-O(11)	98.8
C(2)-C(1)-K(1)	74.07(13)	Cnt2-K(2)-O(12)	117.0
Si(1)-C(1)-K(1)	124.91(12)	O(11)-K(2)-O(7)	115.95(8)
C(3)-C(2)-C(1)	111.1(2)	O(11)-K(2)-O(8)	157.39(8)
C(3)-C(2)-K(1)	72.48(14)	O(7)-K(2)-O(8)	59.24(6)
C(1)-C(2)-K(1)	80.56(14)	O(11)-K(2)-O(10)	57.72(7)
C(2)-C(3)-C(4)	104.8(2)	O(7)-K(2)-O(10)	143.08(6)
C(2)-C(3)-Si(2)	128.0(2)	O(8)-K(2)-O(10)	111.21(6)
C(4)-C(3)-Si(2)	127.2(2)	O(11)-K(2)-O(9)	102.87(7)
C(2)-C(3)-K(1)	81.40(15)	O(7)-K(2)-O(9)	94.44(6)
C(4)-C(3)-K(1)	74.98(14)	O(8)-K(2)-O(9)	57.90(5)
Si(2)-C(3)-K(1)	108.01(10)	O(10)-K(2)-O(9)	57.12(6)
C(5)-C(4)-C(3)	109.5(2)	O(11)-K(2)-O(12)	57.67(8)
C(5)-C(4)-K(1)	81.71(15)	O(7)-K(2)-O(12)	58.32(7)
C(3)-C(4)-K(1)	78.05(15)	O(8)-K(2)-O(12)	112.29(6)
C(4)-C(5)-C(1)	109.4(2)	O(10)-K(2)-O(12)	103.00(7)
C(4)-C(5)-K(1)	72.33(14)	O(9)-K(2)-O(12)	104.37(6)
C(1)-C(5)-K(1)	81.94(14)	O(11)-K(2)-C(24)	110.65(9)
O(1)-C(12)-C(13)	108.7(2)	O(7)-K(2)-C(24)	116.28(7)
O(2)-C(13)-C(12)	108.3(2)	O(8)-K(2)-C(24)	89.70(7)
O(2)-C(14)-C(15)	113.1(2)	O(10)-K(2)-C(24)	98.22(7)
O(2)-C(14)-K(1)	50.76(12)	O(9)-K(2)-C(24)	114.98(7)
C(15)-C(14)-K(1)	85.19(16)	O(12)-K(2)-C(24)	140.65(6)
O(3)-C(15)-C(14)	107.7(2)	O(11)-K(2)-C(28)	83.80(9)
O(3)-C(16)-C(17)	108.0(2)	O(7)-K(2)-C(28)	129.89(7)
O(4)-C(17)-C(16)	109.3(2)	O(8)-K(2)-C(28)	116.76(7)
O(4)-C(18)-C(19)	108.7(2)	O(10)-K(2)-C(28)	86.91(7)
O(5)-C(19)-C(18)	108.5(2)	O(9)-K(2)-C(28)	127.25(7)
O(5)-C(20)-C(21)	108.9(2)	O(12)-K(2)-C(28)	121.81(7)
O(6)-C(21)-C(20)	113.9(2)	C(24)-K(2)-C(28)	27.08(7)

O(11)-K(2)-C(25)	120.18(8)	C(26)-Si(4)-C(34)	113.26(13)
O(7)-K(2)-C(25)	91.00(7)	C(32)-Si(4)-C(34)	104.78(15)
O(8)-K(2)-C(25)	82.43(6)	C(33)-Si(4)-C(34)	106.04(13)
O(10)-K(2)-C(25)	124.55(7)	C(46)-O(7)-C(35)	112.3(2)
O(9)-K(2)-C(25)	128.53(7)	C(46)-O(7)-K(2)	121.5(2)
O(12)-K(2)-C(25)	121.46(7)	C(35)-O(7)-K(2)	121.42(18)
C(24)-K(2)-C(25)	26.44(7)	C(37)-O(8)-C(36)	113.5(2)
C(28)-K(2)-C(25)	42.98(7)	C(37)-O(8)-K(2)	116.03(16)
O(11)-K(2)-C(27)	78.09(8)	C(36)-O(8)-K(2)	107.87(17)
O(7)-K(2)-C(27)	109.47(7)	C(38)-O(9)-C(39)	111.2(2)
O(8)-K(2)-C(27)	124.50(6)	C(38)-O(9)-K(2)	115.37(14)
O(10)-K(2)-C(27)	104.53(7)	C(39)-O(9)-K(2)	117.34(15)
O(9)-K(2)-C(27)	153.11(7)	C(40)-O(10)-C(41)	125.6(3)
O(12)-K(2)-C(27)	98.75(7)	C(40)-O(10)-C(41B)	97.1(4)
C(24)-K(2)-C(27)	43.39(7)	C(40)-O(10)-K(2)	115.55(17)
C(28)-K(2)-C(27)	25.92(7)	C(41)-O(10)-K(2)	106.4(3)
C(25)-K(2)-C(27)	42.13(7)	C(41B)-O(10)-K(2)	119.3(3)
O(11)-K(2)-C(26)	99.64(8)	C(43)-O(11)-C(42)	98.4(3)
O(7)-K(2)-C(26)	87.28(7)	C(43)-O(11)-C(42B)	129.1(4)
O(8)-K(2)-C(26)	102.07(6)	C(43)-O(11)-K(2)	122.6(2)
O(10)-K(2)-C(26)	128.89(7)	C(42)-O(11)-K(2)	122.7(3)
O(9)-K(2)-C(26)	153.97(6)	C(42B)-O(11)-K(2)	106.9(3)
O(12)-K(2)-C(26)	98.61(6)	C(45)-O(12)-C(44)	112.7(3)
C(24)-K(2)-C(26)	43.29(7)	C(45)-O(12)-K(2)	107.62(18)
C(28)-K(2)-C(26)	42.86(7)	C(44)-O(12)-K(2)	106.87(19)
C(25)-K(2)-C(26)	25.46(7)	C(25)-C(24)-C(28)	105.9(2)
C(27)-K(2)-C(26)	25.84(7)	C(25)-C(24)-Si(3)	127.3(2)
C(24)-Si(3)-C(29)	109.60(13)	C(28)-C(24)-Si(3)	126.8(2)
C(24)-Si(3)-C(30)	112.17(13)	C(25)-C(24)-K(2)	80.88(15)
C(29)-Si(3)-C(30)	106.46(15)	C(28)-C(24)-K(2)	76.48(15)
C(24)-Si(3)-C(31)	110.25(14)	Si(3)-C(24)-K(2)	110.86(10)
C(29)-Si(3)-C(31)	110.24(16)	C(26)-C(25)-C(24)	110.7(2)
C(30)-Si(3)-C(31)	108.05(15)	C(26)-C(25)-K(2)	81.49(15)
C(26)-Si(4)-C(32)	112.56(13)	C(24)-C(25)-K(2)	72.68(14)
C(26)-Si(4)-C(33)	109.32(14)	C(25)-C(26)-C(27)	105.3(2)
C(32)-Si(4)-C(33)	110.63(15)	C(25)-C(26)-Si(4)	128.1(2)

C(27)-C(26)-Si(4)	126.0(2)	O(8)-C(37)-C(38)	108.6(2)
C(25)-C(26)-K(2)	73.04(13)	O(9)-C(38)-C(37)	109.5(2)
C(27)-C(26)-K(2)	73.40(13)	O(9)-C(39)-C(40)	108.9(2)
Si(4)-C(26)-K(2)	125.37(12)	O(10)-C(40)-C(39)	108.8(2)
C(28)-C(27)-C(26)	109.2(2)	O(10)-C(41)-C(42)	108.7(5)
C(28)-C(27)-K(2)	72.39(14)	C(42B)-C(41B)-O(10)102.3(6)
C(26)-C(27)-K(2)	80.76(14)	O(11)-C(42)-C(41)	102.2(4)
C(27)-C(28)-C(24)	108.9(2)	C(41B)-C(42B)-O(11)104.5(6)
C(27)-C(28)-K(2)	81.69(16)	O(11)-C(43)-C(44)	108.1(3)
C(24)-C(28)-K(2)	76.44(15)	O(12)-C(44)-C(43)	110.5(3)
O(7)-C(35)-C(36)	108.5(2)	O(12)-C(45)-C(46)	110.1(3)
O(8)-C(36)-C(35)	113.2(2)	O(7)-C(46)-C(45)	108.6(3)

X-ray Data Collection, Structure Solution and Refinement for [Na(crown)₂][Cp"₃Th].

A red crystal of approximate dimensions 0.153 x 0.258 x 0.289 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2³² program package was used to determine the unit-cell parameters and for data collection (30 sec/frame scan time). The raw frame data was processed using SAINT³³ and SADABS³⁴ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL³⁵ program package. There were no systematic absences nor any diffraction symmetry other than the Friedel condition. The centrosymmetric triclinic space group $P\bar{1}$ was assigned and later determined to be correct.

The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors³⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. Disordered atoms were included using multiple components, partial site-occupancy-factors, thermal (EADP) and geometric restraints (DFIX).³⁵

Least-squares analysis yielded wR2 = 0.1218 and Goof = 1.044 for 598 variables refined against 12873 data (0.80 Å), R1 = 0.0479 for those 10989 data with I > 2.0σ (I).

Identification code	jcw35 (Justin Wedal)		
Empirical formula	C ₅₇ H ₁₁₁ Na O ₁₂ Si ₆ Th		
Formula weight	1412.02		
Temperature	133(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	PĪ		
Unit cell dimensions	a = 13.8938(13) Å	$\alpha = 74.4602(14)^{\circ}.$	
	b = 14.4588(13) Å	$\beta = 84.1350(14)^{\circ}.$	
	c = 18.3420(17) Å	$\gamma = 83.5214(14)^{\circ}.$	
Volume	3517.3(6) Å ³		
Z	2		
Density (calculated)	1.333 Mg/m ³		
Absorption coefficient	2.280 mm ⁻¹		
F(000)	1468		
Crystal color	red		
Crystal size	0.289 x 0.258 x 0.153 mm	l ³	
Theta range for data collection	1.156 to 25.350°		
Index ranges	$-16 \le h \le 16, -17 \le k \le 17, -22 \le l \le 22$		
Reflections collected	39152		
Independent reflections	12873 [R(int) = 0.0464]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.6465 and 0.5424		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	12873 / 36 / 598		
Goodness-of-fit on F ²	1.044		
Final R indices [I>2sigma(I) = 10989 data]	R1 = 0.0479, wR2 = 0.113	53	
R indices (all data, 0.80 Å)	R1 = 0.0608, wR2 = 0.122	18	
Largest diff. peak and hole	2.464 and -2.311 e.Å ⁻³		

Table S4. Crystal data and structure refinement for [Na(crown)2][Cp"3Th].

Table S5. Bond lengths [Å] and angles [°] for [Na(crown)₂][Cp"₃Th].

Th(1)-Cnt1	2.527	Th(1)-C(13)	2.754(6)
Th(1)-Cnt2	2.521	Th(1)-C(2)	2.757(6)
Th(1)-Cnt3	2.531	Th(1)-C(24)	2.761(6)

Th(1)-C(25)	2.785(6)	C(1)-C(2)	1.419(9)
Th(1)-C(12)	2.796(6)	C(1)-C(5)	1.431(9)
Th(1)-C(14)	2.798(6)	C(2)-C(3)	1.438(9)
Th(1)-C(3)	2.800(6)	C(3)-C(4)	1.434(9)
Th(1)-C(4)	2.807(6)	C(4)-C(5)	1.383(9)
Th(1)-C(16)	2.813(6)	C(12)-C(16)	1.423(9)
Th(1)-C(15)	2.816(6)	C(12)-C(13)	1.433(8)
Th(1)-C(1)	2.818(6)	C(13)-C(14)	1.426(9)
Th(1)-C(26)	2.818(6)	C(14)-C(15)	1.423(9)
Th(1)-C(23)	2.826(6)	C(15)-C(16)	1.390(9)
Th(1)-C(5)	2.826(6)	C(23)-C(24)	1.421(9)
Th(1)-C(27)	2.832(5)	C(23)-C(27)	1.426(8)
Si(1)-C(1)	1.849(7)	C(24)-C(25)	1.447(8)
Si(1)-C(7)	1.866(9)	C(25)-C(26)	1.424(8)
Si(1)-C(6)	1.881(8)	C(26)-C(27)	1.388(9)
Si(1)-C(8)	1.882(8)	Na(1)-O(12)	2.429(13)
Si(2)-C(3)	1.837(7)	Na(1)-O(6)	2.519(5)
Si(2)-C(11)	1.861(7)	Na(1)-O(2)	2.520(5)
Si(2)-C(9)	1.863(9)	Na(1)-O(7B)	2.541(19)
Si(2)-C(10)	1.877(8)	Na(1)-O(7)	2.579(13)
Si(3)-C(12)	1.847(7)	Na(1)-O(4)	2.583(5)
Si(3)-C(17)	1.865(9)	Na(1)-O(1)	2.589(5)
Si(3)-C(19)	1.866(8)	Na(1)-O(12B)	2.593(19)
Si(3)-C(18)	1.875(8)	Na(1)-O(3)	2.617(6)
Si(4)-C(14)	1.839(6)	Na(1)-O(5)	2.652(6)
Si(4)-C(20)	1.861(8)	O(1)-C(34)	1.414(8)
Si(4)-C(22)	1.879(7)	O(1)-C(45)	1.421(8)
Si(4)-C(21)	1.882(9)	O(2)-C(35)	1.410(8)
Si(5)-C(23)	1.846(6)	O(2)-C(36)	1.412(8)
Si(5)-C(28)	1.871(7)	O(3)-C(38)	1.344(11)
Si(5)-C(30)	1.872(7)	O(3)-C(37)	1.415(14)
Si(5)-C(29)	1.879(7)	O(4)-C(39)	1.403(11)
Si(6)-C(25)	1.848(6)	O(4)-C(40)	1.410(9)
Si(6)-C(33)	1.861(7)	O(5)-C(42)	1.398(9)
Si(6)-C(32)	1.869(7)	O(5)-C(41)	1.427(10)
Si(6)-C(31)	1.883(8)	O(6)-C(44)	1.414(8)

O(6)-C(43)	1.417(8)	O(12B)-C(55B)	1.417(10)
C(34)-C(35)	1.512(10)	C(46B)-C(47B)	1.494(10)
C(36)-C(37)	1.452(14)	C(48B)-C(49B)	1.490(10)
C(38)-C(39)	1.403(13)	C(50B)-C(51B)	1.505(10)
C(40)-C(41)	1.494(12)	C(52B)-C(53B)	1.496(10)
C(42)-C(43)	1.488(10)	C(54B)-C(55B)	1.474(10)
C(44)-C(45)	1.498(9)	C(56B)-C(57B)	1.515(10)
O(7)-C(57)	1.401(9)		
O(7)-C(46)	1.409(9)	Cnt1-Th(1)-Cnt2	120.0
O(8)-C(47)	1.417(9)	Cnt1-Th(1)-Cnt3	120.1
O(8)-C(48)	1.419(9)	Cnt2-Th(1)-Cnt3	119.9
O(9)-C(50)	1.405(9)	C(13)-Th(1)-C(2)	119.76(19)
O(9)-C(49)	1.417(9)	C(13)-Th(1)-C(24)	119.82(18)
O(10)-C(52)	1.403(9)	C(2)-Th(1)-C(24)	120.39(18)
O(10)-C(51)	1.403(9)	C(13)-Th(1)-C(25)	132.53(19)
O(11)-C(54)	1.375(9)	C(2)-Th(1)-C(25)	100.30(18)
O(11)-C(53)	1.402(9)	C(24)-Th(1)-C(25)	30.25(17)
O(12)-C(56)	1.407(9)	C(13)-Th(1)-C(12)	29.91(17)
O(12)-C(55)	1.419(9)	C(2)-Th(1)-C(12)	129.99(19)
C(46)-C(47)	1.492(9)	C(24)-Th(1)-C(12)	103.46(18)
C(48)-C(49)	1.438(9)	C(25)-Th(1)-C(12)	129.15(19)
C(50)-C(51)	1.470(9)	C(13)-Th(1)-C(14)	29.77(19)
C(52)-C(53)	1.470(9)	C(2)-Th(1)-C(14)	132.55(18)
C(54)-C(55)	1.466(9)	C(24)-Th(1)-C(14)	100.00(18)
C(56)-C(57)	1.500(9)	C(25)-Th(1)-C(14)	103.92(19)
O(7B)-C(57B)	1.410(10)	C(12)-Th(1)-C(14)	49.89(18)
O(7B)-C(46B)	1.422(10)	C(13)-Th(1)-C(3)	100.29(19)
O(8B)-C(47B)	1.436(10)	C(2)-Th(1)-C(3)	29.98(18)
O(8B)-C(48B)	1.445(9)	C(24)-Th(1)-C(3)	134.49(18)
O(9B)-C(50B)	1.441(10)	C(25)-Th(1)-C(3)	126.04(18)
O(9B)-C(49B)	1.457(9)	C(12)-Th(1)-C(3)	101.4(2)
O(10B)-C(52B)	1.412(9)	C(14)-Th(1)-C(3)	125.06(19)
O(10B)-C(51B)	1.433(9)	C(13)-Th(1)-C(4)	73.42(19)
O(11B)-C(54B)	1.357(9)	C(2)-Th(1)-C(4)	47.72(18)
O(11B)-C(53B)	1.419(9)	C(24)-Th(1)-C(4)	164.05(18)
O(12B)-C(56B)	1.416(10)	C(25)-Th(1)-C(4)	146.59(17)

C(12)-Th(1)-C(4)	84.08(19)	C(3)-Th(1)-C(26)	96.87(18)
C(14)-Th(1)-C(4)	95.60(19)	C(4)-Th(1)-C(26)	121.46(17)
C(3)-Th(1)-C(4)	29.63(18)	C(16)-Th(1)-C(26)	123.27(18)
C(13)-Th(1)-C(16)	47.83(18)	C(15)-Th(1)-C(26)	115.73(18)
C(2)-Th(1)-C(16)	158.3(2)	C(1)-Th(1)-C(26)	82.68(17)
C(24)-Th(1)-C(16)	75.38(18)	C(13)-Th(1)-C(23)	130.38(17)
C(25)-Th(1)-C(16)	99.76(18)	C(2)-Th(1)-C(23)	103.93(18)
C(12)-Th(1)-C(16)	29.39(19)	C(24)-Th(1)-C(23)	29.43(18)
C(14)-Th(1)-C(16)	48.49(17)	C(25)-Th(1)-C(23)	49.76(17)
C(3)-Th(1)-C(16)	128.39(19)	C(12)-Th(1)-C(23)	103.23(17)
C(4)-Th(1)-C(16)	113.43(19)	C(14)-Th(1)-C(23)	122.89(18)
C(13)-Th(1)-C(15)	47.7(2)	C(3)-Th(1)-C(23)	107.53(18)
C(2)-Th(1)-C(15)	161.57(18)	C(4)-Th(1)-C(23)	135.54(19)
C(24)-Th(1)-C(15)	73.37(18)	C(16)-Th(1)-C(23)	83.00(17)
C(25)-Th(1)-C(15)	86.64(18)	C(15)-Th(1)-C(23)	93.61(18)
C(12)-Th(1)-C(15)	48.4(2)	C(1)-Th(1)-C(23)	125.93(17)
C(14)-Th(1)-C(15)	29.36(18)	C(26)-Th(1)-C(23)	48.13(17)
C(3)-Th(1)-C(15)	147.32(19)	C(13)-Th(1)-C(5)	75.48(18)
C(4)-Th(1)-C(15)	120.96(19)	C(2)-Th(1)-C(5)	47.42(18)
C(16)-Th(1)-C(15)	28.59(18)	C(24)-Th(1)-C(5)	156.24(18)
C(13)-Th(1)-C(1)	103.48(18)	C(25)-Th(1)-C(5)	125.99(17)
C(2)-Th(1)-C(1)	29.48(18)	C(12)-Th(1)-C(5)	97.81(18)
C(24)-Th(1)-C(1)	128.61(18)	C(14)-Th(1)-C(5)	85.61(18)
C(25)-Th(1)-C(1)	99.60(18)	C(3)-Th(1)-C(5)	48.52(18)
C(12)-Th(1)-C(1)	127.16(18)	C(4)-Th(1)-C(5)	28.42(18)
C(14)-Th(1)-C(1)	105.69(18)	C(16)-Th(1)-C(5)	123.16(18)
C(3)-Th(1)-C(1)	49.97(19)	C(15)-Th(1)-C(5)	114.96(18)
C(4)-Th(1)-C(1)	48.42(19)	C(1)-Th(1)-C(5)	29.38(18)
C(16)-Th(1)-C(1)	151.05(18)	C(26)-Th(1)-C(5)	112.05(17)
C(15)-Th(1)-C(1)	132.80(18)	C(23)-Th(1)-C(5)	151.34(18)
C(13)-Th(1)-C(26)	161.63(19)	C(13)-Th(1)-C(27)	158.50(17)
C(2)-Th(1)-C(26)	73.76(18)	C(2)-Th(1)-C(27)	76.00(17)
C(24)-Th(1)-C(26)	47.90(17)	C(24)-Th(1)-C(27)	47.63(17)
C(25)-Th(1)-C(26)	29.44(17)	C(25)-Th(1)-C(27)	48.46(18)
C(12)-Th(1)-C(26)	150.04(18)	C(12)-Th(1)-C(27)	129.01(17)
C(14)-Th(1)-C(26)	132.04(19)	C(14)-Th(1)-C(27)	147.58(18)

C(3)-Th(1)-C(27)	87.30(18)	C(28)-Si(5)-C(29)	108.3(4)
C(4)-Th(1)-C(27)	116.82(18)	C(30)-Si(5)-C(29)	105.0(3)
C(16)-Th(1)-C(27)	112.13(17)	C(25)-Si(6)-C(33)	117.5(3)
C(15)-Th(1)-C(27)	120.21(17)	C(25)-Si(6)-C(32)	108.7(3)
C(1)-Th(1)-C(27)	96.81(17)	C(33)-Si(6)-C(32)	109.5(3)
C(26)-Th(1)-C(27)	28.43(17)	C(25)-Si(6)-C(31)	108.1(3)
C(23)-Th(1)-C(27)	29.19(16)	C(33)-Si(6)-C(31)	105.3(4)
C(5)-Th(1)-C(27)	123.00(17)	C(32)-Si(6)-C(31)	107.3(4)
C(1)-Si(1)-C(7)	111.8(3)	C(2)-C(1)-C(5)	104.0(5)
C(1)-Si(1)-C(6)	108.5(4)	C(2)-C(1)-Si(1)	126.1(5)
C(7)-Si(1)-C(6)	108.5(4)	C(5)-C(1)-Si(1)	127.1(5)
C(1)-Si(1)-C(8)	111.9(3)	C(2)-C(1)-Th(1)	72.9(3)
C(7)-Si(1)-C(8)	111.3(4)	C(5)-C(1)-Th(1)	75.6(3)
C(6)-Si(1)-C(8)	104.4(4)	Si(1)-C(1)-Th(1)	130.6(3)
C(3)-Si(2)-C(11)	110.4(3)	C(1)-C(2)-C(3)	112.3(5)
C(3)-Si(2)-C(9)	115.2(3)	C(1)-C(2)-Th(1)	77.6(3)
C(11)-Si(2)-C(9)	108.6(4)	C(3)-C(2)-Th(1)	76.7(3)
C(3)-Si(2)-C(10)	108.2(3)	C(4)-C(3)-C(2)	103.3(6)
C(11)-Si(2)-C(10)	105.8(4)	C(4)-C(3)-Si(2)	129.0(5)
C(9)-Si(2)-C(10)	108.2(5)	C(2)-C(3)-Si(2)	124.3(5)
C(12)-Si(3)-C(17)	107.8(4)	C(4)-C(3)-Th(1)	75.5(4)
C(12)-Si(3)-C(19)	112.1(3)	C(2)-C(3)-Th(1)	73.4(3)
C(17)-Si(3)-C(19)	106.2(4)	Si(2)-C(3)-Th(1)	131.4(3)
C(12)-Si(3)-C(18)	112.6(3)	C(5)-C(4)-C(3)	110.3(6)
C(17)-Si(3)-C(18)	106.9(4)	C(5)-C(4)-Th(1)	76.5(4)
C(19)-Si(3)-C(18)	110.9(4)	C(3)-C(4)-Th(1)	74.9(3)
C(14)-Si(4)-C(20)	112.7(3)	C(4)-C(5)-C(1)	110.1(6)
C(14)-Si(4)-C(22)	106.5(3)	C(4)-C(5)-Th(1)	75.0(3)
C(20)-Si(4)-C(22)	107.0(4)	C(1)-C(5)-Th(1)	75.0(3)
C(14)-Si(4)-C(21)	112.6(3)	C(16)-C(12)-C(13)	104.5(6)
C(20)-Si(4)-C(21)	110.6(5)	C(16)-C(12)-Si(3)	125.4(5)
C(22)-Si(4)-C(21)	106.9(4)	C(13)-C(12)-Si(3)	125.4(5)
C(23)-Si(5)-C(28)	110.9(3)	C(16)-C(12)-Th(1)	76.0(3)
C(23)-Si(5)-C(30)	113.2(3)	C(13)-C(12)-Th(1)	73.4(3)
C(28)-Si(5)-C(30)	111.0(3)	Si(3)-C(12)-Th(1)	134.4(3)
C(23)-Si(5)-C(29)	108.2(3)	C(14)-C(13)-C(12)	111.2(6)

C(14)-C(13)-Th(1)	76.8(3)	O(12)-Na(1)-O(2)	83.8(3)
C(12)-C(13)-Th(1)	76.7(3)	O(6)-Na(1)-O(2)	99.38(17)
C(15)-C(14)-C(13)	104.5(5)	O(6)-Na(1)-O(7B)	99.9(3)
C(15)-C(14)-Si(4)	125.9(5)	O(2)-Na(1)-O(7B)	135.8(4)
C(13)-C(14)-Si(4)	124.5(5)	O(12)-Na(1)-O(7)	65.6(3)
C(15)-C(14)-Th(1)	76.0(3)	O(6)-Na(1)-O(7)	92.7(3)
C(13)-C(14)-Th(1)	73.4(3)	O(2)-Na(1)-O(7)	135.1(3)
Si(4)-C(14)-Th(1)	135.0(3)	O(12)-Na(1)-O(4)	79.8(3)
C(16)-C(15)-C(14)	110.0(6)	O(6)-Na(1)-O(4)	123.22(19)
C(16)-C(15)-Th(1)	75.6(3)	O(2)-Na(1)-O(4)	118.0(2)
C(14)-C(15)-Th(1)	74.6(3)	O(7B)-Na(1)-O(4)	82.5(4)
C(15)-C(16)-C(12)	109.8(6)	O(7)-Na(1)-O(4)	89.2(3)
C(15)-C(16)-Th(1)	75.8(3)	O(12)-Na(1)-O(1)	90.4(3)
C(12)-C(16)-Th(1)	74.6(3)	O(6)-Na(1)-O(1)	64.70(16)
C(24)-C(23)-C(27)	105.1(5)	O(2)-Na(1)-O(1)	63.96(16)
C(24)-C(23)-Si(5)	125.2(4)	O(7B)-Na(1)-O(1)	89.6(4)
C(27)-C(23)-Si(5)	125.7(5)	O(7)-Na(1)-O(1)	83.4(3)
C(24)-C(23)-Th(1)	72.8(3)	O(4)-Na(1)-O(1)	169.57(19)
C(27)-C(23)-Th(1)	75.6(3)	O(6)-Na(1)-O(12B)	148.1(4)
Si(5)-C(23)-Th(1)	133.9(3)	O(2)-Na(1)-O(12B)	76.8(3)
C(23)-C(24)-C(25)	110.8(5)	O(7B)-Na(1)-O(12B)	66.0(5)
C(23)-C(24)-Th(1)	77.8(3)	O(4)-Na(1)-O(12B)	84.7(4)
C(25)-C(24)-Th(1)	75.8(3)	O(1)-Na(1)-O(12B)	85.9(4)
C(26)-C(25)-C(24)	104.2(5)	O(12)-Na(1)-O(3)	101.7(3)
C(26)-C(25)-Si(6)	129.3(4)	O(6)-Na(1)-O(3)	106.8(2)
C(24)-C(25)-Si(6)	122.2(4)	O(2)-Na(1)-O(3)	62.85(17)
C(26)-C(25)-Th(1)	76.6(3)	O(7B)-Na(1)-O(3)	144.0(4)
C(24)-C(25)-Th(1)	74.0(3)	O(7)-Na(1)-O(3)	151.6(3)
Si(6)-C(25)-Th(1)	132.2(3)	O(4)-Na(1)-O(3)	62.88(18)
C(27)-C(26)-C(25)	110.1(5)	O(1)-Na(1)-O(3)	123.42(18)
C(27)-C(26)-Th(1)	76.3(3)	O(12B)-Na(1)-O(3)	99.5(4)
C(25)-C(26)-Th(1)	74.0(3)	O(12)-Na(1)-O(5)	124.0(3)
C(26)-C(27)-C(23)	109.8(5)	O(6)-Na(1)-O(5)	62.89(16)
C(26)-C(27)-Th(1)	75.2(3)	O(2)-Na(1)-O(5)	150.22(18)
C(23)-C(27)-Th(1)	75.2(3)	O(7B)-Na(1)-O(5)	73.3(4)
O(12)-Na(1)-O(6)	149.4(3)	O(7)-Na(1)-O(5)	72.5(3)

O(4)-Na(1)-O(5)	63.88(18)	C(46)-O(7)-Na(1)	125.6(10)
O(1)-Na(1)-O(5)	120.20(18)	C(47)-O(8)-C(48)	107.4(10)
O(12B)-Na(1)-O(5)	131.2(4)	C(50)-O(9)-C(49)	111.3(10)
O(3)-Na(1)-O(5)	97.9(2)	C(52)-O(10)-C(51)	116.8(10)
C(34)-O(1)-C(45)	113.1(5)	C(54)-O(11)-C(53)	132.5(10)
C(34)-O(1)-Na(1)	106.6(4)	C(56)-O(12)-C(55)	111.4(11)
C(45)-O(1)-Na(1)	109.7(4)	C(56)-O(12)-Na(1)	114.9(9)
C(35)-O(2)-C(36)	114.6(5)	C(55)-O(12)-Na(1)	115.2(9)
C(35)-O(2)-Na(1)	121.8(4)	O(7)-C(46)-C(47)	114.2(12)
C(36)-O(2)-Na(1)	120.6(4)	O(8)-C(47)-C(46)	109.0(11)
C(38)-O(3)-C(37)	106.2(9)	O(8)-C(48)-C(49)	106.0(11)
C(38)-O(3)-Na(1)	116.0(5)	O(9)-C(49)-C(48)	128.5(11)
C(37)-O(3)-Na(1)	118.4(7)	O(9)-C(50)-C(51)	113.1(10)
C(39)-O(4)-C(40)	112.1(7)	O(10)-C(51)-C(50)	105.8(9)
C(39)-O(4)-Na(1)	113.9(5)	O(10)-C(52)-C(53)	126.0(11)
C(40)-O(4)-Na(1)	110.4(5)	O(11)-C(53)-C(52)	117.0(11)
C(42)-O(5)-C(41)	113.7(6)	O(11)-C(54)-C(55)	119.8(11)
C(42)-O(5)-Na(1)	110.3(4)	O(12)-C(55)-C(54)	120.9(12)
C(41)-O(5)-Na(1)	117.7(5)	O(12)-C(56)-C(57)	107.9(13)
C(44)-O(6)-C(43)	112.1(5)	O(7)-C(57)-C(56)	109.0(12)
C(44)-O(6)-Na(1)	118.0(4)	C(57B)-O(7B)-C(46B)	113.3(17)
C(43)-O(6)-Na(1)	121.3(4)	C(57B)-O(7B)-Na(1)	115.3(15)
O(1)-C(34)-C(35)	113.1(6)	C(46B)-O(7B)-Na(1)	123.4(14)
O(2)-C(35)-C(34)	107.6(6)	C(47B)-O(8B)-C(48B)	120.4(15)
O(2)-C(36)-C(37)	112.3(8)	C(50B)-O(9B)-C(49B)	104.8(13)
O(3)-C(37)-C(36)	111.2(10)	C(52B)-O(10B)-C(51B)	137.1(15)
O(3)-C(38)-C(39)	112.5(9)	C(54B)-O(11B)-C(53B)	111.5(15)
O(4)-C(39)-C(38)	111.8(9)	C(56B)-O(12B)-C(55B)	108.2(16)
O(4)-C(40)-C(41)	113.0(7)	C(56B)-O(12B)-Na(1)	107.4(14)
O(5)-C(41)-C(40)	108.2(7)	C(55B)-O(12B)-Na(1)	115.5(14)
O(5)-C(42)-C(43)	108.9(6)	O(7B)-C(46B)-C(47B)	113.3(17)
O(6)-C(43)-C(42)	108.6(6)	O(8B)-C(47B)-C(46B)	109.7(16)
O(6)-C(44)-C(45)	108.8(6)	O(8B)-C(48B)-C(49B)	123.3(17)
O(1)-C(45)-C(44)	107.2(5)	O(9B)-C(49B)-C(48B)	119.1(16)
C(57)-O(7)-C(46)	116.2(12)	O(9B)-C(50B)-C(51B)	104.4(12)
C(57)-O(7)-Na(1)	114.2(10)	O(10B)-C(51B)-C(50B)	109.7(13)

O(10B)-C(52B)-C(53B)	112.3(16)	O(12B)-C(55B)-C(54B)	113.4(17)
O(11B)-C(53B)-C(52B)	113.7(15)	O(12B)-C(56B)-C(57B)	108(2)
O(11B)-C(54B)-C(55B)	118.6(16)	O(7B)-C(57B)-C(56B)	108.2(18)

X-ray Data Collection, Structure Solution and Refinement for [Rb(crypt)][Cp"₃Th].

A blue crystal of approximate dimensions 0.296 x 0.316 x 0.435 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2³² program package was used to determine the unit-cell parameters and for data collection (10 sec/frame scan time). The raw frame data was processed using SAINT³³ and SADABS³⁴ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL³⁵ program package. There were no systematic absences nor any diffraction symmetry other than the Friedel condition. The centrosymmetric triclinic space group $P\bar{1}$ was assigned and later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors³⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.0475 and Goof = 1.019 for 622 variables refined against 15844 data (0.73 Å), R1 = 0.0212 for those 14524 data with I > 2.0σ (I).

Figure S69: Thermal ellipsoid plot of [Rb(crypt)][Cp"₃Th^{II}] drawn at the 50% probability level. Hydrogen atoms have been removed for clarity.

Table S6. Crystal data and structure re	inement for [Rb(crypt)][Cp ⁷⁷ 31h].	
Identification code	nrr6 (Nick Rightmire)		
Empirical formula	$C_{51}H_{99}N_2O_6RbSi_6Th$		
Formula weight	1322.37		
Temperature	88(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	PĪ		
Unit cell dimensions	a = 12.1971(13) Å	$\alpha = 100.6648(13)^{\circ}.$	
	b = 12.7473(13) Å	$\beta = 104.4725(13)^{\circ}.$	
	c = 22.242(2) Å	$\gamma = 95.7340(13)^{\circ}.$	
Volume	3251.6(6) Å ³		
Z	2		

Density (calculated)	1.351 Mg/m ³
Absorption coefficient	3.189 mm ⁻¹
F(000)	1356
Crystal color	blue
Crystal size	0.435 x 0.316 x 0.296 mm ³
Theta range for data collection	1.645 to 29.044°
Index ranges	$-16 \le h \le 16, -17 \le k \le 17, -30 \le l \le 30$
Reflections collected	40057
Independent reflections	15844 [R(int) = 0.0213]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Numerical
Max. and min. transmission	0.4085 and 0.2845
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	15844 / 0 / 622
Goodness-of-fit on F ²	1.019
Final R indices [I>2sigma(I) = 14524 data]	R1 = 0.0212, wR2 = 0.0462
R indices (all data, ? Å)	R1 = 0.0256, wR2 = 0.0475
Largest diff. peak and hole	1.117 and -0.690 e.Å ⁻³

Table S7. Bond lengths [Å] and angles [°] for [Rb(crypt)][Cp"3Th].

Th(1)-Cnt1	2.536	Th(1)-C(27)	2.853(2)
Th(1)-Cnt2	2.509	Th(1)-C(4)	2.8567(19)
Th(1)-Cnt3	2.522	Th(1)-C(23)	2.860(2)
Th(1)-C(13)	2.739(2)	Si(1)-C(1)	1.848(2)
Th(1)-C(25)	2.7453(19)	Si(1)-C(8)	1.868(2)
Th(1)-C(24)	2.7556(19)	Si(1)-C(7)	1.873(2)
Th(1)-C(2)	2.7607(19)	Si(1)-C(6)	1.886(2)
Th(1)-C(12)	2.770(2)	Si(2)-C(3)	1.849(2)
Th(1)-C(1)	2.7774(19)	Si(2)-C(9)	1.868(2)
Th(1)-C(26)	2.7825(19)	Si(2)-C(11)	1.877(2)
Th(1)-C(16)	2.8029(19)	Si(2)-C(10)	1.885(2)
Th(1)-C(14)	2.8087(19)	Si(3)-C(12)	1.842(2)
Th(1)-C(5)	2.8139(19)	Si(3)-C(19)	1.873(2)
Th(1)-C(15)	2.8208(19)	Si(3)-C(18)	1.874(2)
Th(1)-C(3)	2.8502(19)	Si(3)-C(17)	1.880(2)

Si(4)-C(14)	1.850(2)	O(1)-C(36)	1.434(3)
Si(4)-C(20)	1.869(2)	O(2)-C(38)	1.425(3)
Si(4)-C(21)	1.870(2)	O(2)-C(37)	1.428(3)
Si(4)-C(22)	1.880(2)	O(3)-C(41)	1.421(3)
Si(5)-C(23)	1.852(2)	O(3)-C(42)	1.430(3)
Si(5)-C(30)	1.867(2)	O(4)-C(43)	1.423(3)
Si(5)-C(29)	1.870(2)	O(4)-C(44)	1.430(3)
Si(5)-C(28)	1.882(2)	O(5)-C(47)	1.427(2)
Si(6)-C(25)	1.848(2)	O(5)-C(48)	1.428(2)
Si(6)-C(32)	1.869(2)	O(6)-C(50)	1.423(3)
Si(6)-C(33)	1.875(2)	O(6)-C(49)	1.432(3)
Si(6)-C(31)	1.878(2)	N(1)-C(34)	1.469(3)
C(1)-C(5)	1.439(3)	N(1)-C(40)	1.473(3)
C(1)-C(2)	1.440(3)	N(1)-C(46)	1.479(3)
C(2)-C(3)	1.432(3)	N(2)-C(51)	1.468(3)
C(3)-C(4)	1.426(3)	N(2)-C(39)	1.475(3)
C(4)-C(5)	1.401(3)	N(2)-C(45)	1.480(3)
C(12)-C(16)	1.437(3)	C(34)-C(35)	1.505(3)
C(12)-C(13)	1.447(3)	C(36)-C(37)	1.496(3)
C(13)-C(14)	1.434(3)	C(38)-C(39)	1.490(4)
C(14)-C(15)	1.430(3)	C(40)-C(41)	1.511(3)
C(15)-C(16)	1.401(3)	C(42)-C(43)	1.506(3)
C(23)-C(27)	1.426(3)	C(44)-C(45)	1.506(3)
C(23)-C(24)	1.431(3)	C(46)-C(47)	1.505(3)
C(24)-C(25)	1.439(3)	C(48)-C(49)	1.497(3)
C(25)-C(26)	1.443(3)	C(50)-C(51)	1.514(3)
C(26)-C(27)	1.401(3)		
Rb(1)-O(1)	2.8662(15)	Cnt1-Th(1)-Cnt2	122.7
Rb(1)-O(2)	2.8717(15)	Cnt1-Th(1)-Cnt3	119.7
Rb(1)-O(5)	2.8743(14)	Cnt2-Th(1)-Cnt3	117.6
Rb(1)-O(6)	2.8822(15)	C(13)-Th(1)-C(25)	132.68(6)
Rb(1)-O(3)	2.8890(15)	C(13)-Th(1)-C(24)	118.07(6)
Rb(1)-O(4)	2.8918(15)	C(25)-Th(1)-C(24)	30.32(6)
Rb(1)-N(1)	3.0535(17)	C(13)-Th(1)-C(2)	121.78(6)
Rb(1)-N(2)	3.0564(19)	C(25)-Th(1)-C(2)	100.74(6)
O(1)-C(35)	1.424(3)	C(24)-Th(1)-C(2)	120.05(6)
C(13)-Th(1)-C(12)	30.46(6)	C(26)-Th(1)-C(5)	121.20(6)
-------------------	-----------	-------------------	-----------
C(25)-Th(1)-C(12)	125.95(6)	C(16)-Th(1)-C(5)	117.63(6)
C(24)-Th(1)-C(12)	99.49(6)	C(14)-Th(1)-C(5)	93.26(6)
C(2)-Th(1)-C(12)	131.61(6)	C(13)-Th(1)-C(15)	48.20(6)
C(13)-Th(1)-C(1)	98.38(6)	C(25)-Th(1)-C(15)	85.26(6)
C(25)-Th(1)-C(1)	128.26(6)	C(24)-Th(1)-C(15)	72.33(6)
C(24)-Th(1)-C(1)	136.88(6)	C(2)-Th(1)-C(15)	163.26(6)
C(2)-Th(1)-C(1)	30.13(6)	C(12)-Th(1)-C(15)	49.05(6)
C(12)-Th(1)-C(1)	101.64(6)	C(1)-Th(1)-C(15)	146.42(6)
C(13)-Th(1)-C(26)	162.92(6)	C(26)-Th(1)-C(15)	115.13(6)
C(25)-Th(1)-C(26)	30.24(6)	C(16)-Th(1)-C(15)	28.86(6)
C(24)-Th(1)-C(26)	48.36(6)	C(14)-Th(1)-C(15)	29.42(6)
C(2)-Th(1)-C(26)	73.21(6)	C(5)-Th(1)-C(15)	120.65(6)
C(12)-Th(1)-C(26)	145.89(6)	C(13)-Th(1)-C(3)	109.19(6)
C(1)-Th(1)-C(26)	98.43(6)	C(25)-Th(1)-C(3)	97.55(6)
C(13)-Th(1)-C(16)	48.53(6)	C(24)-Th(1)-C(3)	126.30(6)
C(25)-Th(1)-C(16)	96.17(6)	C(2)-Th(1)-C(3)	29.52(5)
C(24)-Th(1)-C(16)	71.67(6)	C(12)-Th(1)-C(3)	133.89(6)
C(2)-Th(1)-C(16)	159.86(6)	C(1)-Th(1)-C(3)	49.73(6)
C(12)-Th(1)-C(16)	29.87(6)	C(26)-Th(1)-C(3)	79.79(6)
C(1)-Th(1)-C(16)	129.99(6)	C(16)-Th(1)-C(3)	156.80(6)
C(26)-Th(1)-C(16)	120.00(6)	C(14)-Th(1)-C(3)	109.28(6)
C(13)-Th(1)-C(14)	29.92(6)	C(5)-Th(1)-C(3)	48.17(6)
C(25)-Th(1)-C(14)	104.82(6)	C(15)-Th(1)-C(3)	134.68(6)
C(24)-Th(1)-C(14)	100.12(6)	C(13)-Th(1)-C(27)	154.35(6)
C(2)-Th(1)-C(14)	134.53(6)	C(25)-Th(1)-C(27)	49.12(6)
C(12)-Th(1)-C(14)	50.36(6)	C(24)-Th(1)-C(27)	47.64(6)
C(1)-Th(1)-C(14)	122.26(6)	C(2)-Th(1)-C(27)	75.44(6)
C(26)-Th(1)-C(14)	134.01(6)	C(12)-Th(1)-C(27)	124.05(6)
C(16)-Th(1)-C(14)	48.79(6)	C(1)-Th(1)-C(27)	89.64(6)
C(13)-Th(1)-C(5)	73.75(6)	C(26)-Th(1)-C(27)	28.76(6)
C(25)-Th(1)-C(5)	145.41(6)	C(16)-Th(1)-C(27)	108.51(6)
C(24)-Th(1)-C(5)	166.59(6)	C(14)-Th(1)-C(27)	147.75(6)
C(2)-Th(1)-C(5)	48.14(6)	C(5)-Th(1)-C(27)	118.97(6)
C(12)-Th(1)-C(5)	88.29(6)	C(15)-Th(1)-C(27)	119.18(6)
C(1)-Th(1)-C(5)	29.82(6)	C(3)-Th(1)-C(27)	94.61(6)

C(13)-Th(1)-C(4)	80.63(6)	C(3)-Si(2)-C(10)	106.88(10)
C(25)-Th(1)-C(4)	122.02(6)	C(9)-Si(2)-C(10)	108.62(12)
C(24)-Th(1)-C(4)	152.34(6)	C(11)-Si(2)-C(10)	103.03(11)
C(2)-Th(1)-C(4)	47.63(6)	C(12)-Si(3)-C(19)	107.34(10)
C(12)-Th(1)-C(4)	105.39(6)	C(12)-Si(3)-C(18)	114.96(10)
C(1)-Th(1)-C(4)	48.65(6)	C(19)-Si(3)-C(18)	111.38(10)
C(26)-Th(1)-C(4)	108.58(6)	C(12)-Si(3)-C(17)	109.78(10)
C(16)-Th(1)-C(4)	129.09(6)	C(19)-Si(3)-C(17)	106.66(12)
C(14)-Th(1)-C(4)	86.90(6)	C(18)-Si(3)-C(17)	106.43(11)
C(5)-Th(1)-C(4)	28.60(6)	C(14)-Si(4)-C(20)	110.80(10)
C(15)-Th(1)-C(4)	116.04(6)	C(14)-Si(4)-C(21)	114.44(9)
C(3)-Th(1)-C(4)	28.93(6)	C(20)-Si(4)-C(21)	108.68(11)
C(27)-Th(1)-C(4)	121.70(6)	C(14)-Si(4)-C(22)	107.51(9)
C(13)-Th(1)-C(23)	127.02(6)	C(20)-Si(4)-C(22)	107.34(11)
C(25)-Th(1)-C(23)	50.02(6)	C(21)-Si(4)-C(22)	107.80(10)
C(24)-Th(1)-C(23)	29.44(5)	C(23)-Si(5)-C(30)	112.94(10)
C(2)-Th(1)-C(23)	103.04(6)	C(23)-Si(5)-C(29)	113.14(10)
C(12)-Th(1)-C(23)	98.57(6)	C(30)-Si(5)-C(29)	110.06(11)
C(1)-Th(1)-C(23)	109.80(6)	C(23)-Si(5)-C(28)	106.83(10)
C(26)-Th(1)-C(23)	48.32(6)	C(30)-Si(5)-C(28)	105.97(11)
C(16)-Th(1)-C(23)	79.64(6)	C(29)-Si(5)-C(28)	107.44(11)
C(14)-Th(1)-C(23)	122.22(6)	C(25)-Si(6)-C(32)	117.87(10)
C(5)-Th(1)-C(23)	138.83(6)	C(25)-Si(6)-C(33)	109.48(10)
C(15)-Th(1)-C(23)	92.81(6)	C(32)-Si(6)-C(33)	106.61(10)
C(3)-Th(1)-C(23)	123.39(6)	C(25)-Si(6)-C(31)	106.99(10)
C(27)-Th(1)-C(23)	28.91(5)	C(32)-Si(6)-C(31)	107.11(11)
C(4)-Th(1)-C(23)	150.35(6)	C(33)-Si(6)-C(31)	108.47(10)
C(1)-Si(1)-C(8)	110.90(10)	C(5)-C(1)-C(2)	104.38(17)
C(1)-Si(1)-C(7)	112.46(10)	C(5)-C(1)-Si(1)	127.10(15)
C(8)-Si(1)-C(7)	112.23(11)	C(2)-C(1)-Si(1)	124.23(15)
C(1)-Si(1)-C(6)	108.11(10)	C(5)-C(1)-Th(1)	76.50(11)
C(8)-Si(1)-C(6)	106.35(11)	C(2)-C(1)-Th(1)	74.29(10)
C(7)-Si(1)-C(6)	106.42(10)	Si(1)-C(1)-Th(1)	132.21(9)
C(3)-Si(2)-C(9)	111.74(10)	C(3)-C(2)-C(1)	111.03(17)
C(3)-Si(2)-C(11)	114.91(9)	C(3)-C(2)-Th(1)	78.71(11)
C(9)-Si(2)-C(11)	111.04(10)	C(1)-C(2)-Th(1)	75.58(11)

C(4)-C(3)-C(2)	105.17(17)	C(27)-C(23)-Th(1)	75.26(11)
C(4)-C(3)-Si(2)	126.10(15)	C(24)-C(23)-Th(1)	71.24(11)
C(2)-C(3)-Si(2)	124.74(15)	Si(5)-C(23)-Th(1)	138.55(10)
C(4)-C(3)-Th(1)	75.79(11)	C(23)-C(24)-C(25)	111.52(17)
C(2)-C(3)-Th(1)	71.77(10)	C(23)-C(24)-Th(1)	79.32(11)
Si(2)-C(3)-Th(1)	134.76(9)	C(25)-C(24)-Th(1)	74.44(11)
C(5)-C(4)-C(3)	109.74(17)	C(24)-C(25)-C(26)	103.87(17)
C(5)-C(4)-Th(1)	74.01(11)	C(24)-C(25)-Si(6)	122.62(14)
C(3)-C(4)-Th(1)	75.28(11)	C(26)-C(25)-Si(6)	129.28(15)
C(4)-C(5)-C(1)	109.69(17)	C(24)-C(25)-Th(1)	75.24(11)
C(4)-C(5)-Th(1)	77.40(11)	C(26)-C(25)-Th(1)	76.30(11)
C(1)-C(5)-Th(1)	73.69(11)	Si(6)-C(25)-Th(1)	131.11(9)
C(16)-C(12)-C(13)	104.37(16)	C(27)-C(26)-C(25)	109.94(17)
C(16)-C(12)-Si(3)	127.27(15)	C(27)-C(26)-Th(1)	78.40(11)
C(13)-C(12)-Si(3)	126.14(15)	C(25)-C(26)-Th(1)	73.45(11)
C(16)-C(12)-Th(1)	76.32(11)	C(26)-C(27)-C(23)	109.63(17)
C(13)-C(12)-Th(1)	73.56(11)	C(26)-C(27)-Th(1)	72.84(11)
Si(3)-C(12)-Th(1)	127.91(9)	C(23)-C(27)-Th(1)	75.83(11)
C(14)-C(13)-C(12)	110.98(17)	O(1)-Rb(1)-O(2)	61.10(4)
C(14)-C(13)-Th(1)	77.75(11)	O(1)-Rb(1)-O(5)	95.33(4)
C(12)-C(13)-Th(1)	75.98(11)	O(2)-Rb(1)-O(5)	117.99(4)
C(15)-C(14)-C(13)	104.98(17)	O(1)-Rb(1)-O(6)	135.12(4)
C(15)-C(14)-Si(4)	125.52(15)	O(2)-Rb(1)-O(6)	95.55(4)
C(13)-C(14)-Si(4)	126.21(15)	O(5)-Rb(1)-O(6)	60.48(4)
C(15)-C(14)-Th(1)	75.76(11)	O(1)-Rb(1)-O(3)	96.57(4)
C(13)-C(14)-Th(1)	72.34(11)	O(2)-Rb(1)-O(3)	136.43(4)
Si(4)-C(14)-Th(1)	132.60(9)	O(5)-Rb(1)-O(3)	99.82(4)
C(16)-C(15)-C(14)	109.90(17)	O(6)-Rb(1)-O(3)	122.98(4)
C(16)-C(15)-Th(1)	74.86(11)	O(1)-Rb(1)-O(4)	120.16(4)
C(14)-C(15)-Th(1)	74.82(11)	O(2)-Rb(1)-O(4)	97.57(4)
C(15)-C(16)-C(12)	109.77(17)	O(5)-Rb(1)-O(4)	139.35(4)
C(15)-C(16)-Th(1)	76.28(11)	O(6)-Rb(1)-O(4)	99.32(4)
C(12)-C(16)-Th(1)	73.82(11)	O(3)-Rb(1)-O(4)	59.79(4)
C(27)-C(23)-C(24)	105.04(17)	O(1)-Rb(1)-N(1)	59.84(5)
C(27)-C(23)-Si(5)	126.28(15)	O(2)-Rb(1)-N(1)	120.20(5)
C(24)-C(23)-Si(5)	123.24(14)	O(5)-Rb(1)-N(1)	60.40(4)

O(6)-Rb(1)-N(1)	120.02(5)	C(39)-N(2)-C(45)	109.86(19)
O(3)-Rb(1)-N(1)	59.96(4)	C(51)-N(2)-Rb(1)	108.43(13)
O(4)-Rb(1)-N(1)	119.09(4)	C(39)-N(2)-Rb(1)	108.67(13)
O(1)-Rb(1)-N(2)	120.45(5)	C(45)-N(2)-Rb(1)	108.40(13)
O(2)-Rb(1)-N(2)	60.17(5)	N(1)-C(34)-C(35)	113.95(18)
O(5)-Rb(1)-N(2)	119.91(5)	O(1)-C(35)-C(34)	108.94(18)
O(6)-Rb(1)-N(2)	60.19(5)	O(1)-C(35)-Rb(1)	44.03(9)
O(3)-Rb(1)-N(2)	119.48(5)	C(34)-C(35)-Rb(1)	81.67(12)
O(4)-Rb(1)-N(2)	60.36(5)	O(1)-C(36)-C(37)	108.68(18)
N(1)-Rb(1)-N(2)	179.43(5)	O(1)-C(36)-Rb(1)	46.58(9)
C(35)-O(1)-C(36)	112.31(17)	C(37)-C(36)-Rb(1)	76.80(12)
C(35)-O(1)-Rb(1)	115.76(12)	O(2)-C(37)-C(36)	109.94(17)
C(36)-O(1)-Rb(1)	112.11(12)	O(2)-C(37)-Rb(1)	48.15(9)
C(38)-O(2)-C(37)	111.11(17)	C(36)-C(37)-Rb(1)	79.47(12)
C(38)-O(2)-Rb(1)	114.71(13)	O(2)-C(38)-C(39)	109.77(19)
C(37)-O(2)-Rb(1)	110.12(12)	O(2)-C(38)-Rb(1)	44.81(10)
C(41)-O(3)-C(42)	111.21(16)	C(39)-C(38)-Rb(1)	82.10(13)
C(41)-O(3)-Rb(1)	115.91(12)	N(2)-C(39)-C(38)	114.5(2)
C(42)-O(3)-Rb(1)	112.69(12)	N(1)-C(40)-C(41)	114.17(18)
C(43)-O(4)-C(44)	111.87(17)	O(3)-C(41)-C(40)	109.26(17)
C(43)-O(4)-Rb(1)	113.56(12)	O(3)-C(41)-Rb(1)	44.07(9)
C(44)-O(4)-Rb(1)	114.19(12)	C(40)-C(41)-Rb(1)	80.80(11)
C(47)-O(5)-C(48)	111.66(16)	O(3)-C(42)-C(43)	109.13(17)
C(47)-O(5)-Rb(1)	112.71(11)	O(3)-C(42)-Rb(1)	46.33(9)
C(48)-O(5)-Rb(1)	113.69(11)	C(43)-C(42)-Rb(1)	78.73(12)
C(50)-O(6)-C(49)	111.15(17)	O(4)-C(43)-C(42)	109.05(18)
C(50)-O(6)-Rb(1)	115.59(13)	O(4)-C(43)-Rb(1)	45.79(9)
C(49)-O(6)-Rb(1)	110.58(12)	C(42)-C(43)-Rb(1)	77.73(12)
C(34)-N(1)-C(40)	110.42(17)	O(4)-C(44)-C(45)	108.91(19)
C(34)-N(1)-C(46)	110.20(17)	O(4)-C(44)-Rb(1)	45.25(9)
C(40)-N(1)-C(46)	109.25(17)	C(45)-C(44)-Rb(1)	81.38(12)
C(34)-N(1)-Rb(1)	109.23(12)	N(2)-C(45)-C(44)	114.33(19)
C(40)-N(1)-Rb(1)	109.09(12)	N(1)-C(46)-C(47)	113.85(17)
C(46)-N(1)-Rb(1)	108.61(12)	O(5)-C(47)-C(46)	108.76(16)
C(51)-N(2)-C(39)	110.90(19)	O(5)-C(47)-Rb(1)	46.26(9)
C(51)-N(2)-C(45)	110.51(19)	C(46)-C(47)-Rb(1)	83.05(11)

O(5)-C(48)-C(49)	109.25(18)	C(48)-C(49)-Rb(1)	79.96(12)
O(5)-C(48)-Rb(1)	45.54(9)	O(6)-C(50)-C(51)	109.36(18)
C(49)-C(48)-Rb(1)	76.49(12)	O(6)-C(50)-Rb(1)	44.25(10)
O(6)-C(49)-C(48)	109.76(18)	C(51)-C(50)-Rb(1)	80.64(12)
O(6)-C(49)-Rb(1)	47.82(9)	N(2)-C(51)-C(50)	113.90(19)

Figure S70: Thermal ellipsoid plot of [Cs(crypt)][Cp"₃Th^{II}] plotted at the 50% probability level. Hydrogen atoms have been removed for clarity.

X-ray Data Collection, Structure Solution and Refinement for [Cs(crypt)][Cp"3Th].

A blue crystal of approximate dimensions $0.082 \times 0.110 \times 0.182$ mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2³² program package was used to determine the unit-cell parameters and for data collection (120 sec/frame scan time). The raw frame data was processed using SAINT³³ and SADABS³⁴ to yield the reflection

data file. Subsequent calculations were carried out using the SHELXTL³⁵ program package. There were no systematic absences nor any diffraction symmetry other than the Friedel condition. The centrosymmetric triclinic space group $P\bar{1}$ was assigned and later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors³⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.0866 and Goof = 1.024 for 622 variables refined against 16125 data (0.75 Å), R1 = 0.0382 for those 13147 data with I > 2.0σ (I).

Identification code	jcw48 (Justin Wedal)	
Empirical formula	C ₅₁ H ₉₉ Cs N ₂ O ₆ Si ₆ Th	
Formula weight	1369.81	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	PĪ	
Unit cell dimensions	a = 12.1953(8) Å	$\alpha = 100.6711(10)^{\circ}.$
	b = 12.7501(8) Å	$\beta = 104.3758(9)^{\circ}.$
	c = 22.2212(14) Å	$\gamma = 95.7421(10)^{\circ}.$
Volume	3250.2(4) Å ³	
Z	2	
Density (calculated)	1.400 Mg/m ³	
Absorption coefficient	2.998 mm ⁻¹	
F(000)	1392	
Crystal color	blue	
Crystal size	0.182 x 0.110 x 0.082 mm	l ³
Theta range for data collection	1.645 to 28.322°	
Index ranges	$-16 \le h \le 16, -17 \le k \le 17$, $-29 \le l \le 29$
Reflections collected	43962	
Independent reflections	16125 [R(int) = 0.0464]	
Completeness to theta = 25.242°	100.0 %	

Table S. Crystal data and structure refinement for [Cs(crypt)][Cp"₃Th].

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6471 and 0.5186
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	16125 / 0 / 622
Goodness-of-fit on F ²	1.024
Final R indices [I>2sigma(I) = 13147 data]	R1 = 0.0382, wR2 = 0.0809
R indices (all data, 0.75 Å)	R1 = 0.0556, wR2 = 0.0866
Largest diff. peak and hole	1.613 and -2.543 e.Å ⁻³

Table S9. Bond lengths [Å] and angles [°] for [Cs(crypt)][Cp"3Th].

Th(1)-Cnt1	2.534	Si(2)-C(11)	1.880(5)
Th(1)-Cnt2	2.522	Si(3)-C(12)	1.846(4)
Th(1)-Cnt3	2.507	Si(3)-C(19)	1.867(5)
Th(1)-C(24)	2.731(4)	Si(3)-C(17)	1.873(5)
Th(1)-C(12)	2.749(4)	Si(3)-C(18)	1.876(5)
Th(1)-C(13)	2.756(4)	Si(4)-C(14)	1.851(4)
Th(1)-C(2)	2.759(4)	Si(4)-C(22)	1.866(5)
Th(1)-C(25)	2.769(4)	Si(4)-C(20)	1.868(5)
Th(1)-C(3)	2.776(4)	Si(4)-C(21)	1.887(5)
Th(1)-C(16)	2.782(4)	Si(5)-C(23)	1.847(4)
Th(1)-C(26)	2.795(4)	Si(5)-C(28)	1.853(5)
Th(1)-C(23)	2.804(4)	Si(5)-C(29)	1.862(5)
Th(1)-C(4)	2.807(4)	Si(5)-C(30)	1.883(5)
Th(1)-C(27)	2.816(4)	Si(6)-C(25)	1.837(5)
Th(1)-C(15)	2.843(4)	Si(6)-C(33)	1.862(5)
Th(1)-C(1)	2.848(4)	Si(6)-C(32)	1.865(5)
Th(1)-C(5)	2.853(4)	Si(6)-C(31)	1.870(5)
Th(1)-C(14)	2.854(4)	C(1)-C(5)	1.424(6)
Si(1)-C(1)	1.844(4)	C(1)-C(2)	1.425(6)
Si(1)-C(8)	1.867(5)	C(2)-C(3)	1.438(6)
Si(1)-C(7)	1.872(5)	C(3)-C(4)	1.439(6)
Si(1)-C(6)	1.887(5)	C(4)-C(5)	1.398(6)
Si(2)-C(3)	1.843(4)	C(12)-C(16)	1.438(6)
Si(2)-C(9)	1.860(5)	C(12)-C(13)	1.440(6)
Si(2)-C(10)	1.866(5)	C(13)-C(14)	1.421(6)

C(14)-C(15)	1.423(6)	C(40)-C(41)	1.508(7)
C(15)-C(16)	1.389(6)	C(42)-C(43)	1.501(7)
C(23)-C(27)	1.418(6)	C(44)-C(45)	1.502(7)
C(23)-C(24)	1.432(6)	C(46)-C(47)	1.508(7)
C(24)-C(25)	1.435(6)	C(48)-C(49)	1.490(8)
C(25)-C(26)	1.433(6)	C(50)-C(51)	1.497(8)
C(26)-C(27)	1.392(6)		
Cs(1)-O(6)	2.931(3)	Cnt1-Th(1)-Cnt2	119.7
Cs(1)-O(5)	2.933(3)	Cnt1-Th(1)-Cnt3	122.7
Cs(1)-O(1)	2.933(3)	Cnt2-Th(1)-Cnt3	117.6
Cs(1)-O(2)	2.941(3)	C(24)-Th(1)-C(12)	132.66(12)
Cs(1)-O(3)	2.942(3)	C(24)-Th(1)-C(13)	117.94(12)
Cs(1)-O(4)	2.947(3)	C(12)-Th(1)-C(13)	30.33(12)
Cs(1)-N(2)	3.073(4)	C(24)-Th(1)-C(2)	121.81(13)
Cs(1)-N(1)	3.073(4)	C(12)-Th(1)-C(2)	100.86(13)
O(1)-C(35)	1.414(5)	C(13)-Th(1)-C(2)	120.14(13)
O(1)-C(36)	1.426(5)	C(24)-Th(1)-C(25)	30.24(13)
O(2)-C(37)	1.426(6)	C(12)-Th(1)-C(25)	126.02(13)
O(2)-C(38)	1.429(6)	C(13)-Th(1)-C(25)	99.55(13)
O(3)-C(42)	1.420(5)	C(2)-Th(1)-C(25)	131.41(13)
O(3)-C(41)	1.421(6)	C(24)-Th(1)-C(3)	98.37(12)
O(4)-C(44)	1.418(6)	C(12)-Th(1)-C(3)	128.34(13)
O(4)-C(43)	1.427(6)	C(13)-Th(1)-C(3)	136.89(12)
O(5)-C(47)	1.421(6)	C(2)-Th(1)-C(3)	30.11(13)
O(5)-C(48)	1.431(6)	C(25)-Th(1)-C(3)	101.48(13)
O(6)-C(49)	1.425(6)	C(24)-Th(1)-C(16)	162.80(12)
O(6)-C(50)	1.426(6)	C(12)-Th(1)-C(16)	30.15(12)
N(1)-C(34)	1.469(6)	C(13)-Th(1)-C(16)	48.30(12)
N(1)-C(46)	1.471(6)	C(2)-Th(1)-C(16)	73.40(12)
N(1)-C(40)	1.474(6)	C(25)-Th(1)-C(16)	145.92(13)
N(2)-C(39)	1.473(7)	C(3)-Th(1)-C(16)	98.59(12)
N(2)-C(51)	1.475(7)	C(24)-Th(1)-C(26)	48.13(13)
N(2)-C(45)	1.476(6)	C(12)-Th(1)-C(26)	96.27(13)
C(34)-C(35)	1.515(7)	C(13)-Th(1)-C(26)	71.84(13)
C(36)-C(37)	1.501(7)	C(2)-Th(1)-C(26)	159.78(13)
C(38)-C(39)	1.514(7)	C(25)-Th(1)-C(26)	29.85(12)

C(3)-Th(1)-C(26)	129.90(13)	C(26)-Th(1)-C(15)	108.78(12)
C(16)-Th(1)-C(26)	120.12(12)	C(23)-Th(1)-C(15)	147.57(12)
C(24)-Th(1)-C(23)	29.96(12)	C(4)-Th(1)-C(15)	119.20(12)
C(12)-Th(1)-C(23)	104.84(12)	C(27)-Th(1)-C(15)	119.24(12)
C(13)-Th(1)-C(23)	100.12(12)	C(24)-Th(1)-C(1)	109.50(12)
C(2)-Th(1)-C(23)	134.52(12)	C(12)-Th(1)-C(1)	97.55(12)
C(25)-Th(1)-C(23)	50.35(12)	C(13)-Th(1)-C(1)	126.27(12)
C(3)-Th(1)-C(23)	122.23(12)	C(2)-Th(1)-C(1)	29.39(12)
C(16)-Th(1)-C(23)	133.93(12)	C(25)-Th(1)-C(1)	133.90(13)
C(26)-Th(1)-C(23)	48.49(12)	C(3)-Th(1)-C(1)	49.70(12)
C(24)-Th(1)-C(4)	73.85(12)	C(16)-Th(1)-C(1)	79.73(12)
C(12)-Th(1)-C(4)	145.38(12)	C(26)-Th(1)-C(1)	156.69(12)
C(13)-Th(1)-C(4)	166.64(12)	C(23)-Th(1)-C(1)	109.48(12)
C(2)-Th(1)-C(4)	48.05(12)	C(4)-Th(1)-C(1)	48.11(12)
C(25)-Th(1)-C(4)	88.25(13)	C(27)-Th(1)-C(1)	134.72(12)
C(3)-Th(1)-C(4)	29.87(12)	C(15)-Th(1)-C(1)	94.44(12)
C(16)-Th(1)-C(4)	121.28(12)	C(24)-Th(1)-C(5)	80.91(12)
C(26)-Th(1)-C(4)	117.51(13)	C(12)-Th(1)-C(5)	121.91(12)
C(23)-Th(1)-C(4)	93.21(12)	C(13)-Th(1)-C(5)	152.24(13)
C(24)-Th(1)-C(27)	47.97(12)	C(2)-Th(1)-C(5)	47.54(12)
C(12)-Th(1)-C(27)	85.41(12)	C(25)-Th(1)-C(5)	105.45(13)
C(13)-Th(1)-C(27)	72.52(12)	C(3)-Th(1)-C(5)	48.73(12)
C(2)-Th(1)-C(27)	163.09(12)	C(16)-Th(1)-C(5)	108.50(12)
C(25)-Th(1)-C(27)	49.06(12)	C(26)-Th(1)-C(5)	128.95(12)
C(3)-Th(1)-C(27)	146.21(12)	C(23)-Th(1)-C(5)	86.98(12)
C(16)-Th(1)-C(27)	115.19(12)	C(4)-Th(1)-C(5)	28.59(12)
C(26)-Th(1)-C(27)	28.73(12)	C(27)-Th(1)-C(5)	115.91(12)
C(23)-Th(1)-C(27)	29.22(12)	C(15)-Th(1)-C(5)	121.64(12)
C(4)-Th(1)-C(27)	120.43(12)	C(1)-Th(1)-C(5)	28.93(12)
C(24)-Th(1)-C(15)	154.28(13)	C(24)-Th(1)-C(14)	126.84(13)
C(12)-Th(1)-C(15)	48.83(12)	C(12)-Th(1)-C(14)	49.87(12)
C(13)-Th(1)-C(15)	47.46(12)	C(13)-Th(1)-C(14)	29.28(12)
C(2)-Th(1)-C(15)	75.59(12)	C(2)-Th(1)-C(14)	103.15(12)
C(25)-Th(1)-C(15)	124.23(13)	C(25)-Th(1)-C(14)	98.67(13)
C(3)-Th(1)-C(15)	89.87(12)	C(3)-Th(1)-C(14)	109.92(12)
C(16)-Th(1)-C(15)	28.57(12)	C(16)-Th(1)-C(14)	48.25(13)

C(26)-Th(1)-C(14)	79.88(12)	C(29)-Si(5)-C(30)	106.8(2)
C(23)-Th(1)-C(14)	122.13(12)	C(25)-Si(6)-C(33)	115.2(2)
C(4)-Th(1)-C(14)	139.06(12)	C(25)-Si(6)-C(32)	107.3(2)
C(27)-Th(1)-C(14)	92.92(12)	C(33)-Si(6)-C(32)	111.0(2)
C(15)-Th(1)-C(14)	28.92(12)	C(25)-Si(6)-C(31)	109.9(2)
C(1)-Th(1)-C(14)	123.25(12)	C(33)-Si(6)-C(31)	106.4(2)
C(5)-Th(1)-C(14)	150.32(12)	C(32)-Si(6)-C(31)	106.7(3)
C(1)-Si(1)-C(8)	115.2(2)	C(5)-C(1)-C(2)	105.2(4)
C(1)-Si(1)-C(7)	111.6(2)	C(5)-C(1)-Si(1)	125.8(3)
C(8)-Si(1)-C(7)	110.8(2)	C(2)-C(1)-Si(1)	124.9(3)
C(1)-Si(1)-C(6)	106.6(2)	C(5)-C(1)-Th(1)	75.7(2)
C(8)-Si(1)-C(6)	102.7(2)	C(2)-C(1)-Th(1)	71.8(2)
C(7)-Si(1)-C(6)	109.3(2)	Si(1)-C(1)-Th(1)	134.8(2)
C(3)-Si(2)-C(9)	112.4(2)	C(1)-C(2)-C(3)	111.4(4)
C(3)-Si(2)-C(10)	110.8(2)	C(1)-C(2)-Th(1)	78.8(2)
C(9)-Si(2)-C(10)	112.7(2)	C(3)-C(2)-Th(1)	75.6(2)
C(3)-Si(2)-C(11)	108.2(2)	C(2)-C(3)-C(4)	104.0(4)
C(9)-Si(2)-C(11)	105.8(2)	C(2)-C(3)-Si(2)	124.2(3)
C(10)-Si(2)-C(11)	106.6(2)	C(4)-C(3)-Si(2)	127.4(3)
C(12)-Si(3)-C(19)	117.8(2)	C(2)-C(3)-Th(1)	74.3(2)
C(12)-Si(3)-C(17)	106.6(2)	C(4)-C(3)-Th(1)	76.3(2)
C(19)-Si(3)-C(17)	107.2(2)	Si(2)-C(3)-Th(1)	132.5(2)
C(12)-Si(3)-C(18)	109.5(2)	C(5)-C(4)-C(3)	109.9(4)
C(19)-Si(3)-C(18)	106.8(2)	C(5)-C(4)-Th(1)	77.5(2)
C(17)-Si(3)-C(18)	108.7(2)	C(3)-C(4)-Th(1)	73.9(2)
C(14)-Si(4)-C(22)	113.0(2)	C(4)-C(5)-C(1)	109.5(4)
C(14)-Si(4)-C(20)	113.2(2)	C(4)-C(5)-Th(1)	73.9(2)
C(22)-Si(4)-C(20)	110.0(3)	C(1)-C(5)-Th(1)	75.3(2)
C(14)-Si(4)-C(21)	106.7(2)	C(16)-C(12)-C(13)	103.8(4)
C(22)-Si(4)-C(21)	106.0(2)	C(16)-C(12)-Si(3)	129.6(3)
C(20)-Si(4)-C(21)	107.5(3)	C(13)-C(12)-Si(3)	122.6(3)
C(23)-Si(5)-C(28)	114.9(2)	C(16)-C(12)-Th(1)	76.2(2)
C(23)-Si(5)-C(29)	110.7(2)	C(13)-C(12)-Th(1)	75.1(2)
C(28)-Si(5)-C(29)	109.1(2)	Si(3)-C(12)-Th(1)	130.75(19)
C(23)-Si(5)-C(30)	107.5(2)	C(14)-C(13)-C(12)	111.4(4)
C(28)-Si(5)-C(30)	107.4(2)	C(14)-C(13)-Th(1)	79.2(2)

C(12)-C(13)-Th(1)	74.5(2)	O(5)-Cs(1)-O(1)	95.39(9)
C(13)-C(14)-C(15)	104.9(4)	O(6)-Cs(1)-O(2)	95.79(9)
C(13)-C(14)-Si(4)	123.3(3)	O(5)-Cs(1)-O(2)	135.79(9)
C(15)-C(14)-Si(4)	126.2(3)	O(1)-Cs(1)-O(2)	60.38(9)
C(13)-C(14)-Th(1)	71.6(2)	O(6)-Cs(1)-O(3)	137.09(9)
C(15)-C(14)-Th(1)	75.1(2)	O(5)-Cs(1)-O(3)	96.65(9)
Si(4)-C(14)-Th(1)	138.6(2)	O(1)-Cs(1)-O(3)	100.03(9)
C(16)-C(15)-C(14)	110.1(4)	O(2)-Cs(1)-O(3)	122.23(9)
C(16)-C(15)-Th(1)	73.3(2)	O(6)-Cs(1)-O(4)	97.59(9)
C(14)-C(15)-Th(1)	76.0(2)	O(5)-Cs(1)-O(4)	119.05(9)
C(15)-C(16)-C(12)	109.8(4)	O(1)-Cs(1)-O(4)	140.46(9)
C(15)-C(16)-Th(1)	78.2(2)	O(2)-Cs(1)-O(4)	99.77(9)
C(12)-C(16)-Th(1)	73.7(2)	O(3)-Cs(1)-O(4)	59.79(9)
C(27)-C(23)-C(24)	104.7(4)	O(6)-Cs(1)-N(2)	60.24(11)
C(27)-C(23)-Si(5)	125.6(3)	O(5)-Cs(1)-N(2)	120.16(11)
C(24)-C(23)-Si(5)	126.4(3)	O(1)- $Cs(1)$ - $N(2)$	119.84(10)
C(27)-C(23)-Th(1)	75.9(2)	O(2)- $Cs(1)$ - $N(2)$	60.42(11)
C(24)-C(23)-Th(1)	72.2(2)	O(3)- $Cs(1)$ - $N(2)$	119.56(10)
Si(5)-C(23)-Th(1)	132.6(2)	O(4)- $Cs(1)$ - $N(2)$	60.60(10)
C(23)-C(24)-C(25)	111.6(4)	O(6)-Cs(1)-N(1)	119.77(10)
C(23)-C(24)-Th(1)	77.8(2)	O(5)-Cs(1)-N(1)	59.81(10)
C(25)-C(24)-Th(1)	76.3(2)	O(1)- $Cs(1)$ - $N(1)$	60.35(9)
C(26)-C(25)-C(24)	103.6(4)	O(2)- $Cs(1)$ - $N(1)$	119.75(10)
C(26)-C(25)-Si(6)	127.4(3)	O(3)- $Cs(1)$ - $N(1)$	60.28(9)
C(24)-C(25)-Si(6)	126.8(3)	O(4)- $Cs(1)$ - $N(1)$	119.22(9)
C(26)-C(25)-Th(1)	76.1(2)	N(2)-Cs(1)-N(1)	179.80(11)
C(24)-C(25)-Th(1)	73.4(2)	C(35)-O(1)-C(36)	112.5(3)
Si(6)-C(25)-Th(1)	127.8(2)	C(35)-O(1)-Cs(1)	110.0(2)
C(27)-C(26)-C(25)	110.3(4)	C(36)-O(1)-Cs(1)	111.6(3)
C(27)-C(26)-Th(1)	76.5(2)	C(37)-O(2)-C(38)	111.7(4)
C(25)-C(26)-Th(1)	74.1(2)	C(37)-O(2)-Cs(1)	108.7(3)
C(26)-C(27)-C(23)	109.8(4)	C(38)-O(2)-Cs(1)	112.3(3)
C(26)-C(27)-Th(1)	74.8(2)	C(42)-O(3)-C(41)	112.3(4)
C(23)-C(27)-Th(1)	74.9(2)	C(42)-O(3)-Cs(1)	110.8(3)
O(6)-Cs(1)-O(5)	60.88(10)	C(41)-O(3)-Cs(1)	112.9(3)
O(6)-Cs(1)-O(1)	117.03(9)	C(44)-O(4)-C(43)	112.8(4)

C(44)-O(4)-Cs(1)	110.5(3)	N(2)-C(39)-Cs(1)	50.1(2)
C(43)-O(4)-Cs(1)	111.3(3)	C(38)-C(39)-Cs(1)	75.5(3)
C(47)-O(5)-C(48)	113.1(4)	N(1)-C(40)-C(41)	114.8(4)
C(47)-O(5)-Cs(1)	113.1(3)	N(1)-C(40)-Cs(1)	50.1(2)
C(48)-O(5)-Cs(1)	110.0(3)	C(41)-C(40)-Cs(1)	75.8(3)
C(49)-O(6)-C(50)	111.6(4)	O(3)-C(41)-C(40)	109.9(4)
C(49)-O(6)-Cs(1)	108.2(3)	O(3)-C(41)-Cs(1)	46.6(2)
C(50)-O(6)-Cs(1)	112.0(3)	C(40)-C(41)-Cs(1)	81.1(3)
C(34)-N(1)-C(46)	110.3(4)	O(3)-C(42)-C(43)	109.7(4)
C(34)-N(1)-C(40)	110.0(4)	O(3)-C(42)-Cs(1)	48.2(2)
C(46)-N(1)-C(40)	110.5(4)	C(43)-C(42)-Cs(1)	79.0(2)
C(34)-N(1)-Cs(1)	108.5(3)	O(4)-C(43)-C(42)	109.3(4)
C(46)-N(1)-Cs(1)	109.1(3)	O(4)-C(43)-Cs(1)	47.7(2)
C(40)-N(1)-Cs(1)	108.3(3)	C(42)-C(43)-Cs(1)	77.6(2)
C(39)-N(2)-C(51)	111.0(4)	O(4)-C(44)-C(45)	109.7(4)
C(39)-N(2)-C(45)	110.6(4)	O(4)-C(44)-Cs(1)	48.4(2)
C(51)-N(2)-C(45)	110.6(4)	C(45)-C(44)-Cs(1)	82.2(3)
C(39)-N(2)-Cs(1)	108.3(3)	N(2)-C(45)-C(44)	114.9(4)
C(51)-N(2)-Cs(1)	108.6(3)	N(2)-C(45)-Cs(1)	50.6(2)
C(45)-N(2)-Cs(1)	107.6(3)	C(44)-C(45)-Cs(1)	74.7(3)
N(1)-C(34)-C(35)	114.0(4)	N(1)-C(46)-C(47)	114.2(4)
N(1)-C(34)-Cs(1)	50.0(2)	N(1)-C(46)-Cs(1)	49.6(2)
C(35)-C(34)-Cs(1)	73.3(2)	C(47)-C(46)-Cs(1)	75.1(3)
O(1)-C(35)-C(34)	109.5(4)	O(5)-C(47)-C(46)	109.3(4)
O(1)-C(35)-Cs(1)	48.72(19)	O(5)-C(47)-Cs(1)	46.4(2)
C(34)-C(35)-Cs(1)	83.4(3)	C(46)-C(47)-Cs(1)	81.8(3)
O(1)-C(36)-C(37)	109.6(4)	O(5)-C(48)-C(49)	109.1(4)
O(1)-C(36)-Cs(1)	47.4(2)	O(5)-C(48)-Cs(1)	48.6(2)
C(37)-C(36)-Cs(1)	76.6(3)	C(49)-C(48)-Cs(1)	76.8(3)
O(2)-C(37)-C(36)	109.9(4)	O(6)-C(49)-C(48)	110.5(4)
O(2)-C(37)-Cs(1)	49.6(2)	O(6)-C(49)-Cs(1)	50.0(2)
C(36)-C(37)-Cs(1)	79.9(3)	C(48)-C(49)-Cs(1)	79.7(3)
O(2)-C(38)-C(39)	110.0(4)	O(6)-C(50)-C(51)	110.0(4)
O(2)-C(38)-Cs(1)	46.9(2)	O(6)-C(50)-Cs(1)	47.2(2)
C(39)-C(38)-Cs(1)	81.3(3)	C(51)-C(50)-Cs(1)	82.3(3)
N(2)-C(39)-C(38)	113.8(4)	N(2)-C(51)-C(50)	114.8(4)

N(2)-C(51)-Cs(1)	49.9(2)
C(50)-C(51)-Cs(1)	74.7(3)

References

- MacDonald, M. R.; Fieser, M. E.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Identification of the +2 Oxidation State for Uranium in a Crystalline Molecular Complex, [K(2.2.2-Cryptand)][(C₅H₄SiMe₃)₃U]. *J. Am. Chem. Soc.* **2013**, *135*, 13310–13313, DOI: 10.1021/ja406791t.
- Windorff, C. J.; MacDonald, M. R.; Meihaus, K. R.; Ziller, J. W.; Long, J. R.; Evans, W. J. Expanding the Chemistry of Molecular U²⁺ Complexes: Synthesis, Characterization, and Reactivity of the {[C₅H₃(SiMe₃)₂]₃U}⁻ Anion. *Chem. Eur. J.* 2016, *22*, 772–782, DOI: 10.1002/chem.201503583.
- (3) Evans, W. J.; Kozimor, S. A.; Ziller, J. W.; Fagin, A. A.; Bochkarev, M. N. Facile
 Syntheses of Unsolvated UI₃ and Tetramethylcyclopentadienyl Uranium Halides. *Inorg. Chem.* 2005, 44, 3993–4000, DOI: 10.1021/ic0482685.
- (4) Andersen, R. A. Tris ((Hexamethyldisilyl) Amido) Uranium (III): Preparation and Coordination Chemistry. *Inorg. Chem.* 1979, *18*, 1507–1509, DOI: 10.1021/ic50196a021.
- (5) Blake, P. C.; Edelstein, N. M.; Hitchcock, P. B.; Kot, W. K.; Lappert, M. F.; Shalimoff, G. V.; Tian, S. Synthesis, Properties and Structures of the Tris(Cyclopentadienyl)Thorium(III) Complexes [Th{η⁵-C₅H₃(SiMe₂R)₂-1,3}₃] (R=Me or ^tBu). *J. Organomet. Chem.* 2001, 636, 124–129, DOI: 10.1016/S0022-328X(01)00860-9.
- (6) Weydert, M.; Brennan, J. G.; Andersen, R. A.; Bergman, R. G. Reactions of Uranium(IV)

Tertiary Alkyl Bond: Facile Ligand-Assisted Reduction and Insertion of Ethylene and Carbon Monoxide. *Organometallics* **1995**, *14*, 3942–3951, DOI: 10.1021/om00008a046.

- (7) Siladke, N. A.; Webster, C. L.; Walensky, J. R.; Takase, M. K.; Ziller, J. W.; Grant, D. J.; Gagliardi, L.; Evans, W. J. Actinide Metallocene Hydride Chemistry: C–H Activation in Tetramethylcyclopentadienyl Ligands to Form [μ–η⁵–C₅Me₃H(CH₂)–κC]^{2–} Tuck-over Ligands in a Tetrathorium Octahydride Complex. *Organometallics* 2013, *32*, 6522–6531, DOI: 10.1021/om4008482.
- Blake, P. C.; Lappert, M. F.; Atwood, J. L.; Zhang, H. The Synthesis and Characterisation, Including X-Ray Diffraction Study, of [Th{η-C₅H₃(SiMe₃)₂}₃]; the First Thorium(III) Crystal Structure. *J. Chem. Soc., Chem. Commun.* 1986, 453, 1148–1149, DOI: 10.1039/C39860001148.
- Langeslay, R. R.; Fieser, M. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Synthesis, Structure, and Reactivity of Crystalline Molecular Complexes of the {[C₅H₃(SiMe₃)₂]₃Th}¹⁻ Anion Containing Thorium in the Formal +2 Oxidation State. *Chem. Sci.* 2015, 6, 517–521, DOI: 10.1039/C4SC03033H.
- (10) Peterson, J. K.; MacDonald, M. R.; Ziller, J. W.; Evans, W. J. Synthetic Aspects of (C₅H₄SiMe₃)₃Ln Rare-Earth Chemistry: Formation of (C₅H₄SiMe₃)₃Lu via [(C₅H₄SiMe₃)₂Ln]⁺ Metallocene Precursors. *Organometallics* 2013, *32*, 2625–2631, DOI: 10.1021/om400116d.
- Windorff, C. J.; MacDonald, M. R.; Ziller, J. W.; Evans, W. J.
 Trimethylsilylcyclopentadienyl (Cp') Uranium Chemistry: Synthetic and Structural
 Studies of Cp'₄U and Cp'₃UX (X = Cl, I, Me). *Z. Anorg. Allg. Chem.* 2017, 643, 2011–2018, DOI: 10.1002/zaac.201700323.

- (12) del Mar Conejo, M.; Parry, J. S.; Carmona, E.; Schultz, M.; Brennann, J. G.; Beshouri, S. M.; Andersen, R. A.; Rogers, R. D.; Coles, S.; Hursthouse, M. Carbon Monoxide and Isocyanide Complexes of Trivalent Uranium Metallocenes. *Chem. Eur. J.* 1999, *5*, 3000–3009.
- (13) Hitchcock, P. B.; Lappert, M. F.; Maron, L.; Protchenko, A. V. Lanthanum Does Form Stable Molecular Compounds in the +2 Oxidation State. *Angew. Chem. Int. Ed.* 2008, 47, 1488–1491, DOI: 10.1002/anie.200704887.
- (14) Clappe, C.; Leveugle, D.; Hauchard, D.; Durand, G. Electrochemical Studies of Tricyclopentadienyl Uranium IV Chloride Complexes: (RCp)₃UCl (RCp = RC₅H₄ with R = H; Me: CH₃; ^tBu: (CH₃)₃C; TMS: (CH₃)₃Si) Evidence of a Disproportionation Mechanism in Oxidation. *J. Electroanal. Chem.* **1998**, *448*, 95–103, DOI: 10.1016/S0022-0728(98)00029-1.
- (15) Hauchard, D.; Cassir, M.; Chivot, J.; Ephritikhine, M. Electrochemical Study of Uranium(IV) and Uranium(IV) Organometallic Compounds in Tetrahydrofuran by Means of Conventional Microelectrodes and Ultramicroelectrodes. Part I. Application to the Na(Hg) Reduction of Cp3UCl (Cp = η–C₅H₅). *J. Electroanal. Chem.* **1991**, *313*, 227–241, DOI: 10.1016/0022-0728(91)85182-O.
- (16) La Pierre, H. S.; Kameo, H.; Halter, D. P.; Heinemann, F. W.; Meyer, K. Coordination and Redox Isomerization in the Reduction of a Uranium(III) Monoarene Complex.
 Angew. Chem. Int. Ed. 2014, *53*, 7154–7157, DOI: 10.1002/anie.201402048.
- (17) Guo, F. S.; Tsoureas, N.; Huang, G. Z.; Tong, M. L.; Mansikkamäki, A.; Layfield, R. A. Isolation of a Perfectly Linear Uranium(II) Metallocene. *Angew. Chem. Int. Ed.* 2020, *59*, 2299–2303, DOI: 10.1002/anie.201912663.

- Evans, W. J.; Davis, B. L. Chemistry of Tris (Pentamethylcyclopentadienyl) f-Element Complexes, (C₅Me₅)₃M. *Chem. Rev.* 2002, *102*, 2119–2136, DOI: 10.1021/cr010298r.
- (19) Zachmanoglou, C. E.; Docrat, A.; Bridgewater, B. M.; Parkin, G.; Brandow, C. G.; Bercaw, J. E.; Jardine, C. N.; Lyall, M.; Green, J. C.; Keister, J. B. The Electronic Influence of Ring Substituents and Ansa Bridges in Zirconocene Complexes as Probed by Infrared Spectroscopic, Electrochemical, and Computational Studies. *J . Am. Chem. Soc.* 2002, *124*, 9525–9546, DOI: 10.1021/ja020236y.
- Kotyk, C. M.; MacDonald, M. R.; Ziller, J. W.; Evans, W. J. Reactivity of the Ln²⁺
 Complexes [K(2.2.2-Cryptand)][(C₅H₄SiMe₃)₃Ln]: Reduction of Naphthalene and
 Biphenyl. *Organometallics* 2015, *34*, 2287–2295, DOI: 10.1021/om501063h.
- (21) Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. A N₂^{3–}Radical-Bridged Terbium Complex Exhibiting Magnetic Hysteresis at 14 K. *J. Am. Chem. Soc.* 2011, *133*, 14236– 14239, DOI: 10.1021/ja206286h.
- (22) Korobkov, I.; Arunachalampillai, A.; Gambarotta, S. Cyclometalation and Solvent Deoxygenation during Reduction of a Homoleptic Th(OAr)₄ Complex: Serendipitous Formation of a Terminally Bonded Th-OH Function. *Organometallics* 2004, *23*, 6248– 6252, DOI: 10.1021/om049369d.
- (23) Pereira, L. C. J.; Camp, C.; Coutinho, J. T.; Chatelain, L.; Maldivi, P.; Almeida, M.;
 Mazzanti, M. Single-Molecule-Magnet Behavior in Mononuclear Homoleptic Tetrahedral Uranium(III) Complexes. *Inorg. Chem.* 2014, *53*, 11809–11811, DOI: 10.1021/ic501520c.
- Müller, I.; Schneider, C.; Pietzonka, C.; Kraus, F.; Werncke, C. G. Reduction of 2,2'-Bipyridine by Quasi-Linear 3d-Metal(I) Silylamides-A Structural and Spectroscopic

Study. *Inorganics* **2019**, *7*, DOI: 10.3390/inorganics7100117.

- (25) Arnold, P. L.; Wang, K.; Gray, S. J.; Moreau, L. M.; Booth, C. H.; Curcio, M.; Wells, J. A. L.; Slawin, A. M. Z. Dicerium Letterbox-Shaped Tetraphenolates: f-Block Complexes Designed for Two-Electron Chemistry. *Dalton Trans.* 2020, *49*, 877–884, DOI: 10.1039/c9dt03291f.
- (26) Werncke, C. G.; Müller, I. The Ambiguous Behaviour of Diphosphines towards the Quasilinear Iron(I) Complex [Fe(N(SiMe₃)₂)₂]⁻ between Inertness, P-C Bond Cleavage and C-C Double Bond Isomerisation. *Chem. Commun.* 2020, *56*, 2268–2271, DOI: 10.1039/c9cc08968c.
- Balatoni, I.; Hlina, J.; Zitz, R.; Pöcheim, A.; Baumgartner, J.; Marschner, C. Disilene Fluoride Adducts versus β-Halooligosilanides. *Inorg. Chem.* 2019, 58, 14185–14192, DOI: 10.1021/acs.inorgchem.9b02223.
- Morris, D. E.; Da Re, R. E.; Jantunen, K. C.; Castro-Rodriguez, I.; Kiplinger, J. L. Trends in Electronic Structure and Redox Energetics for Early-Actinide Pentamethylcyclopentadienyl Complexes. *Organometallics* 2004, *23*, 5142–5153, DOI: 10.1021/om049634v.
- Inman, C. J.; Cloke, F. G. N. The Experimental Determination of Th(IV)/Th(III) Redox
 Potentials in Organometallic Thorium Complexes. *Dalton Trans.* 2019, *48*, 10782–10784,
 DOI: 10.1039/c9dt01553a.
- (30) Kuehl, C. J.; Da Re, R. E.; Scott, B. L.; Morris, D. E.; John, K. D. Toward New Paradigms in Mixed-Valency: Ytterbocene-Terpyridine Charge-Transfer Complexes. *Chem. Commun.* 2003, *3*, 2336–2337, DOI: 10.1039/b306484k.
- (31) Da Re, R. E.; Kuehl, C. J.; Brown, M. G.; Rocha, R. C.; Bauer, E. D.; John, K. D.; Morris,

D. E.; Shreve, A. P.; Sarrao, J. L. Electrochemical and Spectroscopic Characterization of the Novel Charge-Transfer Ground State in Diimine Complexes of Ytterbocene. *Inorg. Chem.* **2003**, *42*, 5551–5559, DOI: 10.1021/ic030069i.

- (32) APEX2 Version 2014.11-0, Bruker AXS, Inc.; Madison, WI 2014.
- (33) SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
- (34) Sheldrick, G. M. SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI 2014.
- (35) Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014.
- (36) International Tables for Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.

Definitions:

 $wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$

 $R1 = \Sigma ||F_o| \text{-} |F_c|| \ / \ \Sigma |F_o|$

Goof = S = $[\Sigma[w(F_o^2-F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.