Electronic Supplementary Information

for

A high-spin diradical dianion and its bridged chemically switchable singlemolecule magnet

Haiyan Cui,[‡] Zhao-Bo Hu,[‡] Chao Chen,[‡] Huapeng Ruan, Yong Fang, Li Zhang, Yue Zhao, Gengwen Tan,* You Song,* Xinping Wang*

*Corresponding author. Email: gwtan@suda.edu.cn; yousong@nju.edu.cn; xpwang@nju.edu.cn

Content

Experimental Section	S3
Fig. S1 Cyclic voltammogram of 2,7- <i>t</i> Bu ₂ -PTO in THF.	S5
Fig. S2 Cyclic voltammogram of 1 in THF	S5
Fig. S3 Cyclic voltammogram of 2 in THF	S6
Fig. S4 Zero-field ⁵⁷ Fe Mössbauer spectrum of 2 recorded at 80K.	S6
Fig. S5 Zero-field ⁵⁷ Fe Mössbauer spectrum of 2K ₂ recorded at 80K.	7
Fig. S6 Isothermal magnetization at different temperatures for 1	S7
Fig. S7 $\chi_M T$ -T (left) and M-H (right) plots of 2 with the fitting result (solid line) using the PH	Π
program	S8
Fig. S8 Isothermal magnetization at different temperatures and experimental <i>M vs H/T</i> plots	at
different temperatures for 2.	S9
Fig. S9 Isothermal field sweep measurement performed on polycrystalline sample of comple	x 2
and $2K_2$	S10
Fig. S10 Frequency-dependence of the in-phase (χ_M) <i>ac</i> -susceptibilities for 2 at different	
temperatures (1.8 to 5.0 K)	.S11
Fig. S11 ¹ H NMR spectrum of $1K_2$ in C ₆ D ₆ at room temperature.	.S11
Fig. S12 ¹³ C NMR spectrum of $1K_2$ in d ⁸ -THF at room temperature	S12
Table S1 Crystal data and structure refinements	S13
Table S2 The fit parameters obtained from analyses of the ac susceptibilities of 2 under 1.0 k	Oe
dc field	S14
Computational details	S15
References	S26

Experimental Section

General considerations. All experiments were carried out under an atmosphere of dry nitrogen by using modified Schlenk line or glovebox techniques. Toluene, THF and n-hexane were freshly distilled over Na/benzophenone and degassed three times before using. Elemental analyses were performed on an Elementar Vario EL III instrument at Shanghai Institute of Organic Chemistry, the Chinese Academy of Sciences. EPR spectra were obtained on Bruker plus-6/1 X-band variable-temperature apparatus. Considering the ⁵⁷Fe Mössbauer spectroscopic studied, the solid sample was the as-isolated complex, and it was placed into a Delrin Mössbauer sample cup for measurements and loaded under liquid nitrogen. The spectrum was recorded on a conventional spectrometer with alternating constant acceleration of the γ -source (⁵⁷Co/Rh, 1.8 GBq) at room temperature. Magnetic measurements were performed using a Quantum Design SQUID VMS magnetometer. For the single-crystal X-ray diffraction analyses, the data were collected on Bruker D8 CMOS detectors at 193 K. The structures were solved by direct methods and all refined on F^2 with the SHELX-2018/3 software package. The positions of the H atoms were calculated and considered isotropically according to a riding model. Commercially available reagents were purchased from Energy Chemical and Alfa-Assar, and used as received. 2,7-tBu₂-PTO, ¹LMg-MgL² and LFe(Tol)³ were synthesized according to the reported literatures.

Synthesis of 1. A mixture of 2,7-*t*Bu₂-PTO (136.4 mg, 0.36 mmol) and LMg-MgL (338.1 g, 0.38 mmol) in toluene (ca. 60 ml) was stirred at room temperature in an N₂-filled glovebox for 12 h to give a deep green solution. The solution was filtered, the filtrate was concentrated to ca. 10 mL and stored at -20 °C for 24 h to afford deep green crystals of 1 (185.2 mg, 40.4%). M.p. > 300 °C. Elemental analysis (%) Calcd for C₈₂H₁₀₄Mg₂N₄O₄•2(C₇H₈): C, 79.93; H, 8.38; N, 3.88; Found: C, 79.94; H, 8.41; N, 3.49.

Synthesis of 2. A mixture of 2,7-*t*Bu₂-PTO (59.2 mg, 0.16 mmol) and LFe(Tol) (188.33 mg, 0.33 mmol) in toluene (ca. 30 ml) was stirred at room temperature in an N₂-filled glovebox for 12 h to give a brownish-red solution. The solution was filtered, the filtrate was concentrated to ca. 10 mL and stored at -20 °C for 24 h affording red crystals of 2 (90.1 mg, 43.1 %). Decomposed at 289 °C. Elemental analysis (%) Calcd for C₈₂H₁₀₄Fe₂N₄O₄•2(C₇H₈): C, 76.58; H, 8.03; N, 3.72. Found: C, 76.61; H, 8.04; N, 3.48.

Synthesis of 1K₂. A mixture of 1 (90.5 mg, 0.07 mmol) and potassium (6.3 mg, 0.16 mmol) in THF (\approx 40 ml) was stirred at room temperature in an N₂-filled glovebox, whereupon the color of the solution was changed from deep green to light green. After stirring for 12 h, the solution was filtered, and the filtrate was concentrated to ca. 10 mL and stored at -20 °C for 24 h yielding light green crystals of 1K₂. Removing all the volatiles in vacuo, the light green crystals soon became a light green powder (32 mg, 33.2 %). Decomposed at 170-173 °C. ¹H NMR (400 MHz, C₆D₆): $\delta = 8.42$ (s, 4H, Ar-*H*), 6.77 (d, *J* = 7.6 Hz, 8H, Ar-*H*), 6.57 (t, *J* = 7.6 Hz, 4H, Ar-*H*), 5.10 (s, 2H, γ -H), 3.72 (m, 8H, C*H*(CH₃)₂), 3.56 (br, 16H, THF-OC*H*₂), 3.30 (m, 3H), 2.98 (m, 2H), 1.82 (s, 15H, C*H*₃), 1.80 (s, 10H, C*H*₃), 1.56 (m, 22H, C*H*₃), 1.40 (br, 16H, OCH₂C*H*₂), 1.22-1.15 (m, 38H, C*H*₃) ppm. ¹³C NMR (101 MHz, THF-d₈): $\delta = 167.72$, 161.77, 147.16, 146.77, 144.37, 144.14, 142.91, 129.46, 125.85, 124.48, 123.69, 123.54, 110.97, 108.66, 94.32, 94.02,

68.02, 32.65, 28.87, 28.61, 26.19, 24.80, 24.56, 23.56, 23.27, 20.71 ppm. Elemental analysis (%) Calcd for $C_{82}H_{104}K_2Mg_2N_4O_4 \cdot 6(C_4H_8O)$: C, 71.96; H, 8.66; N, 3.17; Found: C, 71.94; H, 8.01; N, 3.81.

Synthesis of 2K₂. A mixture of 2 (120 mg, 0.09 mmol) and potassium (8.3 mg, 0.21 mmol) in THF (ca. 30 ml) was stirred at room temperature in an N₂-filled glovebox for 24 h, whereupon the color of the solution was changed from brownish red to brown. The solution was filtered, and the filtrate was concentrated to ca. 12 mL and stored at -20 °C for 24 h affording brown crystals of 2K₂. Removing all the volatiles in vacuo, the crystals soon became a reddish brown powder (73 mg, 57.3 %). M.P. > 300 °C. Elemental analysis (%) Calcd for C₈₂H₁₀₄Fe₂K₂N₄O₄ •2(C₄H₈O): C, 70.02; H, 7.83; N, 3.63. Found: C, 68.99; H, 7.70; N, 3.66.

Fig. S1 Cyclic voltammogram of 2,7-*t*Bu₂-PTO in THF (1×10^{-4} M, 0.1 M ⁿBu₄NPF₆, Ag/Ag+ electrode, 298 K) was measured at 100 mV • s⁻¹.

Fig. S2 Cyclic voltammogram of 1 in THF (1×10^{-4} M, 0.1 M ⁿBu₄NPF₆, Ag/Ag+ electrode, 298 K) was measured at 100 mV • s⁻¹.

Fig. S3 Cyclic voltammogram of 2 in THF (1×10^{-4} M, 0.1 M $^{n}Bu_{4}NPF_{6}$, Ag/Ag⁺ electrode, 298 K) was measured at 100 mV \cdot s⁻¹.

Fig. S4 Zero-field ⁵⁷Fe Mössbauer spectrum of 2 recorded at 80K.

Fig. S5 Zero-field 57 Fe Mössbauer spectrum of $2K_2$ recorded at 80K.

Fig. S6 Isothermal magnetization at different temperatures for **1**. The solid lines are the best fitting results using PHI program.

Fig. S7 $\chi_M T$ -*T* (left) and *M*-*H* (right) plots of **2** with the fitting result (solid line) using the PHI program, in which the constant *J* between radicals is fixed at 165 cm⁻¹ same as that in compound **1** for comparison due to the very similar structure.

The temperature and field dependent magnetizations were fitted to quantify the anisotropy parameters based on equation 1 using the *PHI* program:

$$\hat{H} = -2J_1 \left(\hat{S}_{Fe1} \hat{S}_{Rad1} + \hat{S}_{Rad2} \hat{S}_{Fe2} \right) - 2J \hat{S}_{Rad1} \hat{S}_{Rad2} - 2J_2 \left(\hat{S}_{Fe1} \hat{S}_{Rad2} + \hat{S}_{Rad1} \hat{S}_{Fe2} \right) + D \left[\hat{S}_z^2 - \frac{\hat{S}(S+1)}{3} \right] + g\mu_B \hat{S} H$$

$$(1)$$

where J_1 and J_2 are the magnetic coupling constants between the spins of radicals and Fe^{II} ions (Fig. 7, inset). A reasonable fitting gives D = -12.00(1) cm⁻¹, g = 2.25(1), $J_1 = -1092.5$, J = 165 (fixed), $J_2 = -2.51(4)$ and $TIP = 5.93 \times 10^{-4}$ cm³ mol⁻¹.

We can find that the fitting results for the *M*-*H* curves show a large deviation with the experimental data. It can be ascribed to the electronic structure change from **1** to **2**. For example, the angle O1-Mg1-O2 is 83.87° in **1** but 80.97° in **2**. These reduced angle will lead to maximum electron cloud orientation shifts in radicals and the overlap decrease of the magnetic orbitals. Such that, the coupling between radicals may be weakened somewhat. So, the results in text are thought to be acceptable rather than here, although the fittings of $\chi_M T$ -T here are as beautiful as in the maintext.

Fig. S8 Top: Isothermal magnetization at different temperatures for 2. The solid line is the fitting value; Down: Experimental M vs H/T plots at different temperatures for 2.

Fig. S9 Isothermal field sweep measurement performed on polycrystalline sample of complex 2 (up) and $2K_2$ (down).

Fig. S10 Frequency-dependence of the in-phase (χ_M') *ac*-susceptibilities for **2** at different temperatures (1.8 to 5.0 K).

Fig. S11 ¹H NMR spectrum of $1K_2$ in C_6D_6 at room temperature.

Fig. S12 ¹³C NMR spectrum of $1K_2$ in d⁸-THF at room temperature.

	1	1K ₂	2	2K ₂
Formula	$C_{82}H_{104}Mg_2N_4O_4$	$C_{82}H_{104}Mg_2K_2N_4O_4$	$C_{82}H_{104}Fe_2N_4O_4$	$C_{82}H_{104}Fe_2K_2N_4O_4$
	• C ₁₄ H ₁₆	•		•4(C ₄ H ₈ O)
		$4(C_4H_8O)$		
Formula	1442.57	1624.92	1321.39	1688.00
weight				
Temp. (K)	193(2)	296(2)	193(2)	296(2)
Crystal	Monoclinic	Triclinic	Monoclinic	Triclinic
system				
Space group	P 21/n	<i>P</i> -1	P 21/n	<i>P</i> -1
a (Å)	13.0089(3)	12.3217(14)	12.9263(5)	13.1826(7)
b (Å)	18.5762(4)	14.4239(17)	18.6784(6)	13.9086(7)
<i>c</i> (Å)	19.9212(5)	15.785(2)	19.8163(7)	19.5230(11)
α (°)	90	90.292(4)	90	92.382(2)
β (°)	101.5820(10)	93.572(5)	100.993(2)	107.892(2)
γ (°)	90	92.232(4)	90	116.504(2)
V[Å ³]	4716.05(19)	2797.8(6)	4696.7(3)	2980.6(3)
Ζ	2	1	2	1
$\rho_{\rm calcd}$ (g·cm ⁻³)	1.016	0.964	0.934	0.940
μ (mm ⁻¹)	0.376	0.142	1.910	0.357
<i>F</i> (000)	1560	878	1416	906
Collected	33139	21163	33952	21664
data				
Unique dete	8282	9776	8279	10360
Unique data	[<i>R</i> (int)=0.0624]	[R(int) = 0.0540]	[R(int)=0.0522]	[<i>R</i> (int)=0.0380]
GOF on F^2	1.097	1.019	1.049	1.054
Final <i>R</i>	$R_1 = 0.0673$	$R_1 = 0.0603$	$R_1 = 0.0488$	$R_1 = 0.0520$
indexes	$wR_2 = 0.1251$	$wR_2 = 0.1586$	$wR_2 = 0.1544$	$wR_2 = 0.1532$
$[I > 2\sigma(I)]$				
R indexes (all	$R_1 = 0.1221$	$R_1 = 0.0870$	$R_1 = 0.0739$	$R_1 = 0.0609$
data)	$wR_2 = 0.1374$	$wR_2 = 0.1756$	$wR_2 = 0.1686$	$wR_2 = 0.1616$
Completeness	0.994	0.990	0.997	0.985

Table S1 Crystal data and structure refinements. Severely disordered solvent molecules in the four crystals were squeezed.

T/K	$\chi_{\rm T}$ / cm ³ mol ⁻¹	$\chi_{\rm S}$ /cm ³ mol ⁻¹	$\ln(\tau / s)$	а	R^2
1.8	3.21573	0.10315	-4.3924	0.08205	0.01167
1.9	3.08632	0.10317	-4.47789	0.08539	0.00733
2	2.94477	0.10424	-4.57138	0.08637	0.00497
2.1	2.80046	0.10893	-4.68429	0.07571	0.00896
2.2	2.697	0.10748	-4.76074	0.08127	0.00679
2.3	2.58363	0.10592	-4.84572	0.08285	0.00608
2.4	2.48313	0.10953	-4.93303	0.07604	0.00749
2.6	2.32297	0.10759	-5.08536	0.08163	0.00704
2.8	2.1637	0.10704	-5.23846	0.07735	0.00693
3	2.03814	0.10611	-5.39157	0.07952	0.00745
3.2	1.93825	0.10642	-5.53091	0.0789	0.00724
3.4	1.81168	0.10625	-5.70331	0.072	0.00471
3.6	1.71163	0.10616	-5.91042	0.06361	0.00561
3.8	1.62372	0.10013	-6.18304	0.06141	0.00319
4	1.53993	0.1047	-6.55372	0.04069	0.00167
4.2	1.47738	0.09343	-7.00998	0.03939	0.00178
4.4	1.40842	0.08986	-7.52761	0.02738	0.0016
4.6	1.34757	0.09915	-8.05962	0.01936	7.54E-04
4.8	1.28868	0.08134	-8.62206	0.01705	1.06E-03
5	1.25309	1.60E-14	-9.23172	0.03985	4.78E-04

Table S2 The fit parameters obtained from analyses of the ac susceptibilities of **2** under 1.0 kOe dc field.

Computational details:

All the calculations were performed at Gaussian 09 program suite.^{4,5} The ground-state structures of the studied compound **1** were optimized using density functional theory (DFT) at the (U)B3LYP/6-31G(d) level of approximation, and no imaginary frequency was found, which confirmed the local minimum of the optimized structures.

Coordinates of complex 1

Close-shell	singlet	state	
Mg	0.3376	11.0548	11.0804
Ν	1.6182	10.5059	9.5145
Ν	1.6581	12.582	11.6408
0	-0.448	11.0178	12.9651
0	-0.5313	9.2036	11.0973
С	-1.0128	9.9089	13.2541
С	-1.0621	8.9082	12.2209
С	-1.7078	7.6417	12.4765
С	-1.7497	6.6428	11.4952
Н	-1.3218	6.798	10.6603
С	-2.3984	5.4327	11.7064
С	-3.0098	5.2252	12.9391
Н	-3.4702	4.4095	13.0973
С	-2.9634	6.1895	13.9502
С	-2.3162	7.414	13.737
С	-2.4018	4.3715	10.5888
С	-3.2417	3.182	10.9624
Н	-4.1739	3.4624	11.0736
Н	-2.9115	2.7987	11.8004
Н	-3.1881	2.5089	10.2527
С	-2.912	4.9924	9.3007
Н	-2.947	4.3082	8.5995
Н	-2.3094	5.7131	9.0242
Η	-3.8108	5.3551	9.446
С	-0.9655	3.9043	10.3525
Н	-0.5875	3.5716	11.1933
Η	-0.4269	4.655	10.0247
Η	-0.9614	3.1852	9.6855
С	2.5004	11.3738	8.992
С	2.8151	12.6188	9.5276
С	2.5173	13.1288	10.7886
С	1.5302	9.2245	8.9646
С	0.6949	8.9252	7.8413
С	0.6904	7.5266	7.4765
Н	0.2004	7.2763	6.704
С	1.3109	6.5826	8.1292
Н	1.1842	5.675	7.8784
С	2.1107	6.8867	9.1553
Н	2.6208	6.2136	9.5886
С	2.184	8.2108	9.5715
С	-0.1295	10.0561	7.2
Н	0.169	10.9335	7.5762
С	0.0901	10.0624	5.6636
Н	0.9201	9.5856	5.4499
Н	0.152	10.9874	5.3473

Н	-0.6648	9.6157 5.2247
С	-1.6195	9.8327 7.5563
Η	-2.1809	10.3887 6.9748
Н	-1.7722	10.0782 8.4912
Н	-1.8488	8.8887 7.4252
С	3.0427	8.4152 10.7971
H	2.6625	9 2182 11 2589
C	3 1039	7 3524 11 8432
н	2.1037	7 3064 12 3135
н Ч	2.2440	7.563 12.3155
II II	2 2012	7.303 12.4043 6.4076 11.4012
П	5.2912	0.4670 11.4215
C II	4.49	0./95/ 10.4403
П	5.0052	8.9207 11.2703
H	4.4934	9.6221 9.9221
H	4.89//	8.073 9.9221
С	1.658	13.0417 13.0118
С	0.7231	14.0221 13.3995
С	0.7434	14.3484 14.8104
Н	0.1497	15.012 15.141
С	1.6069	13.7148 15.6883
Η	1.5686	13.9207 16.6147
С	2.4786	12.831 15.2551
Н	3.0883	12.443 15.8707
С	2.534	12.4414 13.8983
С	-0.2271	14.6382 12.4959
H	-0.0915	14.2549 11.581
C	-1 6802	14 3404 12 9463
н	-1 8745	14 8346 13 77
Н	-1.7814	13 379 13 1087
н Ч	2 2026	14 6208 12 2422
II C	-2.3030	14.0206 12.2422
C II	-0.032	10.1/14 12.4101
П	-0.8/33	10.0101 12./154
H	0.139/	16.4312 11.4926
H	0.6916	16.4454 12.994/
C	3.5349	11.4435 13.4804
Н	3.3868	11.2408 12.513
С	3.4218	10.1463 14.2603
Η	3.5389	10.3285 15.218
Н	4.1143	9.5223 13.961
Н	2.5377	9.7504 14.1121
С	4.9691	11.9821 13.6446
Η	5.0658	12.8136 13.1344
Н	5.6078	11.3184 13.3111
Н	5.1465	12.1579 14.5909
0	-4.1252	4.821 15.5384
0	-4.0419	6.6352 17.4062
Č	-3 5604	5 9299 15 2494
C	-3 511	6 9306 16 2826
č	-2 8654	8 1971 16 0269
č	_2.0034	9 196 17 0023
с ц	2 2514	0.0408 17.0003
C II	-5.2514	2.0400 1/.0432 10.4061 16.7071
C	-2.1/4/	10.4001 10./9/1
	-1.3033	10.0130 15.3043
п	-1.103	11.4295 15.4061
C	-1.6098	9.6493 14.5533
C	-2.257	8.4248 14.7665

С	-2.1713	11.4673	17.9147
С	-1.3315	12.6568	17.541
Η	-0.3993	12.3764	17.4299
Н	-1.6616	13.0401	16.703
Н	-1.3851	13.3299	18.2508
С	-1.6612	10.8464	19.2028
Н	-1.6262	11.5306	19.904
Н	-2.2638	10.1257	19.4793
Н	-0.7624	10.4837	19.0574
C	-3 6077	11 9345	18 151
H	-3 9856	12 2672	17 3102
Н	-4 1462	11 1838	18 4788
Н	-3 6118	12 6536	18 818
Μσ	-4 9108	A 784	17 423
N	-6 1913	5 3329	18 989
N	-6.2313	3 2568	16 8627
N C	7.0726	5.2500 1 165	10.5027
C C	7 2002	4.405	19.5115
C	7.0005	5.22 2.71	10.9/39
C C	-7.0903	$\frac{2.11}{6.6142}$	10 5200
C C	-0.1033	0.0143	19.5588
C C	-5.2081	0.9130	20.0022
C	-5.2636	8.3122	21.027
H	-4.//30	8.3623	21./995
C	-5.8841	9.2562	20.3743
H	-5./5/4	10.1638	20.6251
C II	-0.0839	8.9521	19.3482
Н	-/.194	9.6252	18.9149
C C	-0./5/1	/.028	18.932
C	-4.4436	5.7827	21.3035
H	-4./422	4.9053	20.9272
C	-4.0032	5.7764	22.8398
H	-5.4932	0.2532	23.0536
H	-4./251	4.8514	23.1562
H	-3.9083	6.2231	23.2/88
C	-2.9537	6.0061	20.9472
H	-2.3923	5.4501	21.5287
H	-2.8009	5.7606	20.0123
H	-2.7244	6.9501	21.0783
C	-/.6158	7.4236	17.7064
H	-7.2357	6.6206	17.2446
C	-/.6//1	8.4864	16.6603
H	-6.818	8.5324	16.19
H	-8.3884	8.2758	16.0189
H	-7.8644	9.3512	17.0821
С	-9.0631	7.0451	18.0569
Н	-9.5764	6.9121	17.2332
Н	-9.0666	6.2167	18.5814
Н	-9.4709	7.7658	18.5814
C	-6.2311	2.7971	15.4916
C	-5.2963	1.8167	15.104
C	-5.3166	1.4904	13.6931
Н	-4.7229	0.8268	13.3624
С	-6.1801	2.124	12.8152
H	-6.1418	1.9181	11.8888
С	-7.0517	3.0078	13.2484
Н	-7.6615	3.3958	12.6327

С	-7.1071	3.3974	14.6052
С	-4.346	1.2006	16.0075
Н	-4.4817	1.5839	16.9225
С	-2.8929	1.4984	15.5572
Н	-2.6986	1.0042	14.7334
Н	-2.7918	2.4598	15.3947
Н	-2.2696	1.218	16.2612
С	-4.5211	-0.3326	16.0874
Н	-3.6978	-0.7713	15.7881
Н	-4.7129	-0.5924	17.0109
Н	-5.2648	-0.6066	15.5087
С	-8.108	4.3953	15.023
Н	-7.96	4.598 1	5.9904
С	-7.995	5.6925	14.2432
Н	-8.1121	5.5103	13.2855
Н	-8.6875	6.3165	14.5425
Н	-7.1109	6.0884	14.3914
С	-9.5423	3.8567	14.8589
Η	-9.639	3.0252	15.3691
Η	-10.181	4.5204	15.1923
Η	-9.7197	3.6809	13.9125
Η	3.361	13.2744	8.8818
С	3.2355	14.4189	11.2261
Н	4.2054	14.4574	10.7758
Η	2.6639	15.2683	10.9152
Н	3.3363	14.4273	12.2913
С	3.2212	10.9574	7.6964
Η	2.6536	11.2862	6.851
Н	4.1929	11.4046	7.6693
Н	3.3179	9.8922	7.6686
Н	-7.9342	2.5644	19.6217
С	-7.7945	4.8814	20.8071
Н	-8.7616	4.4248	20.8397
Η	-7.221	4.5631	21.6525
Н	-7.9017	5.9458	20.8292
С	-7.8087	1.4199	17.2774
Н	-7.2456	0.5703	17.6028
Н	-8.7849	1.3894	17.7144
Н	-7.8947	1.4037	16.211

Open-shell singlet state

0003 -0.0208
1878 -0.02706
1896 -0.02534
0077 -1.34093
008 1.31377
0041 -0.73573
0045 0.71736
0085 1.44236
0164 2.84373
0194 3.35076
0201 3.57788
016 2.85596
0185 3.36325
0084 1.45002
0044 0.71742

С	0.0564 -0.00284 5.11651
С	-1.35063 -0.00317 5.74323
Н	-1.92602 -0.89055 5.45604
Н	-1.926 0.88454 5.45699
н	-1 26581 -0 00375 6 8357
C	0.8049 -1.26579 5.6055
н	0.8557 -1.27609 6.70107
Ц	1,83051 - 1,30722 - 5,22408
и П	1.85051 - 1.50722 - 5.22408 0.28080 - 2.1771 - 5.28078
II C	0.28787 - 2.1771 - 5.28078
C II	0.80491 1.23939 3.00083
H	0.28991 2.1/124 5.2831
H	1.83052 1.30141 5.22547
H	0.855/1 1.268/3 6./0243
С	7.8415 -1.28339 -0.03968
С	8.42729 0.00018 -0.04704
С	7.8414 1.28369 -0.03839
С	6.03179 -2.87072 -0.01539
С	5.73242 -3.52179 -1.23927
С	5.15311 -4.79593 -1.19731
Н	4.9167 -5.30136 -2.1302
С	4.87342 -5.42756 0.00994
Н	4.4206 -6.41559 0.01977
С	5.18167 -4.78512 1.2045
Н	4.96726 -5.28199 2.14725
C	5 76204 -3 51094 1 2211
Č	6 02484 -2 88881 -2 59946
н	6 50968 -1 92379 -2 42317
C	6 9963 _3 7458 _3 43626
ч	7 93207 -3 94252 -2 90122
	7.33207 -3.34232 -2.30122
п	1.24498 -5.25555 -4.57554 6.55546 4.71524 -2.60682
П	0.33340 - 4.71324 - 3.09082
C II	4./3135 -2.01044 -3.39311
H	4.96898 -2.15043 -4.35/8
H	4.06/1 -1.94286 -2.84418
H	4.18695 -3.54605 -3.59813
С	6.08636 -2.86535 2.5680/
H	6.57392 -1.90565 2.37157
С	4.81087 -2.57528 3.38414
Н	4.14001 -1.90343 2.8407
Н	5.07062 -2.10077 4.33892
Н	4.26424 -3.49888 3.60977
С	7.06872 -3.71947 3.39492
Н	7.34136 -3.19713 4.31979
Н	7.9912 -3.93045 2.84249
Н	6.62627 -4.68195 3.67754
С	6.03156 2.87085 -0.01229
С	5.73281 3.52349 -1.23548
С	5.15333 4.7975 -1.19218
Н	4.91732 5.3041 -2.12454
С	4.87295 5.42756 0.01573
Ĥ	4 42004 6 41553 0 02659
C	5 18063 4 78361 1 20063
й	4 96573 5 27026 2 1520
C	5 76107 2 50044 1 22490
C	6 0 2 5 0 2 9 0 2 2 2 5 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	0.02389 2.89223 -2.39633
п	0.31109 1.92/3 -2.42104

С	4.73283	2.61936 -3.39019
Н	4.18727	3.54866 -3.5941
Н	4.0691	1.94451 -2.84195
Н	4.97066	2.15469 -4.35541
С	6.99642	3.75104 -3.43232
Н	6.5544	4.72009 -3.69232
Н	7 24593	3 23956 -4 3697
Н	7 93182	3 94863 -2 89695
C	6 08488	2 86222 2 5712
ч	6 5717	1 00234 2 3737
C C	1 80023	2 5722 2 28707
с u	4.00923	2.3723 3.38707
П Ц	4.20333	$3.49000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
п	J.000/1 4 12701	2.09032 4.34129
П	4.13/81	1.90157 2.84290
C	/.06/9/	3./14/5 3.39881
H	/.990/8	3.92513 2.8467
Н	7.33992	3.19151 4.32338
Н	6.62644	4.6775 3.68198
0	-3.61486	-0.00075 1.34079
0	-3.62516	0.00062 -1.3139
С	-2.47429	-0.00044 0.7356
С	-2.48036	0.00034 -0.7175
С	-1.22433	0.00076 -1.4425
С	-1.20547	0.00154 -2.84388
Н	-2.16433	0.00181 -3.35091
С	-0.00936	0.00196 -3.57802
С	1.18842	0.00159 -2.8561
Н	2.14492	0.00189 -3.36338
С	1.21335	0.0008 -1.45016
С	-0.00177	0.00037 -0.71756
С	-0.05636	0.00279 -5.11665
Č	1 35067	0 00314 -5 74336
Н	1 92604	0 89054 -5 45616
Н	1 92606	-0.88455 -5.4571
Н	1.92000	0.00371 -6.83582
C	-0.80487	1 26573 -5 60564
ч	-0.85565	1.20575 5.00504
н Н	-1.8305	1.27004 - 0.70122 1.30714 - 5.22425
п ц	0.28080	217704 528001
П	-0.20909	2.17704 - 5.20091
	-0.80484	-1.23903 - 3.007
п	-0.20902	-2.1/15 -5.26520
п	-1.83040	-1.30131 -3.22304
H	-0.85564	-1.208/8 -0.70258
Mg	-3.13934	1 51000 0.02068
N	-6.52558	1.51882 0.02/02
N	-6.52547	-1.51892 0.02545
C	-/.84149	1.28344 0.04013
C	-8.42/28	-0.00012 0.04749
C	-7.84139	-1.28364 0.0389
C	-6.03177	2.87075 0.0152
С	-5.73308	3.52238 1.23895
С	-5.15365	4.79645 1.19672
Н	-4.91766	5.30227 2.12951
С	-4.87333	5.42757 -0.01065
Н	-4.42048	6.41557 -0.02067
С	-5.18099	4.78463 -1.20509

Н	-4.96615 5.2811 -2.1479	5
С	-5.76132 3.51042 -1.2214	4
С	-6.02609 2.88995 2.5992	7
Η	-6.51217 1.92551 2.4231	9
С	-6.99623 3.74825 3.4362	4
Н	-7.93161 3.94674 2.9011	6
Н	-7.24583 3.2359 4.37312	2
Н	-6.55384 4.71687 3.6972	21
С	-4.73295 2.61603 3.3926	5
Н	-4.97072 2.15063 4.3575	54
Н	-4.06951 1.94145 2.8437	'3
Н	-4.18709 3.54502 3.5972	21
С	-6.08512 2.86432 -2.5682	28
Н	-6.57157 1.90409 -2.3715	59
С	-4.80951 2.57561 -3.3846	53
Н	-4.13779 1.90459 -2.8412	24
Н	-5.06898 2.10063 -4.3392	25
Н	-4.26396 3.49976 -3.6106	5
С	-7.06867 3.71727 -3.3949)2
H	-7.34048 3.19487 -4.32	
Н	-7.99152 3.92664 -2.8425	51
Н	-6 6276 4 68052 -3 6771	2
C	-6 03157 -2 87081 0 0123	-
Č	-5 73333 -3 52379 1 2355	5
Ċ	-5 15382 -4 79779 1 1920)7
Ĥ	-4.91813 -5.30462 2.1243	38
C	-4 87304 -5 42756 -0 0159)
H	-4 42016 -6 41554 -0 0268	85
C	-5.1803 -4.78331 -1.2097	4
H	-4.96514 -5.27875 -2.1530)7
C	-5 76063 -3 50909 -1 2248	39
C	-6 0268 -2 89286 2 5964	,,
H	-6 51347 -1 92855 2 4212	23
C	-4 73384 -2 61891 3 3900)6
Ĥ	-4 18742 -3 54777 3 5936	58
Н	-4 07081 -1 94337 2 8418	R1
Н	-4 9719 -2 15461 4 3554	2
C	-6 99641 -3 75256 3 4325	56
H	-6 5533 -4 72101 3 6929	3
Н	-7 2466 -3 24108 4 3697	7
Н	-7.93152 -3.95144 2.8971	6
C	-6.08408 -2.86158 -2.5711	14
H	-6 56998 -1 90125 -2 373	56
C	-4 80835 -2 57288 -3 3873	31
H	-4 26341 -3 49713 -3 6143	3
Н	-5 06762 -2 09676 -4 3414	42
Н	-4 13616 -1 90283 -2 8433	31
C	-7 06817 -3 71324 -3 3984	18
н	-7 99125 -3 92226 -2 8463	32
H	-7 33948 -3 19001 -4 3232	24
H	-6 62777 -4 67662 -3 6812	25
H	9 51014 0 00023 -0 0583	9
C	8 80879 2 45475 -0.0433	8
й	984538 211256 -0.0433	86
Н	8 64186 3 09696 _0.0386	18
Н	8 66456 3 08512 0 8400	4
	0.000012 0.0000	

С	8.809 -2.45436 -0.04506
Н	8.63945 -3.09878 -0.91357
Н	9.8455 -2.1121 -0.06444
Н	8.66758 -3.0825 0.84043
Н	-9.51013 -0.00017 0.05916
С	-8.80896 2.45443 0.04685
Н	-9.84555 2.11214 0.06015
Н	-8.64321 3.09427 0.91954
Н	-8.66361 3.08721 -0.83462
С	-8.80878 -2.4547 0.04503
Н	-8.64491 -3.0932 0.91908
Н	-9.84542 -2.11247 0.05567
Н	-8.66145 -3.08881 -0.83514

Triplet state

Mg	0.3376	11.0548	11.0804
N	1.6182	10.5059	9.5145
Ν	1.6581	12.582	11.6408
0	-0.448	11.0178	12.9651
0	-0.5313	9.2036	11.0973
С	-1.0128	9.9089	13.2541
С	-1.0621	8.9082	12.2209
С	-1.7078	7.6417	12.4765
С	-1.7497	6.6428	11.4952
Н	-1.3218	6.798	10.6603
С	-2.3984	5.4327	11.7064
С	-3.0098	5.2252	12.9391
Н	-3.4702	4.4095	13.0973
С	-2.9634	6.1895	13.9502
С	-2.3162	7.414	13.737
С	-2.4018	4.3715	10.5888
С	-3.2417	3.182	10.9624
Н	-4.1739	3.4624	11.0736
Н	-2.9115	2.7987	11.8004
Н	-3.1881	2.5089	10.2527
С	-2.912	4.9924	9.3007
Н	-2.947	4.3082	8.5995
Н	-2.3094	5.7131	9.0242
Н	-3.8108	5.3551	9.446
С	-0.9655	3.9043	10.3525
Н	-0.5875	3.5716	11.1933
Н	-0.4269	4.655	10.0247
Н	-0.9614	3.1852	9.6855
С	2.5004	11.3738	8.992
С	2.8151	12.6188	9.5276
С	2.5173	13.1288	10.7886
С	1.5302	9.2245	8.9646
С	0.6949	8.9252	7.8413
С	0.6904	7.5266	7.4765
Н	0.2004	7.2763	6.704
С	1.3109	6.5826	8.1292
Н	1.1842	5.675	7.8784
С	2.1107	6.8867	9.1553
Н	2.6208	6.2136	9.5886
С	2.184	8.2108	9.5715
С	-0.1295	10.0561	7.2

Н	0.169	10.9335 7.5762
С	0.0901	10.0624 5.6636
Η	0.9201	9.5856 5.4499
Η	0.152	10.9874 5.3473
Н	-0.6648	9.6157 5.2247
С	-1.6195	9.8327 7.5563
Н	-2.1809	10.3887 6.9748
Н	-1.7722	10.0782 8.4912
Н	-1.8488	8.8887 7.4252
С	3.0427	8.4152 10.7971
Н	2.6625	9.2182 11.2589
С	3.1039	7.3524 11.8432
Н	2.2448	7.3064 12.3135
Н	3.8152	7.563 12.4845
Н	3.2912	6.4876 11.4213
С	4.49	8.7937 10.4465
Н	5.0032	8.9267 11.2703
Н	4.4934	9.6221 9.9221
Н	4.8977	8.073 9.9221
С	1.658	13.0417 13.0118
С	0.7231	14.0221 13.3995
С	0.7434	14.3484 14.8104
Н	0.1497	15.012 15.141
С	1.6069	13.7148 15.6883
Η	1.5686	13.9207 16.6147
С	2.4786	12.831 15.2551
Η	3.0883	12.443 15.8707
С	2.534	12.4414 13.8983
С	-0.2271	14.6382 12.4959
Н	-0.0915	14.2549 11.581
С	-1.6802	14.3404 12.9463
Н	-1.8745	14.8346 13.77
Н	-1.7814	13.379 13.1087
Н	-2.3036	14.6208 12.2422
С	-0.052	16.1714 12.4161
Η	-0.8753	16.6101 12.7154
Η	0.1397	16.4312 11.4926
Η	0.6916	16.4454 12.9947
С	3.5349	11.4435 13.4804
Н	3.3868	11.2408 12.513
C	3.4218	10.1463 14.2603
H	3.5389	10.3285 15.218
H	4.1143	9.5223 13.961
H	2.5377	9.7504 14.1121
C	4.9691	11.9821 13.6446
H	5.0658	12.8136 13.1344
H	5.6078	11.3184 13.3111
H	5.1465	12.15/9 14.5909
0	-4.1252	4.821 15.5384
U C	-4.0419	0.0352 17.4062
C	-3.3604	5.9299 15.2494 6.0206 16.2926
C	-3.311	0.9300 10.2826
C	-2.8034	0.19/1 10.0269
с u	-2.0234	7.170 1/.0083 0.0400 17.0422
п	-5.2514	7.0400 17.8432 10.4061 16.7071
C	-2.1/4/	10.4001 10./9/1

С	-1.5633	10.6136	15.5643
Н	-1.103	11.4293	15.4061
С	-1.6098	9.6493	14.5533
С	-2.257	8.4248	14.7665
С	-2.1713	11.4673	17.9147
С	-1.3315	12.6568	17.541
Н	-0.3993	12.3764	17.4299
Н	-1.6616	13.0401	16.703
Н	-1 3851	13 3299	18 2508
C	-1 6612	10 8464	19 2028
н	-1 6262	11 5306	19 904
Н	-2 2638	10 1257	19.704
н Ц	-2.2030	10.1237	10.0574
II C	3 6077	11 02/5	19.0574
U U	-3.0077	11.9343	17 2102
П	-3.9830	12.20/2	1/.3102
П	-4.1402	11.1838	10.4/00
H	-3.6118	12.6536	18.818
Mg	-4.9108	4.784	17.423
N	-6.1913	5.3329	18.989
Ν	-6.2313	3.2568	16.8627
C	-7.0736	4.465	19.5115
С	-7.3883	3.22	18.9759
С	-7.0905	2.71	17.7149
С	-6.1033	6.6143	19.5388
С	-5.2681	6.9136	20.6622
С	-5.2636	8.3122	21.027
Н	-4.7736	8.5625	21.7995
С	-5.8841	9.2562	20.3743
Н	-5.7574	10.1638	20.6251
С	-6.6839	8.9521	19.3482
Н	-7.194	9.6252	18.9149
С	-6.7571	7.628	18.932
С	-4.4436	5.7827	21.3035
Н	-4.7422	4.9053	20.9272
С	-4.6632	5.7764	22.8398
H	-5.4932	6.2532	23.0536
Н	-4 7251	4 8514	23 1562
Н	-3 9083	6 2231	23 2788
C	-2.9537	6.0061	20 9472
н	-2 3923	5 4501	21 5287
Н	-2 8009	5 7606	20.0123
Н	-2 7244	6 9501	21.0783
n C	-7.6158	7 1236	17 7064
ч	-7.0138	6 6206	17.7004
II C	7 6771	0.0200	16 6602
U U	-/.0//1	0.4004	16.0005
п	-0.010	0.3324	16.19
П	-8.3884	8.2/38	10.0189
H	-/.8644	9.3512	17.0821
C	-9.0631	/.0451	18.0569
H	-9.5764	6.9121	17.2332
H	-9.0666	6.2167	18.5814
H	-9.4709	7.7658	18.5814
C	-6.2311	2.7971	15.4916
С	-5.2963	1.8167	15.104
С	-5.3166	1.4904	13.6931
Н	-4.7229	0.8268	13.3624

С	-6.1801	2.124	12.8152
Н	-6.1418	1.9181	11.8888
С	-7.0517	3.0078	13.2484
Н	-7.6615	3.3958	12.6327
С	-7.1071	3.3974	14.6052
С	-4.346	1.2006	16.0075
Н	-4.4817	1.5839	16.9225
С	-2.8929	1.4984	15.5572
Н	-2.6986	1.0042	14.7334
Н	-2.7918	2.4598	15.3947
Н	-2.2696	1.218	16.2612
С	-4.5211	-0.3326	16.0874
Н	-3.6978	-0.7713	15.7881
Н	-4.7129	-0.5924	17.0109
Н	-5.2648	-0.6066	15.5087
С	-8.108	4.3953	15.023
Н	-7.96	4.598	15.9904
С	-7.995	5.6925	14.2432
Н	-8.1121	5.5103	13.2855
Н	-8.6875	6.3165	14.5425
Н	-7.1109	6.0884	14.3914
С	-9.5423	3.8567	14.8589
Н	-9.639	3.0252	15.3691
Н	-10.181	4.5204	15.1923
Н	-9.7197	3.6809	13.9125
Н	3.361	13.2744	8.8818
С	3.2355	14.4189	11.2261
Н	4.2054	14.4574	10.7758
Н	2.6639	15.2683	10.9152
Н	3.3363	14.4273	12.2913
С	3.2212	10.9574	7.6964
Н	2.6536	11.2862	6.851
Н	4.1929	11.4046	7.6693
Н	3.3179	9.8922	7.6686
Н	-7.9342	2.5644	19.6217
С	-7.7945	4.8814	20.8071
Н	-8.7616	4.4248	20.8397
Н	-7.221	4.5631	21.6525
Н	-7.9017	5.9458	20.8292
С	-7.8087	1.4199	17.2774
Н	-7.2456	0.5703	17.6028
Н	-8.7849	1.3894	17.7144
Н	-7.8947	1.4037	16.211

References

- 1 Z. Wang, V. Enkelmann, F. Negri and K. Müllen, Angew. Chem. Int. Ed., 2004, 43, 1972-1975.
- 2 J. Hicks, M. Juckel, A. Paparo, D. Dange and C. Jones, Organometallics, 2018, 37, 4810-4813.
- 3 F. Spitzer, C. Graßl, G. Balázs, E. M. Zolnhofer, K. Meyer and M. Scheer, *Angew. Chem. Int. Ed.*, 2016, 55, 4340-4344.
- 4 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 5 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, M. B. F. Ogliaro, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Kieth, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, in *Gaussian 09, Revision B.01*, Gaussian, Inc., Wallingford CT, 2010.