Table of Contents

Photo-dimerisation of alkynylanthracenes 1 and 5	S2
Photo-dimerisation of alkynylanthracenes 5 in different solvents	S3
Thermal cycloreversion reactions	S4
NMR Spectroscopic Data	S5
UV-VIS Absorption Spectra	S17
Crystallographic Data	S19
References	S31

Photo-dimerisation of alkynylanthracenes 1 and 5

Table S1 NMR experiments for the photo-dimerisation of 1,8-diethynylanthracene (1) in various deuterated solvents. The concentrations (\pm 0.02 mg mL⁻¹) of reactant 1 as well as the irradiation times and the percentages (\pm 1%) of isomers **syn-2** and **anti-2** are listed. Data for 5 \rightarrow **syn-6/anti-6** are listed in Table 1 (main text) and Table S2.

solvent	<i>c</i> [mg mL ⁻¹]	<i>t</i> [h]	syn-2 [%]	anti-2 [%]
C_6D_6	3.33	3	21	79
toluene-d ₈	3.33	3	21	79
CDCl₃	3.33	3	21	79
CD_2Cl_2	3.33	3	22	78
MeOD	3.33	3	22	78
THF-d ₈	3.33	7	21	79
pyridine- <i>d</i> ₅	3.33	7	25	75
acetone-d ₆	3.33	3	26	74
CD ₃ CN	3.33	3	28	72
DMSO-d ₆	3.33	15	33	67
methylcyclohexane-d ₁₄	3.33	5	17	83
DMF-d ₇	0.66	3	31	69
DMF-d ₇	1.00	7	31	69
DMF-d ₇	2.00	7	31	69
DMF-d ₇	3.33	15	31	69
DMF-d ₇	4.00	12	30	30
DMF-d ₇	10.0	14	28	72
DMF-d ₇	20.0	14	26	74
DMF-d ₇	40.0	19	23	77

Photo-dimerisation of alkynylanthracenes 5 in different solvents

Table S2 NMR experiments for the photo-dimerization of dialkynylanthracene **5** in various deuterated solvents. Concentrations ($\pm 0.02 \text{ mg mL}^{-1}$) of reactant **5** as well as irradiation times and fractions ($\pm 1\%$) of isomers *syn*-**6** and *anti*-**6** are listed. In addition to Table 1 in the main text, solvent properties are listed here: dielectic constant ε , dipole moment μ and relative polarity *RP*. Plots of these parameters against the fraction of *anti*-**6** are provided below.

solvent	<i>С</i> [mg mL ⁻¹]	<i>t</i> [h]	syn-6 [%]	<i>anti-</i> 6 [%]	ε	μ [D]	RPª
DMSO-d ₆	4.00	15	8	92	46.48	13	0.444
DMF-d7	4.00	9	8	92	37	12.88	0.386
CD ₃ CN	4.00	9	19	81	37.5	11.48	0.46
acetone-d ₆	4.00	3	16	84	20.7	9.54	0.355
THF-d ₈	4.00	9	13	87	7.58	5.84	0.207
MeOD	4.00	9	11	89	32.7	5.67	0.762
CD_2Cl_2	4.00	9	47	53	8.93	5.17	0.309
CDCl ₃	4.00	9	47	53	4.81	3.84	0.259
C_6D_6	4.00	3	51	49	2.28	0	0.111
cyclohexane-d ₁₂	4.00	9	85	15	2.02	0	0.006
cyclohexane-d ₁₂	20.0	25	85	15	2.02	0	0.006
methylcyclohexane-d ₁₄	4.00	9	84	16	2.02	0	
methylcyclohexane-d ₁₄	20.0	25	84	16	2.02	0	

S3

Thermal cycloreversion reactions

Scheme S2

Table S3 ¹H NMR spectroscopic shifts of compounds 1, anti-2, 5 and anti-6 in o-C₆D₄Cl₂ at 298 K.^[a]

	1	anti-2	5	anti-6 ^[b]	
H9	9.47 (s)	5.88 (d)	9.46 (s)	n.a.	
H10	8.21 (s)	4.71 (d)	8.20 (s)	n.a.	
H4/H5	7.83 (d)	7.11 (d)	7.81 (d)	n.a.	
H2/H7	7.68 (d)	6.96 (d)	7.58 (d)	n.a.	
H3/H6	7.28 (t)	6.71 (t)	7.29 (dd)	n.a.	
ОН	-	-	3.85 (bs)	n.a.	
CH ₃	-	-	1.76 (s)	n.a.	
C≡CH	3.59 (s)	3.42 (s)	-	_	

[a] For NMR assignments see Scheme 6 (main text). [b] n.a.: not assigned (due to poor solubility).

NMR Spectroscopic Data

Fig. S1 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (below), of compound *syn-2*.

Fig. S2 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (below), of compound *anti-2*.

Fig. S3 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (below), of compound *syn*-6.

Fig. S4 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (below), of compound *anti*-6.

Fig. S5 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (centre), ¹¹⁹Sn{¹H} NMR (below), of compound **7**.

Fig. S6 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (centre), ¹¹B{¹H} NMR (below), of compound 8.

Fig. S7 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (below), of compound 9.

Fig. S8 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (centre), ¹¹B{¹H} NMR (below), of compound **10**.

Fig. S9 Excerpts of the ¹H NMR spectra (600 MHz) of the ammonia adduct **10** at different temperatures in CD₂Cl₂.

Fig. S10 NMR spectra, ¹H NMR (above), ¹³C{¹H} NMR (centre), ¹¹B{¹H} NMR (below), of compound **11**.

Fig. S11 ¹H NMR spectroscopy (500 MHz, 298 K) traces the adduct formation of tetraborane **8** by stepwise titration with hydrazine (0.2 eq. steps) in CD_2Cl_2 (#). After a total amount of two equivalents hydrazine, the oligomeric complex **12** ([**8**·5N₂H₄]_n) was obtained as colourless crystals. ¹H NMR spectra of free tetraborane **8** (below) and its tetra-hydrazine adduct **11** (**8**·4N₂H₄, above) are shown, comparatively.

As shown in Fig. S11, strong dynamics are observed during the titration of **8** with hydrazine. Especially N_2H_4 -signals shift over a wide range of the NMR spectrum. The aromatic region indicates that a large number of different host/guest species are present at any time.

Fig. S12 Excerpts of the ¹H NMR spectra of anthracene monomer **1** (above) and its photo-isomers *anti-***2** (centre) and *syn-***2** (below).

UV-VIS Absorption Spectra

Fig. S13 Absorption spectra of 1,8-diethynylanthracene 1 (black line, 8.0×10^{-6} mol L⁻¹), as well as its photo-dimers *syn-2* (solid red line, 1.5×10^{-5} mol L⁻¹) and *anti-2* (dotted red line, 1.4×10^{-5} mol L⁻¹) in dichloromethane.

Fig. S14 Absorption spectra of dialkynylanthracene **5** (black line, 5.3×10^{-6} mol L⁻¹) and its photo-dimer *syn-6* (red line, 1.5×10^{-5} mol L⁻¹) in dichloromethane.

Fig. S15 Absorption spectra of 1,8-diethynylanthracene 1 (black line, 8.0×10^{-6} mol L⁻¹) and the formed photo-isomers *syn-2* and *anti-2* in dichloromethane as a function of UV irradiation duration.

Fig. S16 Absorption spectra of dialkynylanthracene **5** (black line, 5.3×10^{-6} mol L⁻¹) and the formed photo-isomers *syn*-6 and *anti*-6 in dichloromethane as a function of UV irradiation duration.

Crystallographic Data

General note: Solid state structures of compounds **4**, **4a**, *anti*-**2** and **10b** were determined, but are not mentioned or depicted in the main text.

Crystal structure determination: Suitable crystals were obtained by slow evaporation of saturated solutions from benzene (*syn-2*, *5*, *syn-6* and *10*), toluene (*anti-2*), *n*-hexane (*4a*), dichloromethane/ *n*-pentane 1:4 (*4*), THF/*n*-hexane 1:1 (*anti-6*) or slowly grown from benzene (*9*), acetonitrile (*10b*) or dichloromethane (*11* and *12*) after adding the corresponding base to solutions of tetraborane *8*, respectively. They were selected, coated with PARATONE-N oil, mounted on a glass fibre and transferred onto the goniometer of the diffractometer into a nitrogen gas cold stream solidifying the oil. Data collection was performed on a *Rigaku SuperNova* diffractometer, a *SuperNova, Dual, Cu at zero*, diffractometer, a *SuperNova, Single sourse at offset, Eos*, diffractometer and a *Nonius KappaCCD* diffractometer. Using Olex2,² the structures were solved with the SHELXT³ structure solution program and refined with the SHELXL⁴ refinement package. Crystal and refinement details, as well as CCDC numbers are provided in Tables S4 and S5. CCDC 1952344-1952355 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/conts/retrieving.html.

Fig. S17 Molecular structures of anthracene-1,8-diyl bis(trifluoromethanesulfonate) (**4**, right) and its precursor 9,10dihydroanthracene-1,8-diyl bis(trifluoromethanesulfonate) (**4a**, left) in the crystalline state. Displacement ellipsoids are drawn at 50% probability level, hydrogen atoms, except those of **4a** at C(3) and C(10), are omitted for clarity. Selected structural parameters are listed in Table S3.

Table S4Selected structural parameters of 9,10-dihydroanthracene-1,8-diyl bis(trifluoromethanesulfonate (4a) and
anthracene-1,8-diyl bis(trifluoromethanesulfonate) (4).

Parameter	4a	4	Parameter	4a	4
d[C(1)–C(2)]/Å	1.394(2)	1.423(4)	<i>d</i> [S(1)–O(2)]/Å	1.415(1)	1.417(3)
d[C(2)–C(3)]/Å	1.484(2)	1.403(5)	d[S(1)–C(15)]/Å	1.829(2)	1.839(3)
d[C(1)…C(5)]/Å	4.958(2)	4.978(5)	∡[C(14)–C(1)–O(1)]/°	118.5(1)	118.6(3)
d[C(2)–C(11)]/Å	1.403(2)	1.435(4)	∡[C(1)–C(2)–C(11)]/°	116.8(2)	116.0(3)
d[C(1)–O(1)]/Å	1.436(2)	1.436(4)	∡[C(2)–C(3)–C(4)]/°	114.7(1)	120.5(3)
d[S(1)–O(1)]/Å	1.574(1)	1.565(2)	τ [Ar–Ar]/°	19.4(1)	0.8(1)

Fig. S18 Molecular structure of **5** in the crystalline state. Displacement ellipsoids are drawn at 50% probability level, hydrogen atoms, except those of the hydroxyl-groups, are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.445(2), C(1)-C(15) 1.439(2), C(2)-C(3) 1.397(2), C(2)-C(11) 1.438(2), C(15)-C(16) 1.199(2), C(16)-C(17) 1.488(2), C(17)-C(18) 1.522(2), C(17)-O(1) 1.435(2); C(1)-C(2)-C(3) 122.6(1), C(1)-C(2)-C(11) 118.2(1), C(1)-C(15)-C(16) 171.5(2), C(15)-C(16)-C(17) 170.5(2), C(16)-C(17)-C(18) 107.7(1), C(16)-C(17)-O(1) 111.3(1), C(18)-C(17)-O(1) 106.3(1).

Fig. S19 Molecular structure of *syn-2* in the crystalline state. Displacement ellipsoids are drawn at 50% probability level, hydrogen atoms, except those of the ethynyl groups, are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.403(1), C(1)-C(15) 1.438(1), C(2)-C(3) 1.520(1), C(2)-C(11) 1.397(1), C(3)-C(21) 1.615(1), C(10)-C(28) 1.616(1), C(15)-C(16) 1.189(2); C(1)-C(2)-C(3) 123.3(1), C(1)-C(2)-C(11) 119.3(1), C(1)-C(15)-C(16) 177.4(1), C(2)-C(3)-C(21) 107.9(1), C(2)-C(3)-C(21) 112.6(1), C(9)-C(10)-C(28) 112.9(1).

Fig. S20 Molecular structure of *anti-2* in the crystalline state. Displacement ellipsoids are drawn at 50% probability level, hydrogen atoms, except those of the ethynyl groups, are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.401(3), C(1)-C(15) 1.446(3), C(2)-C(3) 1.516(2), C(2)-C(11) 1.395(3), C(3)-C(10') 1.613(2), C(10)-C(11) 1.515(3), C(15)-C(16) 1.182(3); C(1)-C(2)-C(3) 122.5(2), C(1)-C(2)-C(11) 120.1(2), C(1)-C(15)-C(16) 177.3(2), C(2)-C(3)-C(4) 108.3(1), C(2)-C(3)-C(10') 111.6(1), C(9)-C(10)-C(3') 110.8(1).

Fig. S21 Molecular structure of *syn-6* in the crystalline state. Displacement ellipsoids are drawn at 50% probability level, hydrogen atoms, except those of the hydroxyl groups, are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.405(1), C(1)-C(15) 1.437(2), C(2)-C(3) 1.517(1), C(2)-C(11) 1.402(1), C(3)-C(3') 1.614(2), C(10)-C(10') 1.600(2), C(10)-C(11) 1.512(1), C(15)-C(16) 1.202(2), C(16)-C(17) 1.479(2), C(17)-C(18) 1.529(2), C(17)-O(1) 1.441(1); C(1)-C(2)-C(3) 123.5(1), C(1)-C(2)-C(11) 119.2(1), C(1)-C(15)-C(16) 177.6(1), C(2)-C(3)-C(4) 107.1(1), C(2)-C(3) -C(3') 112.2(1), C(9)-C(10)-C(10') 112.0(1), C(15)-C(16)-C(17) 178.3(1), C(16)-C(17)-C(18) 109.9(1), C(16)-C(17)-O(1) 110.0(1), C(18)-C(17)-O(1) 107.8(1).

Fig. S22 Molecular structure of *anti-6* in the crystalline state. Displacement ellipsoids are drawn at 50% probability level, hydrogen atoms, except those of the hydroxyl groups, are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.403(2), C(1)-C(15) 1.429(2), C(2)-C(3) 1.513(2), C(2)-C(11) 1.386(2), C(3)-C(10') 1.609(2), C(10)-C(11) 1.513(2), C(15)-C(16) 1.198(2), C(16)-C(17) 1.477(2), C(17)-C(18) 1.521(2), C(17)-O(1) 1.439(2); C(1)-C(2)-C(3) 122.5(2), C(1)-C(2)-C(11) 119.8(2), C(1)-C(15)-C(16) 176.5(2), C(2)-C(3)-C(4) 107.7(1), C(2)-C(3)-C(10') 111.6(1), C(3')-C(10)-C(9) 111.8(1), C(15)-C(16)-C(17) 178.5(2), C(16)-C(17)-C(18) 110.2(1), C(16)-C(17)-O(1) 109.2(1), C(18)-C(17)-O(1) 109.7(1).

Fig. S23 Molecular structure of **9** in the crystalline state. Displacement ellipsoids are drawn at only 15% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.396(4), C(1)-C(15) 1.420(5), C(2)-C(3) 1.529(4), C(2)-C(11) 1.403(5), C(3)-C(55) 1.622(4), C(5)-C(34) 1.427(5), C(10)-C(62) 1.609(4), C(34)-C(35) 1.218(5), C(35)-B(2) 1.606(6), C(36)-B(2) 1.622(5), B(1)-N(1) 1.636(5), B(2)-N(2) 1.649(5), B(3)-N(3) 1.634(5), B(4)-N(4) 1.643(4); C(1)-C(2)-C(3) 123.6(3), C(1)-C(2)-C(11) 118.6(3), C(2)-C(3)-C(55) 114.7(3), C(5)-C(34)-C(35) 167.7(3), C(9)-C(10)-C(62) 114.1(3), C(34)-C(35)-B(2) 167.7(3), C(35)-B(2)-C(36) 109.4(3), C(35)-B(2)-N(2) 104.3(3), C(36)-C(37)-C(38) 121.8(4), C(36)-B(2)-N(2) 106.9(3), C(37)-C(36)-B(2) 122.4(4).

Fig. S24 Molecular structure of **10** in the crystalline state. Displacement ellipsoids are drawn at 30% (for C) and 50% (for B and N) probability levels. Carbon-bound hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.394(3), C(1)-C(15) 1.442(4), C(2)-C(3) 1.524(3), C(2)-C(11) 1.409(3), C(3)-C(45) 1.611(3), C(10)-C(52) 1.616(3), C(15)-C(16) 1.209(4), C(16)-B(1) 1.590(4), C(23)-B(1) 1.616(4), B(1)-N(1) 1.620(3), B(2)-N(2) 1.639(3), B(3)-N(3) 1.635(3), B(4)-N(4) 1.630(3); C(1)-C(2)-C(3) 124.8(2), C(1)-C(2)-C(11) 118.3(2), C(1)-C(15)-C(16) 165.1(3), C(2)-C(3)-C(45) 114.2(2), C(9)-C(10)-C(52) 114.5(2), C(15)-C(16)-B(1) 172.2(3), C(16)-B(1)-C(23) 111.5(2), C(16)-B(1)-N(1) 106.3(2), C(23)-C(24)-C(25) 122.7(3), C(23)-B(1)-N(1) 106.7(2), C(24)-C(23)-B(1) 124.2(2).

Fig S25 Molecular structure of **10b** (8·4NH₃·4MeCN) in the crystalline state. Single crystals were obtained, when a solution of **8** in acetonitrile was converted with an excess of gaseous ammonia. Displacement ellipsoids are drawn at 25% probability level. Carbon-bound hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(57)-C(58) 1.224(5), C(58)-B(3) 1.585(5), C(65)-C(66) 1.400(5), C(65)-B(3) 1.625(5), C(66)-C(67) 1.393(6), C(67)-C(68) 1.381(7), C(85)-C(86) 1.448(6), C(85)-N(5) 1.145(5), C(87a)-C(88a) 1.505(11), C(87a)-N(6) 1.177(10), C(89)-C(90) 1.466(8), C(89)-N(7) 1.159(7), C(91)-C(92) 1.455(7), C(91)-N(8) 1.158(6), B(1)-N(1) 1.635(5), B(2)-N(2) 1.600(6), B(3)-N(3) 1.608(6), B(4)-N(4) 1.625(5); C(57)-C(58)-B(3) 173.9(4), C(58)-B(3)-C(65) 110.8(3), C(58)-B(3)-N(3) 106.6(3), C(66)-C(65)-B(3) 122.3(3), C(66)-C(65)-C(70) 116.5(3), C(86)-C(85)-N(5) 178.7(5), C(88a)-C(87a)-N(6) 176.3(9), C(90)-C(89)-N(7) 177.7(8), C(92)-C(91)-N(8) 178.7(5).

Fig. S26 Molecular structure of **11** in the crystalline state. Displacement ellipsoids are drawn at 30% (for C) and 50% (for B and N) probability levels. Carbon-bound hydrogen atoms are omitted for clarity. Dotted lines indicate hydrogen bonds. Selected bond lengths [Å] and angles [°]: C(23)–C(24) 1.405(6), C(23)–B(1) 1.612(7), C(24)–C(25) 1.391(7), C(25)–C(26) 1.382(8), B(1)–N(1) 1.631(6), B(2)–N(3) 1.626(6), B(3)–N(5) 1.625(7), B(4)–N(7) 1.618(6), N(1)–N(2) 1.456(5), N(3)–N(4) 1.459(5), N(5)–N(6) 1.456(5), N(7)–N(8) 1.459(5); C(23)–C(24)–C(25) 122.5(5), C(23)–B(1)–N(1) 105.0(4), C(24)–C(23)–C(28) 115.9(4), C(24)–C(23)–B(1) 120.8(5), B(1)–N(1)–N(2) 112.3(3), B(2)–N(3)–N(4) 114.2(3), B(3)–N(5)–N(6) 113.6(3), B(4)–N(7)–N(8) 118.0(3).

Fig. S27 Molecular structure of **12** in the crystalline state. Displacement ellipsoids are drawn at 30% probability level. Carbon-bound hydrogen atoms are omitted for clarity. Symmetry code: -1/4 + y, 3/4 - x, -1/4 + z (for E') and 3/4 - y, 1/4 + x, 1/4 + z (for E'). Dotted lines indicate hydrogen bonds. Selected bond lengths [Å] and angles [°]: C(37)–C(38) 1.397(6), C(37)–B(2) 1.618(5), C(38)–C(39) 1.390(6), C(39)–C(40) 1.383(8), B(1)–N(1) 1.639(4), B(2)–N(3) 1.622(5), B(3)–N(5) 1.630(5), B(4)–N(7) 1.621(4), N(1)–N(2) 1.465(4), N(3)–N(4) 1.459(4), N(5)–N(6) 1.456(4), N(7)–N(8) 1.460(4), N(9)–N(10) 1.427(5); C(37)–C(38) -C(39) 122.1(5), C(37)–B(2)–N(3) 108.0(3), C(38)–C(37)–C(42) 116.5(4), C(38)–C(37)–B(2) 120.9(4), B(1)–N(1)–N(2) 117.4(2), B(2)–N(3)–N(4) 114.9(3), B(3)–N(5)–N(6) 115.0(2), B(4)–N(7)–N(8) 115.2(2).

	4a	4	5	syn-2	anti-2	syn-6	anti-6 ^[a]
Empirical formula	$C_{16}H_{10}F_6O_2S_2$	$C_{16}H_8F_6O_2S_2$	$C_{24}H_{22}O_2$	$C_{36}H_{20}$	C ₃₆ H ₂₀ ·0.5 C ₇ H ₈	$C_{54}H_{50}O_4$	$C_{48}H_{44}O_4 \cdot C_4H_8O$
Mr	476.36	474.34	342.41	452.52	498.59	762.94	756.93
λ [Å]	1.54184	1.54184	1.54184	1.54184	0.71073	0.71073	0.71073
<i>Т</i> [K]	100.0(1)	100.0(1)	100.0(1)	100.0(1)	100.0(1)	100.0(1)	100.0(1)
F(000)	480	476	1456	944	522	812	404
Crystal system	triclinic	triclinic	orthorhombic	monoclinic	triclinic	monoclinic	triclinic
Space group	РĪ	РĪ	Pna21	P21/n	РĪ	P2/n	РĪ
a [Å]	9.5762(4)	5.4457(5)	11.74087(5)	10.03642(5)	10.1399(8)	11.1578(3)	9.8376(5)
<i>b</i> [Å]	10.0978(5)	9.7022(10)	32.16370(14)	20.42255(9)	11.8036(11)	11.0555(3)	11.0362(7)
<i>c</i> [Å]	10.1439(3)	17.3622(8)	9.77293(5)	12.53918(8)	12.2024(11)	17.2821	11.1225(6)
α [°]	87.983(3)	84.758(6)	90	90	104.246(4)	90	89.252(5)
β[°]	78.962(3)	87.356(7)	90	111.7520(4)	90.620(5)	98.594(2)	66.881(5)
γ [°]	69.485(4	74.878(9)	90	90	111.016(5)	90	74.852(5)
V [Å ³]	901.16(7)	881.63(14)	3690.55(3)	2387.14(2)	1313.5(2)	2107.9(1)	1066.53(11)
Z	2	2	8	4	2	2	1
$ ho_{calcd.}$ [g cm ⁻³]	1.756	1.787	1.233	1.259	1.261	1.202	1.179
μ [mm ⁻¹]	3.595	3.674	0.603	0.545	0.071	0.074	0.074
θ_{max} [°]	72.35	72.33	72.32	72.32	30.00	30.03	26.021
Index ranges h	$-11 \le h \le 11$	$-6 \le h \le 6$	$-14 \le h \le 14$	$-12 \le h \le 12$	$-14 \le h \le 14$	$-15 \le h \le 15$	$-11 \le h \le 12$
Index ranges k	$-12 \le k \le 11$	$-11 \le k \le 11$	-39 ≤ <i>k</i> ≤ 39	$-25 \le k \le 25$	$-16 \le k \le 15$	$-15 \le k \le 15$	$-12 \le k \le 13$
Index ranges /	-12 ≤ / ≤ 12	-21 ≤ / ≤ 19	-11 ≤ / ≤ 12	-15 ≤ / ≤ 15	-17 ≤ / ≤ 17	–24 ≤ / ≤ 24	-13 ≤ / ≤ 13
Reflexes collected	13616	11552	63776	81574	18989	47712	9733
Independent reflexes	3536	3434	6940	4718	7266	6166	4209
R _{int}	0.0191	0.0650	0.0249	0.0237	0.061	0.0338	0.0325
Observed reflexes, I>2o(I)	3333	2672	6850	4582	4680	5319	3268
Parameters	271	311	493	325	389	275	247
R1, I>20(1)	0.0312	0.0614	0.0256	0.0370	0.0624	0.0477	0.0509
wR₂, I>2σ(I)	0.0842	0.1619	0.0675	0.0988	0.1315	0.1392	0.1234
R ₁ (all data)	0.0330	0.0769	0.0260	0.0377	0.1116	0.0548	0.0659
wR ₂ (all data)	0.0860	0.1782	0.0681	0.0994	0.1564	0.1452	0.1321
GoF	1.053	1.016	1.032	1.043	1.022	1.073	1.043
$ ho_{ m max}/ ho_{ m min}$ [e Å ⁻³]	0.38/-0.37	0.48/-0.73	0.14/-0.17	0.25/-0.22	0.33/-0.25	0.47/-0.36	0.27/-0.21
Flack parameter	_	_	0.02(4)	-	-	_	-
CCDC number	1952344	1952345	1952346	1952347	1952348	1952349	1952350

 Table S5
 Crystallographic data for compounds 4a, 4, 5, syn-2, anti-2, syn-6 and anti-6.

[a] The unit cell contains one highly disordered thf solvent molecule, which was "squeezed" using the Olex2 routine, but included into the sum formula and dependent values.

	9 ^[a]	10 ^[b]	10b ^[c]	11 ^[d]	12 ^[e]
Empirical formula	$C_{104}H_{76}B_4N_4$	$C_{105}H_{89}B_4N_4$	$C_{95.25}H_{84.87}B_4N_{9.62}$	$C_{87.33}H_{78.66}B_4CI_{6.66}N_8$	$C_{84}H_{76}B_4N_{10}$
Mr	1424.92	1450.04	1407.49	1519.63	1268.78
λ [Å]	1.54184	1.54184	1.54184	1.54184	1.54184
<i>Т</i> [K]	100.0(1)	100.0(1)	100.0(1)	100.0(1)	100.0(1)
F(000)	2992	1534	5950	3168	10720
Crystal system	monoclinic	triclinic	orthorhombic	orthorhombic	tetragonal
Space group	P21/c	РĪ	Pbca	Pna21	14 ₁ /a
a [Å]	14.0002(4)	14.4537(8)	19.2454(7)	23.0669(4)	26.4901(4)
<i>b</i> [Å]	40.8950(12)	14.7536(6)	28.1544(12)	22.8536(4)	26.4901(4)
c [Å]	17.3331(6)	20.5177(7)	29.7705(10)	15.3750(4)	44.9400(11)
α [°]	90	100.327(3)	90	90	90
β[°]	91.677(3)	98.165(4)	90	90	90
γ [°]	90	99.886(4)	90	90	90
V [Å ³]	9919.6(5)	4172.5(3)	16130.9(11)	8105.2(3)	31535.6(12)
Z	4	2	8	4	16
$\rho_{\text{calcd.}}$ [g cm ⁻³]	0.954	1.154	1.159	1.245	1.069
μ [mm ⁻¹]	0.414	0.496	0.518	2.518	0.482
$ heta_{max}$ [°]	66.75	67.08	67.08	78.553	66.594
Index ranges h	$-16 \le h \le 16$	$-15 \le h \le 17$	$-20 \le h \le 22$	$-29 \le h \le 29$	$-31 \le h \le 31$
Index ranges k	$-48 \le k \le 34$	$-17 \le k \le 17$	-33 ≤ <i>k</i> ≤ 22	–28 ≤ <i>k</i> ≤ 29	$-26 \le k \le 31$
Index ranges /	–18 ≤ / ≤ 20	-21≤/≤24	-34 ≤ / ≤ 35	-19 ≤ <i>l</i> ≤ 19	-53 ≤ / ≤ 53
Reflexes collected	66655	28058	54697	91890	114503
Independent reflexes	17595	14901	14388	16668	13948
R _{int}	0.0692	0.0986	0.1485	0.0592	0.1541
Observed reflexes, I>2o(I)	10611	9295	8076	14362	9399
Parameters	1113	1097	1081	1126	963
R1, I>2σ(I)	0.0871	0.0598	0.0687	0.0605	0.0750
wR2, I>20(I)	0.2509	0.1279	0.1662	0.1554	0.1677
R1 (all data)	0.1196	0.1035	0.1349	0.0724	0.1095
wR ₂ (all data)	0.2793	0.1475	0.2177	0.1723	0.1949
GoF	1.051	0.931	1.011	1.063	1.023
$ ho_{ m max}/ ho_{ m min}$ [e Å ⁻³]	0.50/-0.26	0.32/-0.27	0.28/-0.31	0.83/-0.44	0.28/-0.27
Flack parameter	-	-	-	0.006(7)	-
CCDC number	1952351	1952352	1952353	1952354	1952355

Table S6Crystallographic data for compounds 9, 10, 10b, 11 and 12.

[a] As the crystal contains heavy disordered solvent molecules (chloroform and/or benzene), the squeeze algorithm of Olex2 was applied. Three phenyl groups were disordered in different ratios: (71:29), (59:41) and (59:41). All disordered phenyl groups were constrained to have idealised geometry (AFIX 66). Hydrogen atoms were taken into account using a riding model. [b] Hydrogen atoms bonded to nitrogen were refined isotropically, those ones bonded to carbon were taken into account using a riding model. On solvent benzene molecule was disordered in ration 53:47, both parts were constrained to an idealised hexagon. [c] Hydrogen atoms bonded to nitrogen were refined isotropically, those ones bonded to carbon were taken into account using a riding model. Approx. 5.6 molecules of acetonitrile were found per molecule. The occupation factors of these solvent molecules were refined, atoms of molecules with occupation below 25 % were refined isotropically, all others anisotropically. [d] Disordered CH₂Cl₂ was squeezed using the Olex2 routine. Bond lengths of hydrogens bonded to nitrogen were restrained with SADI to be equal. These hydrogens were refined isotropically.

References

- 1 C. Reichardt, *Solvents and Solvent Effects in Organic Chemistry*, Wiley-VCH Publishers, 3rd ed., 2003.
- 2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.* 2009, **42**, 339–341.
- 3 (*a*) G. M. Sheldrick, *Acta Crystallogr., Sect. A* 2008, **64**, 112–122, (*b*) G. M. Sheldrick, *Acta Crystallogr., Sect. A* 2015, **71**, 3–8.
- 4 G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3–8.