Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Table of Contents

1.	General information	S2
2.	General procedure	S3
3.	Additional experiments	S4
4.	Characterization data of products	S12
5.	Crystallographic data for compound 7a	S43
6.	Copies of the ¹ H, ¹⁹ F NMR and ¹³ C NMR spectra	S54
7	References	S11 <i>6</i>

1. General information

¹H and ¹³C NMR data were recorded with Bruker ADVANCE III (400 MHz) or JNM-ECZ400S/L1 (400 MHz) spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual ¹H and ¹³C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (b). ¹⁹F NMR spectra were recorded using CFCl₃ as internal standard. Gas chromatography were determined with a SHIMADZU Nexis GC 2030 gas chromatography instrument with a FID detector. High-resolution mass spectra (HRMS) were recorded on Thermo Fisher Orbitrap Elite mass spectrometer. The photoreaction instrument (WPTEC-1020L) was purchased from WATTCAS, China.

Unless otherwise stated, starting materials were purchased from commercial suppliers (Energy Chemical, Alfa, Aldrich and so on). All reactions dealing with air- or moisture-sensitive compounds were performed in the argon-filled glove box or by standard Schlenk techniques in oven-dried reaction vessels under argon atmosphere. Solvents were purchased in HPLC quality, degassed by purging thoroughly with argon and dried over activated molecular sieves of appropriate size. More sensitive compounds were stored in a desiccator or in a glove-box if required. Reactions were monitored by thin layer chromatography (TLC) using glass 0.25 mm silica gel plates. Compounds were visualized by UV-light at 254 nm and by dipping the plates in an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (200-400 mesh).

2. General procedures

2.1

A mixture of Ni(COD)₂ (10 mol%), **L4** (10 mol%), methyl methacrylate (0.2 mmol), 'BuOK (12 mol%), dry toluene (1 mL) and methanol (3 mL) were stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkyne substrate **1** (0.2 mmol), the reaction mixture was heated at 100 °C until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:20~1:6 (v/v) to afford the allylic alcohol **2**.

2.2

A mixture of Ni(COD)₂ (15 mol%), IMes (15 mol%), methyl methacrylate (0.2 mmol), LiF (10 mol%), dry toluene (1.5 mL) and methanol (0.5 mL) was stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkynone substrate 6 (0.2 mmol), the reaction mixture was heated at 40 °C until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:8~1:2 (v/v) to afford the allylic alcohol 7.

3. Additional Experiments

3.1 Side Reactions

^aReactions conditions: **1a** (0.2 mmol), Ni(COD)₂ (10 mol%), ligand (20 mol%), 'BuOK (12 mol%), additive (1 equiv) in toluene (1 mL) and MeOH (3 mL) in sealed tube at 100 °C. ^bDetermined by GC analysis using adamantane as the internal standard. ^cIsolated yield.

(Z)-4-(prop-1-en-1-yl)-1,1'-biphenyl (3)

Chemical Formula: C₁₅H₁₄ Exact Mass: 194.1096

¹H NMR (400 MHz, CDCl₃) δ 7.63 - 7.56 (m, 4H), 7.46 - 7.32 (m, 5H), 6.52 - 6.42 (m, 1H), 5.90 - 5.79 (m, 1H), 1.96 (dd, J = 7.19, 1.83 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 140.9, 139.1, 136.7, 129.4, 129.2, 128.8, 127.2, 127.03, 126.98, 126.8, 14.8.

4,4"-(2,3-dimethylbuta-1,3-diene-1,4-diyl)di-1,1'-biphenyl (4)

¹H NMR (400 MHz, CDCl₃) δ 7.68 - 7.66 (m, 1H), 7.66 - 7.64 (m, 2H), 7.63 - 7.58 (m, 4H), 7.55 - 7.51 (m, 3H), 7.45 - 7.40 (m, 4H), 7.36 - 7.29 (m, 4H), 6.21 (s, 1H), 6.07 (q, J = 7.01 Hz, 1H), 2.15 (d, J = 1.21 Hz, 3H), 1.67 (d, J = 7.01 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 145.3, 140.8, 139.3, 139.0, 138.8, 130.4, 129.7, 129.0, 128.8, 128.7, 127.2, 127.1, 127.0, 126.9, 126.8, 126.6, 123.6, 16.0, 15.7.

methyl (*E*)-5-([1,1'-biphenyl]-4-yl)-2,4-dimethylpent-4-enoate (8)

Chemical Formula: C₂₀H₂₂O₂ Exact Mass: 294.1620

¹H NMR (400 MHz, CDCl₃) δ 7.64 - 7.54 (m, 5H), 7.43 (m, 2H), 7.34 - 7.30 (m, 2H), 6.32 (s, 1H), 3.69 (s, 3H), 2.81 - 2.73 (m, 1H), 2.62 - 2.55 (m, 1H), 2.30 - 2.23 (m, 1H), 1.91 (d, J = 1.4 Hz, 3H), 1.57 (s, 2H), 1.20 (d, J = 7.0 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 176.9, 140.8, 138.8, 137.1, 136.2, 129.2, 128.7, 127.1, 126.9, 126.8, 126.7, 51.6, 45.1, 38.1, 17.7, 16.7.

3.2 Mechanistic study

Experimental procedure: A mixture of Ni(COD)₂ (10 mol%, 5.4 mg), L4 (10 mol%, 6.2 mg), methyl methacrylate (0.2 mmol, 20 mg), 'BuOK (12 mol%, 2.7 mg), dry toluene (1 mL) and CH₃OD (3 mL) were stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkyne substrate 1a (0.2 mmol, 38.4 mg), the reaction mixture was heated at 100 °C until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:20~1:8 (v/v) to afford the allylic alcohol 2a (27 mg, 60% yield) with 0% deuterium incorporation.

Experimental procedure: A mixture of Ni(COD)₂ (10 mol%, 5.4 mg), L4 (10 mol%, 6.2 mg), methyl methacrylate (0.2 mmol, 20 mg), 'BuOK (12 mol%, 2.7 mg), dry toluene (1 mL) and CD₃OD (3 mL) were stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkyne substrate 1a (0.2 mmol, 38.4 mg), the reaction mixture was heated at 100 °C until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:20~1:8 (v/v) to afford the allylic alcohol 2a-D (18.4 mg, 41% yield) with 99% deuterium incorporation.

Experimental procedure: A mixture of Ni(COD)₂ (10 mol%, 5.4 mg), L4 (10 mol%, 6.2 mg), methyl methacrylate (0.2 mmol, 20 mg), 'BuOK (12 mol%, 2.7 mg), dry toluene (1 mL), CD₃OD (1.5 mL) and CH₃OH (1.5 mL) were stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkyne substrate 1a (0.2 mmol, 38.4 mg), the reaction mixture was heated at 100 °C for 5 hours (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:20~1:8 (v/v) to afford the allylic alcohol 2a-D (20.6 mg, 46% yield) with 14% deuterium incorporation.

4. Characterization data of products

(E)-3-([1,1'-biphenyl]-4-yl)-2-methylprop-2-en-1-ol (2a)

Chemical Formula: C₁₆H₁₆O Exact Mass: 224.1201

2a was prepared according to general procedure 2.1 using 1a (38.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2a as colorless oil (26.9 mg, 60% yield, 14/1 r.r).

The NMR data matched those reported in the literature.¹ ¹H NMR (600 MHz, CDCl₃) δ 7.65 - 7.57 (m, 4H), 7.48 - 7.43 (m, 2H), 7.40 - 7.33 (m, 3H), 6.57 (s, 1H), 4.23 (d, J = 1.4 Hz, 2H), 1.97 (d, J = 1.4 Hz, 3H), 1.72 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 140.7, 139.1, 137.8, 136.5, 129.3, 128.7, 127.2, 126.9, 126.8, 124.6, 69.0, 15.4.

(E)-3-(4-fluorophenyl)-2-methylprop-2-en-1-ol (2b)

Chemical Formula: C₁₀H₁₁FO Exact Mass: 166.0794

2b was prepared according to general procedure 2.1 using **1b** (26.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2b** as colorless oil (19.4 mg, 58% yield, 25/1 r.r).

The NMR data matched those reported in the literature.² ¹H NMR (600 MHz, CDCl₃) δ 7.25 - 7.21 (m, 2H), 7.04 - 6.99 (m, 2H), 6.49 (s, 1H), 4.18 (d, J = 1.5 Hz, 2H), 1.87 (d, J = 1.4 Hz, 3H), 1.60 (bs, 1H);

¹⁹F NMR (565 MHz, CDCl₃) δ -115.8 (m);

¹³C NMR (151 MHz, CDCl₃) δ 161.4 (d, J = 245. 8 Hz), 137.5, 133.5 (d, J = 3.3 Hz), 130.4 (d, J = 7.8 Hz), 123.9, 115.0 (d, J = 21.3 Hz), 68.8, 15.2.

(E)-2-methyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-ol (2c)

Chemical Formula: C₁₁H₁₁F₃O Exact Mass: 216.0762

2c was prepared according to general procedure 2.1 using 1c (36.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2c as colorless oil (18.7 mg, 43% yield, 33/1 r.r).

The NMR data matched those reported in the literature.² ¹H NMR (600 MHz, CDCl₃) δ 7.61 - 7.55 (m, 2H), 7.40 - 7.34 (m, 2H), 6.57 (s, 1H), 4.22 (s, 2H), 1.89 (d, J = 1.4 Hz, 3H), 1.67 (bs, 1H);

¹⁹F NMR (565 MHz, CDCl₃) δ -62.41;

¹³C NMR (151 MHz, CDCl₃) δ 141.2, 139.9, 129.0, 128.4 (q, J = 32.3 Hz), 125.1 (q, J = 3.8 Hz), 124.3 (q, J = 271.8 Hz), 123.4, 68.4, 15.3.

(E)-2-benzylideneheptan-1-ol (2d)

Chemical Formula: C₁₄H₂₀O Exact Mass: 204.1514

2d was prepared according to general procedure 2.1 using **1d** (34.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2d** as colorless oil (22.9 mg, 56% yield, 13/1 r.r).

The NMR data matched those reported in the literature.³ ¹H NMR (600 MHz, CDCl₃) δ 7.36 - 7.32 (m, 2H), 7.27 - 7.21 (m, 3H), 6.53 (s, 1H), 4.23 (d, J = 1.4 Hz, 2H), 2.34 - 2.27 (m, 2H), 1.62 (bs, 1H), 1.56 - 1.48 (m, 2H), 1.33 - 1.26 (m, 4H), 0.90 - 0.86 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 142.4, 137.6, 128.6, 128.2, 126.4, 125.3, 67.0, 32.0, 28.7, 28.1, 22.4, 14.0.

(E)-2-(4-chlorobenzylidene)heptan-1-ol (2e)

S13

CI C₅H₁₁

Chemical Formula: C₁₄H₁₉CIO Exact Mass: 238.1124

2e was prepared according to general procedure 2.1 using **1e** (41.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2e** as colorless oil (24.0 mg, 50% yield, 25/1 r.r).

¹H NMR (600 MHz, CDCl₃) δ 7.36 - 7.32 (m, 2H), 7.26 - 7.21 (m, 2H), 6.53 (s, 1H), 4.23 (d, J = 1.4 Hz, 2H), 2.34 - 2.27 (m, 2H), 1.62 (bs, 1H), 1.56 - 1.48 (m, 2H), 1.33 - 1.26 (m, 4H), 0.90 - 0.86 (m, 3H);

¹³C NMR (151 MHz, CDCl₃) δ142.4, 137.6, 128.6, 128.2, 126.4, 125.3, 67.0, 32.0, 28.7, 28.1, 22.4, 14.0;

HRMS: (ESI) calcd for $C_{14}H_{18}Cl^{+}$ [M-H₂O+H]⁺ 221.1092; found 221.1087.

(E)-2-(4-methoxybenzylidene)pent-4-en-1-ol (2f)

Chemical Formula: C₁₃H₁₆O₂ Exact Mass: 204.1150

2f was prepared according to general procedure 2.1 using 1f (mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2f as colorless oil (24.5 mg, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.25 - 7.22 (m, 2H), 6.89 - 6.86 (m, 2H), 6.59 (s, 1H), 5.99 - 5.88 (m, 1H), 5.18 - 5.10 (m, 2H), 4.20 (d, J = 1.4 Hz, 2H), 3.81 (s, 3H), 3.09 - 3.05 (m, 2H), 1.62 (bs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 158.4, 137.3, 135.7, 129.7, 129.5, 126.6, 116.2, 113.6, 67.1, 55.2, 33.0;

HRMS: (ESI) calcd for $C_{13}H_{15}O^{+}$ [M-H₂O+H]⁺ 187.1117; found 187.1114.

(E)-3-(4-bromophenyl)prop-2-en-1-ol (2g)

S14

Chemical Formula: C₉H₉BrO Exact Mass: 211.9837

2g was prepared according to general procedure 2.1 using 1g (50.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2g as colorless oil 19.1 mg, 45% yield).

The NMR data matched those reported in the literature.³ ¹H NMR (600 MHz, CDCl₃) δ 7.46 - 7.41 (m, 2H), 7.27 - 7.22 (m, 2H), 6.56 (d, J = 15.9 Hz, 1H), 6.35 (dt, J = 15.9, 5.6 Hz, 1H), 4.32 (dd, J = 5.6, 1.6 Hz, 2H), 1.5 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 135.6, 131.7, 129.8, 129.3, 128.0, 121.4, 63.5.

(E)-2-((diethylamino)methyl)-3-phenylprop-2-en-1-ol (2h)

Chemical Formula: C₁₄H₂₁NO Exact Mass: 219.1623

2h was prepared according to general procedure 2.1 using **1h** (37.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 4/1, Et₃N 1%) to obtain **2h** as colorless oil (30.2 mg, 69% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.28 - 7.22 (m, 2H), 7.20 - 7.16 (m, 1H), 7.12 - 7.05 (m, 2H), 6.61 (s, 1H), 5.43 (bs, 1H), 4.28 (d, J = 1.1 Hz, 2H), 3.35 (d, J = 1.3 Hz, 2H), 2.39 (q, J = 7.2 Hz, 4H), 0.91 (t, J = 7.1 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃) δ 137.4, 136.7, 130.1, 128.9, 128.2, 126.9, 70.0, 53.0, 46.8, 11.5; HRMS: (ESI) calcd for $C_{14}H_{22}NO^{+}$ [M+H]⁺ 220.1696; found 220.1689.

(E)-2-((dibenzylamino)methyl)-3-phenylprop-2-en-1-ol (2i)

Chemical Formula: C₂₄H₂₅NO Exact Mass: 343.1936 2i was prepared according to general procedure 2.1 using 1i (62.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 2i as colorless oil 41.2 mg, 60% yield).

The NMR data matched those reported in the literature.⁴ ¹H NMR (600 MHz, CDCl₃) δ 7.37 - 7.33 (m, 2H), 7.32 - 7.28 (m, 5H), 7.27 - 7.23 (m, 6H), 7.19 - 7.16 (m, 2H), 6.73 (s, 1H), 4.61 (bs, 1H), 4.28 (d, J = 1.1 Hz, 2H), 3.46 (s, 4H), 3.37 (d, J = 1.3 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 138.1, 137.9, 136.8, 130.2, 129.2, 129.0, 128.5, 128.2, 127.4, 127.0, 68.9, 58.5, 52.5.

(E)-3-phenyl-2-(piperidin-1-ylmethyl)prop-2-en-1-ol (2j)

Chemical Formula: C₁₅H₂₁NO Exact Mass: 231.1623

2j was prepared according to general procedure 2.1 using **1j** (40.0 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 4/1, Et₃N 1%) to obtain **2j** as colorless oil (25.0 mg, 54% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.34 - 7.30 (m, 2H), 7.26 - 7.22 (m, 1H), 7.18 - 7.15 (m, 2H), 6.68 (s, 1H), 5.89 (bs, 1H), 4.35 (d, J = 1.1 Hz, 2H), 3.31 (d, J = 1.2 Hz, 2H), 2.38 (s, 4H), 1.58 - 1.50 (m, 4H), 1.38 (s, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 136.7, 136.6, 130.1, 128.8, 128.1, 126.8, 70.3, 58.5, 54.5, 25.9, 23.9;

HRMS: (ESI) calcd for C₁₅H₂₂NO⁺ [M+H]⁺ 232.1696; found 232.1689.

(E)-N-(2-(hydroxymethyl)-3-phenylallyl)-N,4-dimethylbenzenesulfonamide (2k)

Chemical Formula: C₁₈H₂₁NO₃S Exact Mass: 331.1242 2k was prepared according to general procedure 2.1 using 1k (59.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 4/1) to obtain 2k as colorless oil (20.5 mg, 31% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.64 - 7.60 (m, 2H), 7.32 - 7.26 (m, 4H), 7.24 - 7.20 (m, 1H), 7.10 - 7.06 (m, 2H), 6.81 (s, 1H), 4.37 (s, 2H), 3.85 (s, 2H), 2.82 (bs, 1H), 2.57 (s, 3H), 2.42 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 143.6, 136.3, 135.9, 134.1, 130.9, 129.8, 128.7, 128.3, 127.2, 127.1, 64.8, 46.9, 34.6, 21.5;

HRMS: (ESI) calcd for $C_{18}H_{22}NO_3S^+$ [M+H]⁺ 332.1315; found 332.1296.

(E)-2-(2-(hydroxymethyl)-3-phenylallyl)isoindoline-1,3-dione (2l)

Chemical Formula: C₁₈H₁₅NO₃ Exact Mass: 293.1052

21 was prepared according to general procedure 2.1 using 11 (52.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 3/1) to obtain 21 as colorless oil (25.0 mg, 43% yield, 13/1 r.r).

¹H NMR (600 MHz, CDCl₃) δ 7.83 - 7.80 (m, 2H), 7.73 - 7.69 (m, 2H), 7.44 - 7.40 (m, 2H), 7.38 - 7.34 (m, 2H), 7.26 - 7.23 (m, 1H), 6.75 (s, 1H), 4.63 (d, J = 1.3 Hz, 2H), 4.15 (d, J = 5.7 Hz, 2H), 2.76 (t, J = 6.67 Hz, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 168.7, 136.1, 135.1, 134.1, 131.8, 130.9, 128.7, 128.3, 127.2, 123.4, 65.7, 36.0;

HRMS: (ESI) calcd for $C_{18}H_{16}NO_3^+[M+H]^+294.1125$; found 294.1126.

(E)-2-methyl-3-(naphthalen-2-yl)prop-2-en-1-ol (2m)

Chemical Formula: C₁₄H₁₄O Exact Mass: 198.1045

2m was prepared according to general procedure 2.1 using **1m** (33.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2m** as colorless oil 24.6 mg, 62% yield, 17/1 r.r).

The NMR data matched those reported in the literature.³ ¹H NMR (600 MHz, CDCl₃) δ 7.85 - 7.79 (m, 3H), 7.75 - 7.73 (m, 1H), 7.50 - 7.41 (m, 3H), 6.75 - 6.63 (m, 1H), 4.25 (d, J = 1.6 Hz, 2H), 1.99 (d, J = 1.4 Hz, 3H), 1.75 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 138.1, 135.0, 133.3, 132.1, 127.8, 127.6, 127.55, 127.47, 127.3, 126.0, 125.7, 125.0, 69.0, 15.4.

(E)-2-methyl-3-(1-methyl-1H-indol-5-yl)prop-2-en-1-ol (2n)

Chemical Formula: C₁₃H₁₅NO Exact Mass: 201.1154

2n was prepared according to general procedure 2.1 using **1n** (33.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain a 5:1 mixture of **2n** and **2n'** as colorless oil (25.3 mg, 63% yield, 10/1 r.r).

¹H NMR (600 MHz, (CD₃)₂SO) δ 7.47 - 7.44 (m, 1H), 7.41 - 7.36 (m, 1H), 7.31 - 7.28 (m, 1H), 7.12 - 7.07 (m, 1H), 6.55 (s, 1H), 6.42 - 6.38 (m, 1H), 4.90 (t, J = 5.7 Hz, 1H), 3.99 (d, J = 5.4 Hz, 2H), 3.78 (s, 3H), 1.85 (d, J = 1.4 Hz, 3H);

¹³C NMR (151 MHz, (CD₃)₂SO) δ 135.8, 135.1, 129.9, 128.5, 128.0, 124.3, 122.6, 120.2, 109.3, 100.4, 67.1, 32.5, 15.4;

HRMS: (ESI) calcd for $C_{13}H_{16}NO_3^+[M+H]^+202.1226$; found 202.1221.

(E)-3-(dibenzo[b,d]thiophen-2-yl)-2-methylprop-2-en-1-ol (20)

S18

Chemical Formula: C₁₆H₁₄OS Exact Mass: 254.0765

20 was prepared according to general procedure 2.1 using **10** (44.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **20** as colorless oil 20.3 mg, 40% yield, 14/1 r.r).

¹H NMR (600 MHz, CDCl₃) δ 8.16 - 8.11 (m, 1H), 8.07 - 8.04 (m, 1H), 7.88 - 7.83 (m, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.48 - 7.44 (m, 2H), 7.42 - 7.37 (m, 1H), 6.71 (s, 1H), 4.26 (s, 2H), 1.99 (d, J = 1.4 Hz, 3H), 1.68 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 139.8, 137.7, 137.5, 135.5, 135.4, 134.0, 127.8, 126.7, 124.9, 124.3, 122.9, 122.4, 121.6, 121.5, 69.0, 15.4;

HRMS: (ESI) calcd for $C_{16}H_{13}S^+$ [M-H₂O+H]⁺ 237.0732; found 237.0725.

(E)-3-(dibenzo[b,d]furan-2-vl)-2-methylprop-2-en-1-ol (2p)

Chemical Formula: C₁₆H₁₄O₂ Exact Mass: 238.0994

2p was prepared according to general procedure 2.1 using **1p** (41.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **2p** as colorless oil 23.8 mg, 50% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.96 - 7.92 (m, 1H), 7.86 - 7.83 (m, 1H), 7.58 - 7.55 (m, 1H), 7.54 - 7.51 (m, 1H), 7.48 - 7.44 (m, 1H), 7.39 - 7.31 (m, 2H), 6.69 (s, 1H), 4.25 (d, J = 1.5 Hz, 2H), 1.97 (d, J = 1.4 Hz, 3H), 1.67 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 156.5, 154.9, 137.1, 132.4, 128.3, 127.1, 125.0, 124.15, 124.13, 122.7, 120.64, 120.57, 111.7, 111.2, 69.0, 15.3;

HRMS: (ESI) calcd for $C_{16}H_{13}O^{+}[M-H_{2}O+H]^{+}221.0961$; found 221.0956.

(8S,9R,13R,14R)-3-((E)-2-(hydroxymethyl)hept-1-en-1-yl)-13-methyl-

6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (2q)

$$\begin{array}{c|c} H & H & OH \\ \hline \vdots & \vdots & \ddots & \vdots \\ OMe & & & \end{array}$$

Chemical Formula: C₂₆H₃₆O₂ Exact Mass: 380.2715

2q was prepared according to general procedure 2.1 using 1q (69.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 2q as colorless oil (47.2 mg, 62% yield, 13/1 r.r).

¹H NMR (600 MHz, CDCl₃) δ 7.26 - 7.24 (m, 1H), 7.08 - 7.04 (m, 1H), 7.01 - 6.98 (m, 1H), 6.45 (s, 1H), 4.21 (d, J = 1.4 Hz, 2H), 2.93 - 2.89 (m, 2H), 2.53 - 2.48 (m, 1H), 2.45 - 2.41 (m, 1H), 2.32 - 2.27 (m, 3H), 2.18 - 2.12 (m, 1H), 2.08 - 2.01 (m, 2H), 1.99 - 1.95 (m, 1H), 1.69 - 1.59 (m, 3H), 1.56 - 1.45 (m, 6H), 1.34 - 1.28 (m, 4H), 0.92 (s, 3H), 0.91 - 0.88 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 221.0, 142.0, 138.0, 136.1, 135.0, 129.3, 126.0, 125.1, 124.9, 67.2, 50.5, 48.0, 44.3, 38.1, 35.8, 32.0, 31.5, 29.4, 28.8, 28.1, 26.5, 25.6, 22.4, 21.5, 14.0, 13.8; HRMS: (ESI) calcd for C₂₆H₃₇O₂⁺ [M+H]⁺ 381.2788; found 381.2786.

(E)-3-(3-aminophenyl)prop-2-en-1-ol (2r)

Chemical Formula: C₉H₁₁NO Exact Mass: 149.0841

2r was prepared according to general procedure 2.1 using 1r (23.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 1/2, Et₃N 1%) to obtain 2r as colorless oil (15.0 mg, 50% yield).

The NMR data matched those reported in the literature.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.15 - 7.09 (m, 1H), 6.82 - 6.79 (m, 1H), 6.74 - 6.70 (m, 1H), 6.61 - 6.49 (m, 2H), 6.36 - 6.27 (m, 1H), 4.31 (dd, J = 5.8, 1.5 Hz, 2H), 3.67 (bs, 2H), 1.25 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 146.5, 137.7, 131.3, 129.5, 128.3, 117.1, 114.7, 113.0, 63.8.

(E)-3-(4-methoxyphenyl)prop-2-en-1-ol (2s)

Chemical Formula: C₁₀H₁₂O₂ Exact Mass: 164.0837

2s was prepared according to general procedure 2.1 using 1s (26.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2s as colorless oil (10.9 mg, 33% yield).

The NMR data matched those reported in the literature.⁶ 1 H NMR (600 MHz, CDCl₃) δ 7.35 - 7.30 (m, 2H), 6.88 - 6.84 (m, 2H), 6.56 (dt, J = 15.8, 1.6 Hz, 1H), 6.24 (dt, J = 15.9, 6.0 Hz, 1H), 4.30 (d, J = 4.7 Hz, 2H), 3.81 (s, 3H), 1.43 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 159.3, 131.0, 129.4, 127.7, 126.2, 114.0, 64.0, 55.3.

(E)-2,3-diphenylprop-2-en-1-ol (2t)

Chemical Formula: C₁₅H₁₄O Exact Mass: 210.1045

2t was prepared according to general procedure 2.1 using 1t (35.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2t as colorless oil (25.2 mg, 60% yield).

The NMR data matched those reported in the literature.⁷ 1 H NMR (600 MHz, CDCl₃) δ 7.37 - 7.29 (m, 3H), 7.25 - 7.21 (m, 2H), 7.15 - 7.09 (m, 3H), 7.03 - 6.98 (m, 2H), 6.70 (s, 1H), 4.47 (s, 2H), 1.79 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 141.4, 138.5, 136.4, 129.2, 128.8, 128.7, 127.9, 127.5, 126.8, 126.4, 68.5.

(E)-2,3-bis(4-chlorophenyl)prop-2-en-1-ol (2u)

Chemical Formula: C₁₅H₁₂Cl₂O Exact Mass: 278.0265

2u was prepared according to general procedure 2.1 using 1u (49.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2u as colorless oil (27.3 mg, 49% yield).

The NMR data matched those reported in the literature.⁸ 1 H NMR (600 MHz, CDCl₃) δ 7.33 - 7.29 (m, 2H), 7.16 - 7.09 (m, 4H), 6.93 - 6.89 (m, 2H), 6.66 (s, 1H), 4.43 (d, J = 1.6 Hz, 2H), 1.76 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 140.9, 136.5, 134.6, 133.7, 132.7, 130.4, 130.1, 129.1, 128.3, 125.9, 68.0.

(E)-2,3-bis(4-fluorophenyl)prop-2-en-1-ol (2v)

Chemical Formula: C₁₅H₁₂F₂O Exact Mass: 246.0856

2v was prepared according to general procedure 2.1 using 1v (42.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2v as colorless oil (27.6 mg, 56% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.20 - 7.15 (m, 2H), 7.06 - 7.00 (m, 2H), 6.97 - 6.92 (m, 2H), 6.86 - 6.79 (m, 2H), 6.66 (s, 1H), 4.43 (d, J = 1.5 Hz, 2H), 1.77 (bs, 1H);

¹⁹F NMR (565 MHz, CDCl₃) δ -114.10 (m), -114.63 (m);

¹³C NMR (151 MHz, CDCl₃) δ 162.3 (d, J = 246.9 Hz), 161.7 (d, J = 247.0 Hz), 140.2 (d, J = 1.8 Hz), 134.1 (d, J = 3.7 Hz), 132.3 (d, J = 3.5 Hz), 130.8 (d, J = 7.8 Hz), 130.5 (d, J = 7.8 Hz), 125.9, 116.0 (d, J = 21.3 Hz), 115.0 (d, J = 21.3 Hz), 68.3.

HRMS: (ESI) calcd for $C_{15}H_{11}F_2^+$ [M-H₂O+H]⁺ 229.0823; found 229.0816.

(E)-2,3-bis(4-methoxyphenyl)prop-2-en-1-ol (2w)

Chemical Formula: C₁₇H₁₈O₃ Exact Mass: 270.1256

2w was prepared according to general procedure 2.1 using 1w (47.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2w as colorless oil (34.0 mg, 63% yield).

The NMR data matched those reported in the literature.⁹ ¹H NMR (600 MHz, CDCl₃) δ 7.18 - 7.15 (m, 2H), 6.98 - 6.95 (m, 2H), 6.89 - 6.86 (m, 2H), 6.69 - 6.66 (m, 2H), 6.58 (s, 1H), 4.42 (d, J = 1.2 Hz, 2H), 3.82 (s, 3H), 3.74 (s, 3H), 1.7 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 158.9, 158.3, 139.0, 130.7, 130.4, 129.9, 129.2, 125.92, 125.90, 114.2, 68.8, 55.2, 55.1.

(E)-2,3-di(furan-3-yl)prop-2-en-1-ol (2x)

Chemical Formula: C₁₁H₁₀O₃ Exact Mass: 190.0630

2x was prepared according to general procedure 2.1 using 1x (31.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2x as colorless oil (20.1 mg, 53% yield).

¹H NMR (600 MHz, (CD₃)₂SO) δ 7.75 - 7.63 (m, 2H), 7.63 - 7.56 (m, 1H), 7.54 - 7.48 (m, 1H), 6.48 - 6.42 (m, 1H), 6.40 - 6.36 (m, 1H), 6.17 - 6.15 (m, 1H), 5.15 (bs, 1H), 4.10 (d, J = 2.4 Hz, 2H);

¹³C NMR (151 MHz, (CD₃)₂SO) δ 143.6, 143.5, 142.1, 140.8, 133.1, 122.7, 122.6, 115.5, 111.5, 110.5, 65.8;

HRMS: (ESI) calcd for C₁₁H₉O₂⁺[M-H₂O+H]⁺ 173.0597; found 173.0593.

(E)-2,3-di(thiophen-3-yl)prop-2-en-1-ol (2y)

Chemical Formula: C₁₁H₁₀OS₂ Exact Mass: 222.0173

2y was prepared according to general procedure 2.1 using 1y (38 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain 2y as colorless oil (22.2 mg, 50% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.36 - 7.32 (m, 1H), 7.21 - 7.20 (m, 1H), 7.11 - 7.08 (m, 1H), 6.99 - 6.93 (m, 2H), 6.69 (s, 1H), 6.66 - 6.63 (m, 1H), 4.40 (d, J = 1.4 Hz, 2H), 1.75 (bs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 138.7, 137.9, 135.2, 128.2, 127.9, 125.9, 124.8, 124.0, 123.1, 121.8, 68.3;

HRMS: (ESI) calcd for $C_{11}H_{10}OS_2 Na^+[M+Na]^+ 245.0065$; found 245.0061.

(E)-2-propylhex-2-en-1-ol (2z)

Chemical Formula: C₉H₁₈O Exact Mass: 142.1358

2z was prepared according to general procedure 2.1 using 1z (33.0 mg, 0.3 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain 2z as colorless oil (37.1 mg, 87% yield).

The NMR data matched those reported in the literature.¹⁰ ¹H NMR (400 MHz, CDCl₃) δ 5.41 (t, J = 7.3 Hz, 1H), 4.02 (d, J = 1.1 Hz, 2H), 2.08 - 1.99 (m, 4H), 1.45 - 1.33 (m, 5H), 0.90 (t, J = 7.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃) δ 139.0, 127.1, 67.2, 30.0, 29.5, 22.9, 21.7, 14.2, 13.9.

(E)-cyclododec-1-en-1-ylmethanol (2aa)

Chemical Formula: C₁₃H₂₄O Exact Mass: 196.1827

2aa was prepared according to general procedure 2.1 using **1aa** (32.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2aa** as colorless oil (21.2 mg, 54% yield).

The NMR data matched those reported in the literature.¹¹ ¹H NMR (400 MHz, CDCl₃) δ 5.42 (t, J = 7.8 Hz, 1H), 4.05 (s, 2H), 2.20 (t, J = 7.0 Hz, 2H), 2.10 (q, J = 7.2 Hz, 2H), 1.56 - 1.50 (m, 2H), 1.47 - 1.42 (m, 2H), 1.40 - 1.32 (m, 9H), 1.28 - 1.22 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 138.9, 127.9, 66.8, 26.9, 25.1, 24.9, 24.7, 24.5, 24.2, 24.1, 23.9, 22.4, 22.3.

(Z)-2-((benzyloxy)methyl)but-2-en-1-ol (2ab)

Chemical Formula: C₁₂H₁₆O₂ Exact Mass: 192.1150

2ab was prepared according to general procedure 2.1 using **1ab** (32.0 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2ab** as colorless oil (18.8 mg, 49% yield).

The NMR data matched those reported in the literature. ¹² ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.29 (m, 5H), 5.73 (q, J = 7.0 Hz, 1H), 4.53 (s, 2H), 4.19 (s, 2H), 4.15 (s, 2H), 2.18 (bs, 1H), 1.67 (d, J = 6.9 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 137.9, 135.7, 128.4, 127.76, 127.75, 126.3, 72.6, 67.1, 66.7, 13.2.

(Z)-2-((benzyloxy)methyl)hex-2-en-1-ol (2ac)

Chemical Formula: C₁₄H₂₀O₂ Exact Mass: 220.1463

2ac was prepared according to general procedure 2.1 using **1ac** (37.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2ac** as colorless oil (25.1 mg, 57% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.33 (m, 4H), 7.32 - 7.28 (m, 1H), 5.64 (tt, J = 7.5, 1.1 Hz, 1H), 4.52 (s, 2H), 4.16 (d, J = 6.2 Hz, 4H), 2.23 (bs, 1H), 2.03 (q, J = 7.5 Hz, 2H), 1.39 (q, J = 7.4 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 137.9, 134.9, 131.9, 128.4, 127.74, 127.72, 72.5, 67.1, 67.0, 29.5, 22.7, 13.7;

HRMS: (ESI) calcd for $C_{14}H_{21}O_2^+[M+H]^+221.1536$; found 221.1532.

(E)-2-((dibenzylamino)methyl)but-2-en-1-ol (2ad)

Chemical Formula: C₁₉H₂₃NO Exact Mass: 281.1780

2ad was prepared according to general procedure 2.1 using **1ad** (49.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2ad** as colorless oil (28.1 mg, 50% yield).

The NMR data matched those reported in the literature.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.35 - 7.32 (m, 8H), 7.29 - 7.27 (m, 1H), 7.26 - 7.24 (m, 1H), 5.72 (q, J = 6.9 Hz, 1H), 4.62 (bs, 1H), 4.06 (s, 2H), 3.55 (s, 4H), 3.17 (s, 2H), 1.69 (d, J = 6.8 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 138.4, 135.2, 129.1, 128.5, 127.3, 125.9, 69.6, 58.5, 52.5, 13.1.

(E)-2-(2-(benzyloxy)ethyl)pent-2-en-1-ol (2ae)

S26

Chemical Formula: C₁₄H₂₀O₂ Exact Mass: 220.1463

2ae was prepared according to general procedure 2.1 using **1ae** (49.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2ae** as colorless oil (26.9 mg, 61% yield, 1/1 r.r).

¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.27 (m, 5H), 5.54 - 5.37 (m, 1H), 4.57 - 4.51 (m, 2H), 4.07 - 3.93 (m, 2H), 3.58 - 3.48 (m, 2H), 2.47 - 2.35 (m, 2H), 2.16 - 2.01 (m, 2H), 1.84 - 1.45 (m, 1H), 1.02 - 0.94 (m, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 142.6, 138.3, 137.6, 135.7, 131.7, 128.4, 128.3, 127.73, 127.70, 127.6, 127.5, 121.7, 73.1, 72.9, 69.9, 69.5, 68.4, 66.5, 29.3, 27.9, 21.1, 20.9, 14.1, 13.2; HRMS: (ESI) calcd for $C_{14}H_{21}O_{2}$ ⁺[M+H]⁺ 221.1536; found 221.1532.

(E)-2-benzylidenebut-3-en-1-ol (2af)

Chemical Formula: C₁₁H₁₂O Exact Mass: 160.0888

2af was prepared according to general procedure 2.1 using **1af** (25.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **2af** as colorless oil (13.5 mg, 42% yield, 10/1 r.r).

The NMR data matched those reported in the literature. ¹² ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.33 (m, 2H), 7.31 - 7.26 (m, 3H), 6.84 - 6.75 (m, 1H), 6.75 (s, 1H), 5.54 - 5.44 (m, 1H), 5.28 - 5.22 (m, 1H), 4.49 (s, 2H), 1.62 (bs, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 137.3, 136.6, 132.5, 129.6, 129.4, 128.1, 127.2, 115.8, 64.5.

 $\label{eq:continuous} \ensuremath{(E)-\text{N-}(2-\text{(hydroxymethyl)-3-phenylallyl)-4-methyl-N-}(2-\text{methylallyl)} benzenesulfonamide} \ensuremath{(2\text{ag})}$

Chemical Formula: C₂₁H₂₅NO₃S Exact Mass: 371.1555

2ag was prepared according to general procedure 2.1 using 1ag (25.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 4/1) to obtain 2ag as colorless oil (32.0 mg, 43% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.64 - 7.60 (m, 2H), 7.31 - 7.25 (m, 2H), 7.27 - 7.20 (m, 3H), 7.09 - 7.05 (m, 2H), 6.74 (s, 1H), 4.56 - 4.52 (m, 1H), 4.39 - 4.35 (m, 1H), 4.32 (d, J = 1.1 Hz, 2H), 4.03 - 4.00 (m, 2H), 3.54 (s, 2H), 3.06 (bs, 1H), 2.41 (s, 3H), 1.43 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 143.5, 139.2, 136.8, 136.2, 136.1, 131.3, 129.7, 128.8, 128.1, 127.2, 127.0, 114.7, 64.9, 54.6, 44.7, 21.5, 19.9;

HRMS: (ESI) calcd for $C_{21}H_{24}NO_2S^+$ [M-H₂O+H]⁺ 354.1522; found 354.1523.

(E)-3-benzylidene-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7a)

Chemical Formula: C₁₆H₁₈O₃ Exact Mass: 258.1256

7a was prepared according to general procedure 2.2 using **6a** (45.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7a** as white solid (37.2 mg, 63% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.38 - 7.33 (m, 4H), 7.25 - 7.21 (m, 1H), 6.35 (s, 1H), 4.56 (dt, J = 12.3, 1.6 Hz, 1H), 3.91 (dd, J = 12.2, 2.0 Hz, 1H), 3.19 (dd, J = 14.6, 2.0 Hz, 1H), 2.69 (bs, 1H), 2.46 - 2.38 (m, 2H), 2.24 - 2.07 (m, 3H), 1.05 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.4, 136.3, 132.6, 128.8, 128.2, 126.8, 125.6, 103.1, 66.6, 53.0, 35.1, 32.9, 29.8, 20.7;

HRMS: (ESI) calcd for $C_{16}H_{19}O_3^+[M+H]^+$ 259.1329; found 259.1337.

(E)-7a-hydroxy-4a-methyl-3-(4-methylbenzylidene)hexahydrocyclopenta[b]pyran-5(2H)-one (7b)

Chemical Formula: C₁₇H₂₀O₃ Exact Mass: 272.1412

7b was prepared according to general procedure 2.2 using **6b** (48 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7b** as colorless oil (32.7 mg, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.26 - 7.22 (m, 2H), 7.19 - 7.13 (m, 2H), 6.32 (s, 1H), 4.55 (dt, J = 12.2, 1.6 Hz, 1H), 3.89 (dd, J = 12.2, 2.0 Hz, 1H), 3.19 (dd, J = 14.6, 2.0 Hz, 1H), 2.90 (bs, 1H), 2.46 - 2.39 (m, 2H), 2.35 (s, 3H), 2.20 - 2.11 (m, 3H), 1.04 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.5, 136.4, 133.4, 131.9, 128.9, 128.7, 125.5, 103.1, 66.6, 53.0, 35.1, 32.8, 29.8, 21.2, 20.6;

HRMS: (ESI) calcd for $C_{17}H_{21}O_3^+[M+H]^+$ 273.1485; found 273.1481.

(E)-7a-hydroxy-3-(4-methoxybenzylidene)-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7c)

Chemical Formula: C₁₇H₂₀O₄ Exact Mass: 288.1362

7c was prepared according to general procedure 2.2 using **6c** (51.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7c** as colorless oil (45.0 mg, 78% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.26 (m, 2H), 6.94 - 6.85 (m, 2H), 6.29 (s, 1H), 4.61 - 4.50 (m, 1H), 3.97 - 3.83 (m, 1H), 3.81 (s, 3H), 3.28 - 3.06 (m, 1H), 2.74 (bs, 1H), 2.53 - 2.31 (m, 2H), 2.24 - 2.08 (m, 3H), 1.05 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.6, 158.4, 131.2, 130.0, 128.9, 125.1, 113.7, 103.1, 66.7, 55.2, 53.0, 35.1, 32.9, 29.7, 20.7;

HRMS: (ESI) calcd for $C_{17}H_{20}O_4Na^+[M+Na]^+$ 311.1254; found 311.1253.

ethyl (*E*)-4-((7a-hydroxy-4a-methyl-5-oxohexahydrocyclopenta[*b*]pyran-3(2*H*)-ylidene)methyl)benzoate (7d)

Chemical Formula: C₁₉H₂₂O₅ Exact Mass: 330.1467

7d was prepared according to general procedure 2.2 using **6d** (59.6 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7d** as colorless oil (37.0 mg, 56% yield).

¹H NMR (600 MHz, CDCl₃) δ 8.05 - 8.01 (m, 2H), 7.44 - 7.40 (m, 2H), 6.37 (s, 1H), 4.57 (dt, J = 12.2, 1.6 Hz, 1H), 4.38 (q, J = 7.2 Hz, 2H), 3.92 - 3.89 (m, 1H), 3.15 (dd, J = 14.6, 2.0 Hz, 1H), 2.46 (bs, 1H), 2.46 - 2.37 (m, 2H), 2.21 - 2.11 (m, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.05 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.2, 166.6, 141.0, 134.7, 129.6, 128.78, 128.77, 124.9, 103.1, 66.5, 60.9, 53.1, 35.1, 32.9, 29.8, 20.7, 14.4;

HRMS: (ESI) calcd for $C_{19}H_{23}O_5^+[M+H]^+$ 331.1540; found 331.1541.

(E)-3-(4-chlorobenzylidene)-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7e)

Chemical Formula: C₁₆H₁₇ClO₃ Exact Mass: 292.0866 7e was prepared according to general procedure 2.2 using 6e (52 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 7e as colorless oil (45.0 mg, 77% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.24 (m, 4H), 6.28 (s, 1H), 4.54 (d, J = 12.1 Hz, 1H), 3.87 (dd, J = 12.2, 2.1 Hz, 1H), 3.11 (dd, J = 14.5, 2.1 Hz, 1H), 2.87 (bs, 1H), 2.51 - 2.37 (m, 2H), 2.23 - 2.01 (m, 3H), 1.04 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.5, 134.7, 133.4, 132.5, 130.1, 128.4, 124.4, 103.0, 66.4, 53.1, 35.1, 32.8, 29.6, 20.6;

HRMS: (ESI) calcd for $C_{16}H_{17}ClO_3Na^+[M+Na]^+$ 315.0758; found 315.0763.

(E)-3-(4-fluorobenzylidene)-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7f)

Chemical Formula: C₁₆H₁₇FO₃ Exact Mass: 276.1162

7f was prepared according to general procedure 2.2 using 6f (48.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 7f as colorless oil (33.2 mg, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.29 (m, 2H), 7.09 - 7.00 (m, 2H), 6.30 (s, 1H), 4.55 (dt, J = 12.2, 1.5 Hz, 1H), 3.88 (dd, J = 12.2, 2.0 Hz, 1H), 3.12 (dd, J = 14.5, 1.9 Hz, 1H), 2.70 (bs, 1H), 2.53 - 2.34 (m, 2H), 2.24 - 2.06 (m, 3H), 1.05 (s, 3H);

¹⁹F NMR (376 MHz, CDCl₃) δ - 115.27 (m);

¹³C NMR (151 MHz, CDCl₃) δ 216.5, 161.7 (d, J = 245.9 Hz), 132.7, 132.3 (d, J = 3.2 Hz), 130.4 (d, J = 8.1 Hz), 124.5, 115.1 (d, J = 21.2 Hz), 103.1, 66.5, 53.1, 35.1, 32.8, 29.6, 20.7; HRMS: (ESI) calcd for C₁₆H₁₇FO₃Na⁺[M+Na]⁺ 299.1054; found 299.1054.

(E)-7a-hydroxy-4a-methyl-3-(4-(trifluoromethyl)benzylidene)hexahydrocyclopenta [b]pyran-5(2H)-one (7g)

Chemical Formula: C₁₇H₁₇F₃O₃ Exact Mass: 326.1130

7g was prepared according to general procedure 2.2 using **6g** (58.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7g** as colorless oil (35.2 mg, 54% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.63 - 7.59 (m, 2H), 7.48 - 7.45 (m, 2H), 6.35 (s, 1H), 4.57 (dt, J = 12.3, 1.5 Hz, 1H), 3.90 (dd, J = 12.3, 2.0 Hz, 1H), 3.12 (dd, J = 14.6, 2.0 Hz, 1H), 2.63 (bs, 1H), 2.48 - 2.40 (m, 2H), 2.21 - 2.12 (m, 3H), 1.05 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.4, 140.0, 134.9, 129.1, 128.8 (q, J = 31.7 Hz), 125.2 (q, J = 3.8 Hz), 124.3 (q, J = 273.3 Hz), 124.4, 103.1, 66.4, 53.2, 35.1, 32.8, 29.7, 20.7; ¹⁹F NMR (376 MHz, CDCl₃) δ - 62.32;

HRMS: (ESI) calcd for $C_{17}H_{18}F_3O_3^+$ [M+H]⁺ 327.1203; found 327.1213.

(E)-7a-hydroxy-4a-methyl-3-(3-methylbenzylidene)hexahydrocyclopenta[b]pyran-5(2H)-one (7h)

Chemical Formula: C₁₇H₂₀O₃ Exact Mass: 272.1412

7h was prepared according to general procedure 2.2 using **6h** (48.1 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7h** as colorless oil (40.3 mg, 74% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.29 - 7.20 (m, 1H), 7.21 - 7.11 (m, 2H), 7.09 - 7.03 (m, 1H), 6.32 (s, 1H), 4.56 (dt, J = 12.3, 1.6 Hz, 1H), 3.89 (dd, J = 12.2, 2.0 Hz, 1H), 3.19 (dd, J = 14.7, 2.0 Hz, 1H), 2.86 (bs, 1H), 2.48 - 2.38 (m, 2H), 2.37 (s, 3H), 2.22 - 2.09 (m, 3H), 1.05 (s, 3H);

S32

¹³C NMR (151 MHz, CDCl₃) δ 216.5, 137.7, 136.2, 132.4, 129.5, 128.1, 127.6, 125.8, 125.7, 103.1, 66.6, 53.0, 35.1, 32.8, 29.8, 21.4, 20.6;

HRMS: (ESI) calcd for C₁₇H₂₀O₃Na⁺[M+Na]⁺ 295.1305; found 295.1306.

(E)-7a-hydroxy-4a-methyl-3-(3-(trifluoromethoxy)benzylidene)hexahydrocyclopenta[b]pyran-5(2H)-one (7i)

Chemical Formula: C₁₇H₁₇F₃O₄ Exact Mass: 342.1079

7i was prepared according to general procedure 2.2 using 6i (62 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 7i as colorless oil (41.1 mg, 60% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.40 - 7.35 (m, 1H), 7.32 - 7.30 (m, 1H), 7.23 (s, 1H), 7.12 - 7.08 (m, 1H), 6.31 (s, 1H), 4.56 (dt, J = 12.3, 1.5 Hz, 1H), 3.89 (dd, J = 12.4, 2.1 Hz, 1H), 3.12 (dd, J = 14.6, 2.1 Hz, 1H), 2.59 (bs, 1H), 2.48 - 2.40 (m, 2H), 2.22 - 2.11 (m, 3H), 1.06 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 216.3, 149.2, 138.3, 134.3, 129.6, 127.2, 124.2, 121.3, 120.5 (q, J = 257.3 Hz), 119.2, 103.0, 66.4, 53.1, 35.0, 32.8, 29.6, 20.6;

¹⁹F NMR (376 MHz, CDCl₃) δ - 57.58;

HRMS: (ESI) calcd for $C_{17}H_{17}F_3O_4Na^+$ [M+Na]⁺ 365.0971; found 365.0985.

(E)-7a-hydroxy-4a-methyl-3-(2-methylbenzylidene)hexahydrocyclopenta[b]pyran-5(2H)-one (7j)

Chemical Formula: C₁₇H₂₀O₃ Exact Mass: 272.1412

7j was prepared according to general procedure 2.2 using 6j (48.1 mg, 0.2 mmol) and was

purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 7j as colorless oil (30.5 mg, 56% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.29 - 7.24 (m, 1H), 7.23 - 7.14 (m, 3H), 6.32 (s, 1H), 4.57 (d, J = 12.2 Hz, 1H), 3.95 (d, J = 12.2 Hz, 1H), 2.89 (d, J = 14.5 Hz, 1H), 2.61 (bs, 1H), 2.47 - 2.38 (m, 2H), 2.19 - 2.05 (m, 6H), 0.99 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.0, 136.5, 135.4, 132.6, 129.7, 129.1, 127.2, 125.5, 124.9, 103.1, 66.3, 53.0, 35.1, 32.8, 29.8, 20.5, 19.8;

HRMS: (ESI) calcd for $C_{17}H_{20}O_3Na^+$ [M+Na]+295.1305; found 295.1302.

(E)-7a-hydroxy-4a-methyl-3-(naphthalen-2-ylmethylene)hexahydrocyclopenta[b]pyran-5(2H)-one (7k)

Chemical Formula: C₂₀H₂₀O₃ Exact Mass: 308.1412

7k was prepared according to general procedure 2.2 using **6k** (55.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7k** as colorless oil (37.6 mg, 61% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.91 - 7.78 (m, 4H), 7.54 - 7.41 (m, 3H), 6.50 (s, 1H), 4.61 (dt, J = 12.1, 1.6 Hz, 1H), 3.96 (dd, J = 12.3, 2.1 Hz, 1H), 3.28 (dd, J = 14.5, 2.1 Hz, 1H), 2.88 (bs, 1H), 2.50 - 2.40 (m, 2H), 2.29 - 2.09 (m, 3H), 1.06 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.5, 133.8, 133.3, 133.1, 132.3, 128.0, 127.7, 127.64, 127.57, 127.1, 125.9, 125.72, 125.67, 103.1, 66.6, 53.1, 35.1, 32.8, 29.8, 20.7;

HRMS: (ESI) calcd for $C_{20}H_{20}O_3Na^+[M+Na]^+$ 331.1305; found 331.1302.

(E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7l)

Chemical Formula: C₁₇H₁₈O₅ Exact Mass: 302.1154

71 was prepared according to general procedure 2.2 using 61 (54 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 71 as colorless oil (46.0 mg, 76% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.88 (s, 1H), 6.83 - 6.76 (m, 2H), 6.25 (s, 1H), 5.98 - 5.93 (m, 2H), 4.53 (dd, J = 12.2, 1.6 Hz, 1H), 3.86 (dd, J = 12.3, 2.0 Hz, 1H), 3.17 (dd, J = 14.5, 2.0 Hz, 1H), 2.68 (bs, 1H), 2.47 - 2.38 (m, 2H), 2.21 - 2.07 (m, 3H), 1.05 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.5, 147.4, 146.3, 131.7, 130.3, 125.3, 122.6, 109.1, 108.2, 103.1, 100.9, 66.6, 53.0, 35.1, 32.8, 29.7, 20.6;

HRMS: (ESI) calcd for C₁₇H₁₈O₅Na⁺ [M+Na]⁺ 325.1046; found 325.1057.

(E)-3-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methylene)-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7m)

Chemical Formula: C₁₈H₂₀O₅ Exact Mass: 316.1311

7m was prepared according to general procedure 2.2 using **6m** (56.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7m** as colorless oil (41.7 mg, 66% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.91 - 6.87 (m, 1H), 6.85 - 6.81 (m, 2H), 6.21 (s, 1H), 4.53 (dt, J = 12.3, 1.5 Hz, 1H), 4.25 (s, 4H), 3.85 (dd, J = 12.3, 1.9 Hz, 1H), 3.20 (dd, J = 14.6, 1.9 Hz, 1H), 3.04 (bs, 1H), 2.45 - 2.36 (m, 2H), 2.21 - 2.08 (m, 3H), 1.04 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.5, 143.1, 142.5, 131.6, 129.8, 125.0, 122.2, 117.6, 117.0, 103.1, 66.6, 64.4, 64.3, 52.9, 35.1, 32.8, 29.8, 20.6;

HRMS: (ESI) calcd for $C_{18}H_{20}O_5Na^+[M+Na]^+$ 339.1203; found 339.1193.

(E)-7a-hydroxy-4a-methyl-3-(thiophen-3-ylmethylene)hexahydrocyclopenta[b]pyran-5(2H)-one (7n)

Chemical Formula: C₁₄H₁₆O₃S Exact Mass: 264.0820

7n was prepared according to general procedure 2.2 using **6n** (46.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7n** as colorless oil (35.4 mg, 67% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.35 (m, 1H), 7.32 - 7.27 (m, 1H), 7.20 - 7.15 (m, 1H), 6.26 (s, 1H), 4.53 (dt, J = 12.2, 1.5 Hz, 1H), 3.86 (dd, J = 12.1, 2.1 Hz, 1H), 3.27 (dd, J = 14.5, 2.1 Hz, 1H), 2.83 (bs, 1H), 2.49 - 2.37 (m, 2H), 2.25 - 2.06 (m, 3H), 1.08 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 216.8, 137.1, 132.2, 128.5, 125.1, 123.3, 119.9, 103.1, 66.6,

HRMS: (ESI) calcd for C₁₄H₁₇O₃S⁺[M+H]⁺ 265.0893, found 265.0894.

(E)-3-(dibenzo[b,d]furan-2-ylmethylene)-7a-hydroxy-4a-

 $methyl hexahydrocyclopenta [\emph{b}] pyran-5(2\emph{H})-one~(7o)$

53.2, 35.1, 32.9, 30.2, 20.7;

Chemical Formula: C₂₂H₂₀O₄ Exact Mass: 348.1362

70 was prepared according to general procedure 2.2 using **60** (63.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **70** as colorless oil (42.0 mg, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.03 - 7.97 (m, 2H), 7.60 - 7.52 (m, 2H), 7.49 - 7.41 (m, 2H),

7.37 - 7.32 (m, 1H), 6.56 - 6.42 (m, 1H), 4.61 (dt, J = 12.2, 1.5 Hz, 1H), 3.95 (dd, J = 12.2, 2.0 Hz, 1H), 3.26 (dd, J = 14.5, 2.0 Hz, 1H), 2.61 (bs, 1H), 2.53 - 2.41 (m, 2H), 2.28 - 2.04 (m, 3H), 1.07 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.6, 156.5, 155.1, 132.4, 131.1, 128.1, 127.1, 125.6, 124.3, 124.2, 122.7, 120.9, 120.8, 111.6, 111.3, 103.2, 66.7, 53.1, 35.2, 32.9, 29.7, 20.7;

HRMS: (ESI) calcd for C₂₂H₂₁O₄⁺[M+H]⁺ 349.1434; found 349.1428.

(E)-3-(dibenzo[b,d]thiophen-2-ylmethylene)-7a-hydroxy-4a-methylhexahydro-cyclopenta[b]pyran-5(2H)-one (7p)

Chemical Formula: C₂₂H₂₀O₃S Exact Mass: 364.1133

7p was prepared according to general procedure 2.2 using **6p** (66.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7p** as colorless oil (54.6 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.33 - 8.28 (m, 2H), 7.87 - 7.81 (m, 2H), 7.49 - 7.44 (m, 2H), 7.43 - 7.39 (m, 1H), 6.53 (s, 1H), 4.62 (dt, J = 12.1, 1.5 Hz, 1H), 3.97 (dd, J = 12.3, 2.0 Hz, 1H), 3.31 (dd, J = 14.5, 2.1 Hz, 1H), 2.55 - 2.38 (m, 3H), 2.25 - 2.14 (m, 3H), 1.08 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 216.7, 139.7, 137.8, 135.74, 135.68, 132.9, 132.7, 127.5, 126.7, 125.5, 124.4, 122.7, 122.5, 121.95, 121.91, 103.2, 66.8, 53.2, 35.2, 33.0, 29.7, 20.8; HRMS: (ESI) calcd for $C_{22}H_{20}O_3SNa^+$ [M+Na]⁺ 387.1025; found 387.1020.

$(E)\hbox{-}7a\hbox{-}hydroxy\hbox{-}4a\hbox{-}methyl\hbox{-}3\hbox{-}((1\hbox{-}methyl\hbox{-}1H\hbox{-}indol\hbox{-}5\hbox{-}$

yl)methylene)hexahydrocyclopenta[b]pyran-5(2H)-one (7q)

Chemical Formula: C₁₉H₂₁NO₃ Exact Mass: 311.1521

7q was prepared according to general procedure 2.2 using 6q (55.8 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 7q as colorless oil (34.8 mg, 56% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.24 (d, J = 8.5 Hz, 1H), 7.04 (d, J = 3.1 Hz, 1H), 6.50 (d, J = 2.8 Hz, 2H), 4.60 (d, J = 12.2 Hz, 1H), 3.95 (d, J = 12.1 Hz, 1H), 3.84 - 3.45 (m, 3H), 3.29 (d, J = 14.5 Hz, 1H), 2.87 (bs, 1H), 2.51 - 2.38 (m, 2H), 2.28 - 1.96 (m, 3H), 1.05 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.6, 135.7, 130.4, 129.0, 128.4, 127.5, 126.8, 122.9, 121.1, 108.9, 103.2, 101.1, 66.8, 52.9, 35.1, 32.83, 32.82, 29.9, 20.6;

HRMS: (ESI) calcd for $C_{19}H_{22}NO_3^+[M+H]^+$ 312.1594, found 312.1594.

(E)-7a-hydroxy-3-((6-methoxypyridin-3-yl)methylene)-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7r)

Chemical Formula: C₁₆H₁₉NO₄ Exact Mass: 289.1314

7r was prepared according to general procedure 2.2 using **6r** (51.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7r** as colorless oil (40.5 mg, 70% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.71 - 7.60 (m, 1H), 6.79 - 6.71 (m, 1H), 6.21 (s, 1H), 4.55 (d, J = 12.2 Hz, 1H), 3.94 (s, 3H), 3.87 (dd, J = 12.3, 2.0 Hz, 1H), 3.20 (bs, 1H), 3.09 (d, J = 14.4 Hz, 1H), 2.45 - 2.35 (m, 2H), 2.22 - 2.07 (m, 3H), 1.04 (s, 3H);

S38

¹³C NMR (151 MHz, CDCl₃) δ 216.5, 162.8, 146.8, 139.2, 133.5, 125.4, 121.7, 110.4, 103.0, 66.3, 53.5, 53.1, 35.0, 32.8, 29.7, 20.6;

HRMS: (ESI) calcd for $C_{16}H_{20}NO_4^+$ [M+H]⁺ 290.1387; found 290.1397.

$(E)\mbox{-}7a\mbox{-}hydroxy-4a\mbox{-}methyl-3-(((8R,9S,13S,14S)\mbox{-}13\mbox{-}methyl-17\mbox{-}oxo-7,8,9,11,12,13,14,15,16,17\mbox{-}decahydro-6H\mbox{-}cyclopenta[a]phenanthren-3-yl)methylene)hexahydrocyclopenta[b]pyran-5(2H)\mbox{-}one (7s)$

Chemical Formula: C₂₈H₃₄O₄ Exact Mass: 434.2457

7s was prepared according to general procedure 2.2 using 6s (80.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 7s as colorless oil (56.5 mg, 65% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.29 - 7.26 (m, 1H), 7.19 - 7.13 (m, 1H), 7.09 - 7.04 (m, 1H), 6.28 (s, 1H), 4.56 (d, J = 12.2 Hz, 1H), 3.88 (d, J = 12.0 Hz, 1H), 3.20 (d, J = 14.6 Hz, 1H), 3.05 (s, 1H), 2.96 - 2.91 (m, 2H), 2.51 (dd, J = 19.1, 8.6 Hz, 1H), 2.45 - 2.40 (m, 3H), 2.33 - 2.28 (m, 1H), 2.20 - 2.11 (m, 4H), 2.07 - 1.96 (m, 3H), 1.65 - 1.59 (m, 2H), 1.56 - 1.45 (m, 4H), 1.05 (s, 3H), 0.92 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 221.2, 216.7, 216.6, 138.28, 138.27, 136.2, 133.8, 132.2, 132.1, 129.40, 129.38, 126.23, 126.17, 125.3, 125.2, 103.0, 66.5, 52.94, 52.92, 50.5, 48.0, 44.4, 44.3, 38.08, 38.06, 35.8, 35.1, 32.8, 31.5, 29.8, 29.35, 29.33, 26.5, 25.60, 25.58, 21.6, 20.7, 13.8; HRMS: (ESI) calcd for $C_{28}H_{35}O_4^+$ [M+H]⁺ 435.2530; found 435.2546.

(E)-3-benzylidene-4a-ethyl-7a-hydroxyhexahydrocyclopenta[b]pyran-5(2H)-one (7t)

Chemical Formula: C₁₇H₂₀O₃ Exact Mass: 272.1412

7t was prepared according to general procedure 2.2 using 6t (48 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 7t as colorless oil (28.3 mg, 52% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.33 (m, 4H), 7.26 - 7.21 (m, 1H), 6.35 (s, 1H), 4.55 (dt, J= 12.2, 1.6 Hz, 1H), 3.89 (dd, J= 12.3, 2.0 Hz, 1H), 3.32 (d, J= 15.1 Hz, 1H), 2.42 - 2.37 (m, 2H), 2.29 - 2.20 (m, 1H), 2.13 - 2.01 (m, 2H), 1.73 - 1.64 (m, 1H), 1.58 - 1.51 (m, 2H), 0.79 (t, J= 7.5 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 214.9, 136.4, 132.5, 128.8, 128.2, 126.7, 125.6, 103.3, 66.4, 56.2, 35.2, 33.1, 26.6, 26.4, 7.4;

HRMS: (ESI) calcd for $C_{17}H_{20}O_3Na^+$ [M+Na]+295.1305; found 295.1302.

(E)-4a-benzyl-3-benzylidene-7a-hydroxyhexahydrocyclopenta[b]pyran-5(2H)-one (7u)

Chemical Formula: C₂₂H₂₂O₃ Exact Mass: 334.1569

7u was prepared according to general procedure 2.2 using **6u** (60.4 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7u** as colorless oil (30.1 mg, 45% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.35 - 7.29 (m, 4H), 7.25 - 7.18 (m, 4H), 7.14 - 7.09 (m, 2H), 6.33 (s, 1H), 4.56 (dd, J= 12.1, 1.5 Hz, 1H), 3.88 (dd, J= 12.2, 2.0 Hz, 1H), 3.20 (dd, J= 14.6, 2.0 Hz, 1H), 2.94 (d, J= 13.5 Hz, 1H), 2.80 (d, J= 13.6 Hz, 1H), 2.72 (bs, 1H), 2.38 - 2.27 (m, 1H), 2.27 - 2.19 (m, 1H), 2.13 - 2.05 (m, 1H), 1.99 - 1.92 (m, 1H), 1.77 - 1.68 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 216.4, 136.2, 132.3, 130.4, 128.8, 128.2, 128.0, 126.9, 126.8,

125.5, 103.1, 66.2, 57.8, 41.6, 36.3, 33.3, 29.7;

HRMS: (ESI) calcd for $C_{22}H_{23}O_3^+$ [M+H]⁺ 335.1642; found 335.1643.

(E)-3-benzylidene-7a-hydroxy-4a-(3-phenylprop-2-yn-1-

yl)hexahydrocyclopenta[b]pyran-5(2H)-one (7v)

Chemical Formula: C₂₄H₂₂O₃ Exact Mass: 358.1569

7v was prepared according to general procedure 2.2 using **6v** (65.2 mg, 0.2 mmol) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **7v** as colorless oil (22.2 mg, 31% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.42 - 7.39 (m, 2H), 7.37 - 7.33 (m, 4H), 7.30 - 7.27 (m, 3H), 7.26 - 7.22 (m, 1H), 6.39 (s, 1H), 4.56 (dt, J = 12.3, 1.5 Hz, 1H), 3.93 (dd, J = 12.4, 2.0 Hz, 1H), 3.44 (dd, J = 14.6, 2.0 Hz, 1H), 2.95 (d, J = 2.8 Hz, 1H), 2.67 (d, J = 17.1 Hz, 1H), 2.58 (d, J = 17.1 Hz, 1H), 2.51 - 2.44 (m, 3H), 2.29 - 2.25 (m, 1H), 2.23 - 2.19 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 214.2, 136.2, 132.0, 131.5, 128.8, 128.25, 128.22, 128.1, 126.9, 126.0, 102.8, 84.7, 83.6, 66.3, 55.2, 35.9, 33.6, 28.6, 25.1;

HRMS: (ESI) calcd for $C_{24}H_{23}O_3^+$ [M+H]⁺ 359.1642; found 359.1636.

(E)-3-benzylidene-7a-hydroxy-4a-(2-methylallyl)hexahydrocyclopenta[b]pyran-5(2H)-one (7w)

Chemical Formula: C₁₉H₂₂O₃ Exact Mass: 298.1569

7w was prepared according to general procedure 2.2 using 6w (53.2 mg, 0.2 mmol) and was

purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain 7w as colorless oil (25.2 mg, 42% yield).

¹H NMR (600 MHz, CD₃OD) δ 7.41 - 7.35 (m, 2H), 7.34 - 7.29 (m, 2H), 7.23 - 7.18 (m, 1H), 6.31 (s, 1H), 4.80 (dd, J = 2.2, 1.4 Hz, 1H), 4.66 (dd, J = 2.2, 1.0 Hz, 1H), 4.55 (dt, J = 12.3, 1.6 Hz, 1H), 3.82 (dd, J = 12.4, 2.0 Hz, 1H), 3.26 (dd, J = 14.7, 2.0 Hz, 1H), 2.47 - 2.40 (m, 1H), 2.35 (s, 2H), 2.31 - 2.24 (m, 2H), 2.14 - 2.03 (m, 2H), 1.62 (dd, J = 1.5, 0.9 Hz, 3H); 1³C NMR (151 MHz, CD₃OD) δ 218.2, 142.6, 138.1, 134.8, 129.9, 129.1, 127.6, 125.9, 116.0, 103.7, 66.7, 57.7, 43.2, 36.1, 33.0, 28.9, 24.1;

HRMS: (ESI) calcd for $C_{19}H_{23}O_3^+$ [M+H]⁺ 299.1642; found 299.1656.

5. Crystallographic data for compound 7a

CCDC: 2058189

Table 1. Crystal data and structure refinement for 7a.

Identification codecu_190522c_0mEmpirical formulaC16H18O3Formula weight258.30Temperature296(2) KWavelength1.54178 ÅCrystal systemMonoclinicSpace groupP 1 21/c 1

Unit cell dimensions a = 8.8774(4) Å $a = 90^{\circ}$.

b = 11.4152(4) Å $b = 95.989(2)^{\circ}$.

c = 13.2381(5) Å $g = 90^{\circ}$.

Volume 1334.19(9) Å³

 \mathbf{Z}

Density (calculated) 1.286 Mg/m³

Absorption coefficient 0.708 mm⁻¹

F(000) 552

Crystal size $0.12 \times 0.12 \times 0.11 \text{ mm}^3$

Theta range for data collection 5.009 to 64.990°.

Index ranges -8<=h<=9, -13<=k<=13, -13<=l<=15

Reflections collected 7918

Independent reflections 2166 [R(int) = 0.0279]

Completeness to theta = 64.990° 95.5 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7533 and 0.6584

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2166 / 0 / 175

Goodness-of-fit on F² 1.037

Final R indices [I>2sigma(I)] R1 = 0.0329, wR2 = 0.0869 R indices (all data) R1 = 0.0372, wR2 = 0.0901

Extinction coefficient 0.0102(6)

Largest diff. peak and hole 0.193 and -0.126 e.Å-3

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **7a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	3779(2)	6875(1)	766(1)	42(1)
C(2)	2685(2)	7610(1)	1101(1)	45(1)
C(3)	2245(2)	8620(1)	579(1)	50(1)
C(4)	2869(2)	8917(1)	-296(1)	56(1)
C(5)	3955(2)	8196(2)	-644(1)	61(1)
C(6)	4411(2)	7194(1)	-115(1)	53(1)
C(7)	4316(2)	5823(1)	1344(1)	45(1)
C(8)	3481(2)	5042(1)	1779(1)	39(1)
C(9)	1785(1)	5004(1)	1663(1)	37(1)
C(10)	1163(2)	3757(1)	1539(1)	35(1)
C(11)	1973(2)	2893(1)	2308(1)	41(1)
C(12)	4207(2)	4107(1)	2464(1)	50(1)
C(13)	1572(2)	1684(1)	1876(1)	49(1)
C(14)	1625(2)	1848(1)	737(1)	45(1)
C(15)	1463(2)	3154(1)	556(1)	36(1)
C(16)	-562(2)	3765(1)	1570(1)	50(1)
O(1)	3561(1)	2971(1)	2251(1)	45(1)
O(2)	1585(2)	3131(1)	3281(1)	63(1)
O(3)	1551(1)	3637(1)	-249(1)	50(1)

Table 3. Bond lengths [Å] and angles [°] for 7a.

C(1)-C(2)	1.391(2)
C(1)- $C(6)$	1.395(2)
C(1)- $C(7)$	1.475(2)
C(2)-H(2A)	0.9300
C(2)-C(3)	1.380(2)
C(3)-H(3)	0.9300
C(3)-C(4)	1.377(2)
C(4)-H(4)	0.9300
C(4)-C(5)	1.383(2)
C(5)-H(5)	0.9300
C(5)-C(6)	1.380(2)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(7)-C(8)	1.3288(19)
C(8)-C(9)	1.4986(19)
C(8)-C(12)	1.5019(19)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(9)-C(10)	1.5284(17)
C(10)-C(11)	1.5405(18)
C(10)-C(15)	1.5206(17)
C(10)-C(16)	1.5357(19)
C(11)-C(13)	1.522(2)
C(11)-O(1)	1.4228(17)
C(11)-O(2)	1.3947(16)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(12)-O(1)	1.4339(17)
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
C(13)-C(14)	1.526(2)
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(14)-C(15)	1.5148(18)
C(15)-O(3)	1.2097(15)
C(16)-H(16A)	0.9600

C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
O(2)-H(2)	0.8200
C(2)-C(1)-C(6)	117.65(13)
C(2)- $C(1)$ - $C(7)$	121.65(13)
C(6)-C(1)-C(7)	120.64(13)
C(1)- $C(2)$ - $H(2A)$	119.5
C(3)- $C(2)$ - $C(1)$	121.02(14)
C(3)-C(2)-H(2A)	119.5
C(2)- $C(3)$ - $H(3)$	119.7
C(4)-C(3)-C(2)	120.61(15)
C(4)-C(3)-H(3)	119.7
C(3)-C(4)-H(4)	120.3
C(3)-C(4)-C(5)	119.33(15)
C(5)-C(4)-H(4)	120.3
C(4)-C(5)-H(5)	119.9
C(6)-C(5)-C(4)	120.13(15)
C(6)-C(5)-H(5)	119.9
C(1)-C(6)-H(6)	119.4
C(5)-C(6)-C(1)	121.26(15)
C(5)-C(6)-H(6)	119.4
C(1)-C(7)-H(7)	116.4
C(8)-C(7)-C(1)	127.29(13)
C(8)-C(7)-H(7)	116.4
C(7)-C(8)-C(9)	125.14(12)
C(7)-C(8)-C(12)	121.02(13)
C(9)-C(8)-C(12)	113.83(12)
C(8)-C(9)-H(9A)	109.0
C(8)-C(9)-H(9B)	109.0
C(8)-C(9)-C(10)	112.73(10)
H(9A)-C(9)-H(9B)	107.8
C(10)-C(9)-H(9A)	109.0
C(10)-C(9)-H(9B)	109.0
C(9)-C(10)-C(11)	112.77(11)
C(9)-C(10)-C(16)	110.01(10)
C(15)-C(10)-C(9)	114.80(10)
C(15)-C(10)-C(11)	99.42(10)
C(15)-C(10)-C(16)	106.81(11)

C(16)-C(10)-C(11)	112.57(11)
C(13)-C(11)-C(10)	104.97(11)
O(1)-C(11)-C(10)	108.76(10)
O(1)-C(11)-C(13)	103.36(11)
O(2)-C(11)-C(10)	110.03(11)
O(2)-C(11)-C(13)	116.94(12)
O(2)-C(11)-O(1)	112.22(11)
C(8)-C(12)-H(12A)	109.1
C(8)-C(12)-H(12B)	109.1
H(12A)-C(12)-H(12B)	107.8
O(1)-C(12)-C(8)	112.70(11)
O(1)-C(12)-H(12A)	109.1
O(1)-C(12)-H(12B)	109.1
C(11)-C(13)-H(13A)	111.1
C(11)-C(13)-H(13B)	111.1
C(11)-C(13)-C(14)	103.32(10)
H(13A)-C(13)-H(13B)	109.1
C(14)-C(13)-H(13A)	111.1
C(14)-C(13)-H(13B)	111.1
C(13)-C(14)-H(14A)	110.7
C(13)-C(14)-H(14B)	110.7
H(14A)-C(14)-H(14B)	108.8
C(15)-C(14)-C(13)	105.31(11)
C(15)-C(14)-H(14A)	110.7
C(15)-C(14)-H(14B)	110.7
C(14)-C(15)-C(10)	109.48(10)
O(3)-C(15)-C(10)	125.50(11)
O(3)-C(15)-C(14)	125.02(12)
C(10)-C(16)-H(16A)	109.5
C(10)-C(16)-H(16B)	109.5
C(10)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(11)-O(1)-C(12)	115.12(11)
C(11)-O(2)-H(2)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (${
m \AA}^2 {
m x} \ 10^3$) for ${
m 7a}$. The anisotropic displacement factor exponent takes the form: $-2p^2[\ h^2\ a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}\]$

	U ¹¹	U^{22}	U^{33}	U^{23}	U^{13}	U ¹²
 C(1)	40(1)	36(1)	50(1)	-4(1)	2(1)	-8(1)
C(2)	54(1)	37(1)	46(1)	-5(1)	10(1)	-6(1)
C(3)	56(1)	38(1)	58(1)	-5(1)	7(1)	1(1)
C(4)	65(1)	43(1)	60(1)	9(1)	5(1)	-2(1)
C(5)	66(1)	58(1)	60(1)	12(1)	19(1)	-6(1)
C(6)	46(1)	52(1)	65(1)	2(1)	17(1)	-2(1)
C(7)	38(1)	42(1)	54(1)	-4(1)	-1(1)	-2(1)
C(8)	45(1)	35(1)	37(1)	-6(1)	-2(1)	2(1)
C(9)	46(1)	31(1)	33(1)	-1(1)	7(1)	4(1)
C(10)	42(1)	33(1)	31(1)	3(1)	9(1)	2(1)
C(11)	58(1)	38(1)	29(1)	5(1)	10(1)	4(1)
C(12)	56(1)	42(1)	47(1)	-1(1)	-10(1)	2(1)
C(13)	63(1)	34(1)	51(1)	9(1)	10(1)	0(1)
C(14)	57(1)	34(1)	45(1)	-4(1)	3(1)	-1(1)
C(15)	39(1)	36(1)	32(1)	0(1)	2(1)	0(1)
C(16)	48(1)	44(1)	59(1)	6(1)	18(1)	0(1)
O(1)	54(1)	36(1)	42(1)	3(1)	-4(1)	8(1)
O(2)	105(1)	55(1)	32(1)	10(1)	22(1)	13(1)
O(3)	75(1)	46(1)	30(1)	2(1)	8(1)	3(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for 7a.

	X	у	z	U(eq)
H(2A)	2243	7418	1686	54
H(3)	1520	9105	820	60
H(4)	2564	9596	-648	67
H(5)	4378	8387	-1237	73
H(6)	5154	6723	-351	64
H(7)	5356	5693	1410	54
H(9A)	1407	5463	1074	44
H(9B)	1415	5359	2255	44
H(12A)	5282	4078	2389	60
H(12B)	4095	4311	3164	60
H(13A)	570	1447	2026	59
H(13B)	2304	1103	2147	59
H(14A)	2580	1567	532	54
H(14B)	804	1425	356	54
H(16A)	-1012	4328	1092	74
H(16B)	-790	3969	2241	74
H(16C)	-961	3001	1397	74
H(2)	1727	2544	3637	94

Table 6. Torsion angles [°] for **7a**.

C(1)-C(2)-C(3)-C(4)	0.8(2)
C(1)-C(7)-C(8)-C(9)	7.6(2)
C(1)-C(7)-C(8)-C(12)	-171.39(13)
C(2)-C(1)-C(6)-C(5)	-0.8(2)
C(2)-C(1)-C(7)-C(8)	43.6(2)
C(2)-C(3)-C(4)-C(5)	-0.5(2)
C(3)-C(4)-C(5)-C(6)	-0.4(3)
C(4)-C(5)-C(6)-C(1)	1.0(3)
C(6)-C(1)-C(2)-C(3)	-0.1(2)
C(6)-C(1)-C(7)-C(8)	-139.49(16)
C(7)-C(1)-C(2)-C(3)	176.90(12)
C(7)-C(1)-C(6)-C(5)	-177.83(14)
C(7)-C(8)-C(9)-C(10)	138.81(13)
C(7)-C(8)-C(12)-O(1)	-134.31(14)
C(8)-C(9)-C(10)-C(11)	45.77(14)
C(8)-C(9)-C(10)-C(15)	-67.16(14)
C(8)-C(9)-C(10)-C(16)	172.35(11)
C(8)-C(12)-O(1)-C(11)	-57.23(16)
C(9)-C(8)-C(12)-O(1)	46.62(17)
C(9)-C(10)-C(11)-C(13)	-163.01(11)
C(9)-C(10)-C(11)-O(1)	-52.93(14)
C(9)-C(10)-C(11)-O(2)	70.36(15)
C(9)-C(10)-C(15)-C(14)	148.79(12)
C(9)-C(10)-C(15)-O(3)	-31.56(18)
C(10)-C(11)-C(13)-C(14)	39.02(14)
C(10)-C(11)-O(1)-C(12)	59.42(13)
C(11)-C(10)-C(15)-C(14)	28.20(14)
C(11)-C(10)-C(15)-O(3)	-152.15(13)
C(11)-C(13)-C(14)-C(15)	-20.39(15)
C(12)-C(8)-C(9)-C(10)	-42.16(15)
C(13)-C(11)-O(1)-C(12)	170.59(10)
C(13)-C(14)-C(15)-C(10)	-5.40(16)
C(13)-C(14)-C(15)-O(3)	174.95(13)
C(15)-C(10)-C(11)-C(13)	-40.95(13)
C(15)-C(10)-C(11)-O(1)	69.14(12)
C(15)-C(10)-C(11)-O(2)	-167.57(11)

C(16)-C(10)-C(11)-C(13)	71.79(14)
C(16)-C(10)-C(11)-O(1)	-178.13(10)
C(16)-C(10)-C(11)-O(2)	-54.84(15)
C(16)-C(10)-C(15)-C(14)	-88.97(13)
C(16)-C(10)-C(15)-O(3)	90.69(15)
O(1)-C(11)-C(13)-C(14)	-74.91(12)
O(2)-C(11)-C(13)-C(14)	161.27(12)
O(2)-C(11)-O(1)-C(12)	-62.55(14)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 7a [Å and $^{\circ}$].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(2)O(3)#1	0.82	2.02	2.8055(14)	161.1

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2

6. Copies of the ¹H and ¹³C NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

2j

210 200 150 180 170 160 150 140 150 150 110 100 90 80 70 60 60

210 200 150 180 170 160 150 130 150 170 100 50 50 50 50 60 60 40 30 20 10 6 -10

2ae

7w

7. References

- [1] S. Ni, H. Wei, B. Li, F. Chen, Y. Liu, W. Chen, Y. Xu, X. Qiu, X. Li, Y. Lu, W. Liu, L. Hu, D. Lin, M. Wang, X. Zheng, F. Mao, J. Zhu, L. Lan and J. Li, J. Med. Chem. 2017, 60, 8145.
- [2] A. V. Malkov, L. Czemerys and D. A. Malyshev, J. Org. Chem. 2009, 74, 3350.
- [3] R. Wang, Y. Tang, M. Xu, C. Meng and F. Li, J. Org. Chem. 2018, 83, 2274.
- [4] P. V. Ramachandran, T. E. Burghardt and M. V. R. Reddy, *Tetrahedron Let.* **2005**, 46, 2121.
- [5] J. Deng, E. Feng, S. Ma, Y. Zhang, X. Liu, H. Li, H. Huang, J. Zhu, W. Zhu, X. Shen, L. Miao, H. Liu, H. Jiang and J. Li, *J. Med. Chem.* **2011**, *54*, 4508.
- [6] W. Lölsberg, S. Y. Hans and G. Schmalz, Adv. Synth. Catal. 2010, 352, 2023.
- [7] M. H. Babu, G. R. Kumar, R. Kantc and M. S. Reddy, *Chem. Commun.* **2017**, *53*, 3894.
- [8] T. Fujihara, T. H. Xu, K. Semba, J. Terao and Y. Tsuji, *Angew. Chem. Int. Ed.* **2011**, 50, 523.
- [9] F. Habib and A. G. B. Reza, Chem. Soc. Jpn. 1995, 68, 2595-2602.
- [10] M. R. Unroe and B. A. Reinhardt, Synthesis 1987, 11, 981.
- [11] M. Kitamura, Y. Hirokawa and N. Maezaki, Chem. Eur. J. 2009, 15, 9911.
- [12] B. N. Hemric, A. W. Chen and Q. Wang, ACS Catal. 2019, 9, 10070.