Table of Contents

1. General information S2
2. General procedure S3
3. Additional experiments S4
4. Characterization data of products S12
5. Crystallographic data for compound 7a S43
6. Copies of the ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S54
7. References S116

1. General information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were recorded with Bruker ADVANCE III (400 MHz) or JNM-ECZ400S/L1 (400 $\mathrm{MHz})$ spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (b). ${ }^{19}$ F NMR spectra were recorded using CFCl_{3} as internal standard. Gas chromatography were determined with a SHIMADZU Nexis GC 2030 gas chromatography instrument with a FID detector. High-resolution mass spectra (HRMS) were recorded on Thermo Fisher Orbitrap Elite mass spectrometer. The photoreaction instrument (WPTEC-1020L) was purchased from WATTCAS, China.

Unless otherwise stated, starting materials were purchased from commercial suppliers (Energy Chemical, Alfa, Aldrich and so on). All reactions dealing with air- or moisture-sensitive compounds were performed in the argon-filled glove box or by standard Schlenk techniques in oven-dried reaction vessels under argon atmosphere. Solvents were purchased in HPLC quality, degassed by purging thoroughly with argon and dried over activated molecular sieves of appropriate size. More sensitive compounds were stored in a desiccator or in a glove-box if required. Reactions were monitored by thin layer chromatography (TLC) using glass 0.25 mm silica gel plates. Compounds were visualized by UV-light at 254 nm and by dipping the plates in an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (200-400 mesh).

2. General procedures

2.1

A mixture of $\mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{~mol} \%), \mathbf{L 4}(10 \mathrm{~mol} \%)$, methyl methacrylate (0.2 mmol), ${ }^{t} \mathrm{BuOK}(12 \mathrm{~mol} \%)$, dry toluene $(1 \mathrm{~mL})$ and methanol (3 mL) were stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkyne substrate $1(0.2 \mathrm{mmol})$, the reaction mixture was heated at $100^{\circ} \mathrm{C}$ until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:20~1:6 (v/v) to afford the allylic alcohol 2.

2.2

A mixture of $\mathrm{Ni}(\mathrm{COD})_{2}(15 \mathrm{~mol} \%)$, $\mathrm{IMes}(15 \mathrm{~mol} \%)$, methyl methacrylate $(0.2 \mathrm{mmol})$, LiF ($10 \mathrm{~mol} \%$), dry toluene (1.5 mL) and methanol $(0.5 \mathrm{~mL})$ was stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkynone substrate $6(0.2 \mathrm{mmol})$, the reaction mixture was heated at $40^{\circ} \mathrm{C}$ until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:8~1:2 (v/v) to afford the allylic alcohol 7.

3. Additional Experiments

3.1 Side Reactions

${ }^{\text {a }}$ Reactions conditions: $1 \mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{~mol} \%)$, ligand $(20 \mathrm{~mol} \%),{ }^{\mathrm{t}} \mathrm{BuOK}(12$ $\mathrm{mol} \%$), additive (1 equiv) in toluene $(1 \mathrm{~mL})$ and $\mathrm{MeOH}(3 \mathrm{~mL})$ in sealed tube at $100^{\circ} \mathrm{C}$.
${ }^{\text {b }}$ Determined by GC analysis using adamantane as the internal standard. ${ }^{\mathrm{c}}$ Isolated yield.

(Z)-4-(prop-1-en-1-yl)-1,1'-biphenyl (3)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14}$
Exact Mass: 194.1096
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.52-6.42(\mathrm{~m}, 1 \mathrm{H})$,
$5.90-5.79(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=7.19,1.83 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.9,139.1,136.7,129.4,129.2,128.8,127.2,127.03,126.98$, 126.8, 14.8 .

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 4 \mathrm{H})$, 7.55-7.51(m, 3H), 7.45-7.40(m, 4H), 7.36-7.29(m, 4H), $6.21(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{q}, J=7.01 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15(\mathrm{~d}, J=1.21 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=7.01 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 145.3,140.8,139.3,139.0,138.8,130.4,129.7,129.0,128.8$, $128.7,127.2,127.1,127.0,126.9,126.8,126.6,123.6,16.0,15.7$.

methyl (E)-5-([1,1'-biphenyl]-4-yl)-2,4-dimethylpent-4-enoate (8)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$
Exact Mass: 294.1620
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~s}$, $1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 176.9,140.8,138.8,137.1,136.2,129.2,128.7,127.1,126.9$, $126.8,126.7,51.6,45.1,38.1,17.7,16.7$.

3.2 Mechanistic study

Experimental procedure: A mixture of $\mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{~mol} \%, 5.4 \mathrm{mg}), \mathbf{L 4}(10 \mathrm{~mol} \%, 6.2 \mathrm{mg})$, methyl methacrylate ($0.2 \mathrm{mmol}, 20 \mathrm{mg}$), ${ }^{t} \mathrm{BuOK}(12 \mathrm{~mol} \%, 2.7 \mathrm{mg})$, dry toluene $(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OD}$ (3 mL) were stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkyne substrate $\mathbf{1 a}(0.2 \mathrm{mmol}, 38.4 \mathrm{mg})$, the reaction mixture was heated at 100 ${ }^{\circ} \mathrm{C}$ until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:20~1:8 (v/v) to afford the allylic alcohol $\mathbf{2 a}(27 \mathrm{mg}, 60 \%$ yield) with 0% deuterium incorporation.

Experimental procedure: A mixture of $\mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{~mol} \%, 5.4 \mathrm{mg}), \mathbf{L 4}(10 \mathrm{~mol} \%, 6.2 \mathrm{mg})$, methyl methacrylate ($0.2 \mathrm{mmol}, 20 \mathrm{mg}$), ${ }^{t} \mathrm{BuOK}(12 \mathrm{~mol} \%, 2.7 \mathrm{mg})$, dry toluene $(1 \mathrm{~mL})$ and $\mathrm{CD}_{3} \mathrm{OD}$ $(3 \mathrm{~mL})$ were stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkyne substrate $\mathbf{1 a}(0.2 \mathrm{mmol}, 38.4 \mathrm{mg})$, the reaction mixture was heated at 100 ${ }^{\circ} \mathrm{C}$ until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:20~1:8(v/v) to afford the allylic alcohol 2a-D (18.4 mg, 41% yield) with 99\% deuterium incorporation.

Experimental procedure: A mixture of $\mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{~mol} \%, 5.4 \mathrm{mg}), \mathbf{L 4}(10 \mathrm{~mol} \%, 6.2 \mathrm{mg})$, methyl methacrylate ($0.2 \mathrm{mmol}, 20 \mathrm{mg}$), ${ }^{t} \mathrm{BuOK}(12 \mathrm{~mol} \%, 2.7 \mathrm{mg})$, dry toluene $(1 \mathrm{~mL}), \mathrm{CD}_{3} \mathrm{OD}$ $(1.5 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}(1.5 \mathrm{~mL})$ were stirred in a sealed tube at room temperature for 30 min under argon. To the resulting solution was added alkyne substrate $\mathbf{1 a}(0.2 \mathrm{mmol}, 38.4 \mathrm{mg})$, the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 5 hours (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:20~1:8 (v/v) to afford the allylic alcohol 2a-D ($20.6 \mathrm{mg}, 46 \%$ yield $)$ with 14\% deuterium incorporation.

4. Characterization data of products

(E)-3-([1,1'-biphenyl]-4-yl)-2-methylprop-2-en-1-ol (2a)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}$
Exact Mass: 224.1201

2a was prepared according to general procedure 2.1 using $1 \mathbf{a}(38.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=8 / 1$) to obtain 2a as colorless oil ($26.9 \mathrm{mg}, 60 \%$ yield, $14 / 1 \mathrm{r} . \mathrm{r}$).

The NMR data matched those reported in the literature. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-$ $7.57(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H})$, 1.97 (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.7,139.1,137.8,136.5,129.3,128.7,127.2,126.9,126.8$, 124.6, 69.0, 15.4.

(E)-3-(4-fluorophenyl)-2-methylprop-2-en-1-ol (2b)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}$
Exact Mass: 166.0794
$\mathbf{2 b}$ was prepared according to general procedure 2.1 using $\mathbf{1 b}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain $\mathbf{2 b}$ as colorless oil (19.4 mg, 58\% yield, $25 / 1 \mathrm{r} . \mathrm{r}$).

The NMR data matched those reported in the literature. ${ }^{2}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.60(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.8(\mathrm{~m}) ;$
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 137.5,133.5(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 130.4(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}), 123.9,115.0(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 68.8,15.2$.
(E)-2-methyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-ol (2c)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}$
Exact Mass: 216.0762
2c was prepared according to general procedure 2.1 using $\mathbf{1 c}(36.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain $\mathbf{2 c}$ as colorless oil (18.7 mg, 43\% yield, 33/1 r.r).

The NMR data matched those reported in the literature. ${ }^{2}{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 1.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{bs}$, 1H);
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.41$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.2,139.9,129.0,128.4(\mathrm{q}, J=32.3 \mathrm{~Hz}), 125.1(\mathrm{q}, J=3.8$ $\mathrm{Hz}), 124.3(\mathrm{q}, J=271.8 \mathrm{~Hz}), 123.4,68.4,15.3$.

(E)-2-benzylideneheptan-1-ol (2d)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}$
Exact Mass: 204.1514

2d was prepared according to general procedure 2.1 using $1 \mathbf{d}(34.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain $\mathbf{2 d}$ as colorless oil (22.9 mg, 56\% yield, $13 / 1 \mathrm{r} . \mathrm{r}$).

The NMR data matched those reported in the literature. ${ }^{3}{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 2 \mathrm{H})$, $1.62(\mathrm{bs}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4,137.6,128.6,128.2,126.4,125.3,67.0,32.0,28.7,28.1$, 22.4, 14.0.
(E)-2-(4-chlorobenzylidene)heptan-1-ol (2e)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{CIO}$
Exact Mass: 238.1124

2e was prepared according to general procedure 2.1 using $\mathbf{1 e}(41.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=8 / 1$) to obtain $\mathbf{2 e}$ as colorless oil ($24.0 \mathrm{mg}, 50 \%$ yield, $25 / 1 \mathrm{r} . \mathrm{r}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{bs}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.90$ - 0.86 (m, 3H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 142.4,137.6,128.6,128.2,126.4,125.3,67.0,32.0,28.7,28.1$, 22.4, 14.0;

HRMS: (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}^{+}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$221.1092; found 221.1087.

(\boldsymbol{E})-2-(4-methoxybenzylidene)pent-4-en-1-ol (2f)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
Exact Mass: 204.1150
$\mathbf{2 f}$ was prepared according to general procedure 2.1 using $\mathbf{1 f}(\mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain $\mathbf{2 f}$ as colorless oil $(24.5 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.99-5.88(\mathrm{~m}$, $1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.05(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{bs}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4,137.3,135.7,129.7,129.5,126.6,116.2,113.6,67.1,55.2$, 33.0;

HRMS: (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}^{+}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$187.1117; found 187.1114.

(E)-3-(4-bromophenyl)prop-2-en-1-ol (2g)

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}$ Exact Mass: 211.9837
$\mathbf{2 g}$ was prepared according to general procedure 2.1 using $\mathbf{1 g}(50.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=8 / 1$) to obtain $\mathbf{2 g}$ as colorless oil $19.1 \mathrm{mg}, 45 \%$ yield).

The NMR data matched those reported in the literature. ${ }^{31} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dt}, J=15.9,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.5(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.6,131.7,129.8,129.3,128.0,121.4,63.5$.

(E)-2-((diethylamino)methyl)-3-phenylprop-2-en-1-ol (2h)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$
Exact Mass: 219.1623
$\mathbf{2 h}$ was prepared according to general procedure 2.1 using $\mathbf{1 h}(37.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=4 / 1, \mathrm{Et}_{3} \mathrm{~N} 1 \%$) to obtain $\mathbf{2 h}$ as colorless oil ($30.2 \mathrm{mg}, 69 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{bs}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 137.4,136.7,130.1,128.9,128.2,126.9,70.0,53.0,46.8,11.5 ;$ HRMS: (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 220.1696$; found 220.1689.

(E)-2-((dibenzylamino)methyl)-3-phenylprop-2-en-1-ol (2i)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}$
Exact Mass: 343.1936
$\mathbf{2 i}$ was prepared according to general procedure 2.1 using $\mathbf{1 i}(62.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $\mathbf{2 i}$ as colorless oil $41.2 \mathrm{mg}, 60 \%$ yield).

The NMR data matched those reported in the literature. ${ }^{4}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.61$ (bs, 1H), $4.28(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.1,137.9,136.8,130.2,129.2,129.0,128.5,128.2,127.4$, 127.0, 68.9, 58.5, 52.5.

(E)-3-phenyl-2-(piperidin-1-ylmethyl)prop-2-en-1-ol (2j)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$
Exact Mass: 231.1623
$\mathbf{2} \mathbf{j}$ was prepared according to general procedure $2.1 \mathbf{u s i n g} \mathbf{1} \mathbf{j}(40.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=4 / 1, \mathrm{Et}_{3} \mathrm{~N} 1 \%$) to obtain $\mathbf{2} \mathbf{j}$ as colorless oil ($25.0 \mathrm{mg}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{bs}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 4 \mathrm{H}), 1.58$ - $1.50(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.7,136.6,130.1,128.8,128.1,126.8,70.3,58.5,54.5,25.9$, 23.9;

HRMS: (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$232.1696; found 232.1689.
(E)-N-(2-(hydroxymethyl)-3-phenylallyl)-N,4-dimethylbenzenesulfonamide (2k)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ Exact Mass: 331.1242
$\mathbf{2 k}$ was prepared according to general procedure 2.1 using $\mathbf{1 k}(59.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=4 / 1)$ to obtain $\mathbf{2 k}$ as colorless oil ($20.5 \mathrm{mg}, 31 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{bs}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$, 3H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.6,136.3,135.9,134.1,130.9,129.8,128.7,128.3,127.2$, 127.1, 64.8, 46.9, 34.6, 21.5;

HRMS: (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 332.1315$; found 332.1296.

(E)-2-(2-(hydroxymethyl)-3-phenylallyl)isoindoline-1,3-dione (2l)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$
Exact Mass: 293.1052

21 was prepared according to general procedure 2.1 using $11(52.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3 / 1$) to obtain $2 \mathbf{l}$ as colorless oil (25.0 mg, 43\% yield, $13 / 1$ r.r).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.67 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,136.1,135.1,134.1,131.8,130.9,128.7,128.3,127.2$, 123.4, 65.7, 36.0;

HRMS: (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$294.1125; found 294.1126.

(E)-2-methyl-3-(naphthalen-2-yl)prop-2-en-1-ol (2m)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}$
Exact Mass: 198.1045
$\mathbf{2 m}$ was prepared according to general procedure 2.1 using $\mathbf{1 m}(33.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain $\mathbf{2 m}$ as colorless oil $24.6 \mathrm{mg}, 62 \%$ yield, $17 / 1 \mathrm{r} . \mathrm{r})$.

The NMR data matched those reported in the literature. ${ }^{3}{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-$ $7.79(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 6.75-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.99(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.1,135.0,133.3,132.1,127.8,127.6,127.55,127.47,127.3$, 126.0, 125.7, 125.0, 69.0, 15.4.

(E)-2-methyl-3-(1-methyl-1H-indol-5-yl)prop-2-en-1-ol (2n)

2n

2n'

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}$
Exact Mass: 201.1154
2n was prepared according to general procedure 2.1 using $1 \mathbf{n}(33.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain a $5: 1$ mixture of $\mathbf{2 n}$ and $\mathbf{2 n}$ ' as colorless oil ($25.3 \mathrm{mg}, 63 \%$ yield, $10 / 1 \mathrm{r} . \mathrm{r}$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.42-6.38(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=5.4$ Hz, 2H), 3.78 (s, 3H), 1.85 (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 135.8,135.1,129.9,128.5,128.0,124.3,122.6,120.2,109.3$, $100.4,67.1,32.5,15.4 ;$

HRMS: (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$202.1226; found 202.1221.

(E)-3-(dibenzo[b,d]thiophen-2-yl)-2-methylprop-2-en-1-ol (20)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OS}$
Exact Mass: 254.0765

2 o was prepared according to general procedure 2.1 using $10(44.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=6 / 1$) to obtain $\mathbf{2 o}$ as colorless oil $20.3 \mathrm{mg}, 40 \%$ yield, $14 / 1 \mathrm{r} . \mathrm{r})$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H})$, $1.99(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.8,137.7,137.5,135.5,135.4,134.0,127.8,126.7,124.9$, $124.3,122.9,122.4,121.6,121.5,69.0,15.4 ;$

HRMS: (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~S}^{+}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$237.0732; found 237.0725.

(E)-3-(dibenzo[b,d]furan-2-yl)-2-methylprop-2-en-1-ol (2p)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$
Exact Mass: 238.0994
$\mathbf{2 p}$ was prepared according to general procedure $2.1 \mathrm{using} \mathbf{1 p}(41.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $\mathbf{2 p}$ as colorless oil $23.8 \mathrm{mg}, 50 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.97(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.5,154.9,137.1,132.4,128.3,127.1,125.0,124.15,124.13$, $122.7,120.64,120.57,111.7,111.2,69.0,15.3$;

HRMS: (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}^{+}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 221.0961$; found 221.0956 .

6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (2q)

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2}$
Exact Mass: 380.2715
$\mathbf{2 q}$ was prepared according to general procedure 2.1 using $\mathbf{1 q}(69.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $\mathbf{2 q}$ as colorless oil (47.2 mg, 62\% yield, $13 / 1 \mathrm{r} . \mathrm{r}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 1 \mathrm{H})$, $6.45(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.69-$ $1.59(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 221.0,142.0,138.0,136.1,135.0,129.3,126.0,125.1,124.9$, $67.2,50.5,48.0,44.3,38.1,35.8,32.0,31.5,29.4,28.8,28.1,26.5,25.6,22.4,21.5,14.0,13.8 ;$ HRMS: (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 381.2788$; found 381.2786.

(E)-3-(3-aminophenyl)prop-2-en-1-ol (2r)

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$
Exact Mass: 149.0841
$\mathbf{2 r}$ was prepared according to general procedure 2.1 using $\mathbf{1 r}(23.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=1 / 2, \mathrm{Et}_{3} \mathrm{~N} 1 \%$) to obtain $2 \mathbf{r}$ as colorless oil ($15.0 \mathrm{mg}, 50 \%$ yield $)$.

The NMR data matched those reported in the literature. ${ }^{5}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15-$ $7.09(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.61-6.49(\mathrm{~m}, 2 \mathrm{H}), 6.36-6.27(\mathrm{~m}, 1 \mathrm{H})$,
$4.31(\mathrm{dd}, J=5.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{bs}, 2 \mathrm{H}), 1.25(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 146.5,137.7,131.3,129.5,128.3,117.1,114.7,113.0,63.8$.

(E)-3-(4-methoxyphenyl)prop-2-en-1-ol (2s)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
Exact Mass: 164.0837
2s was prepared according to general procedure 2.1 using $1 \mathrm{~s}(26.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain 2 s as colorless oil ($10.9 \mathrm{mg}, 33 \%$ yield).

The NMR data matched those reported in the literature. ${ }^{6}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{dt}, J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dt}, J=15.9,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,131.0,129.4,127.7,126.2,114.0,64.0,55.3$.

(E)-2,3-diphenylprop-2-en-1-ol (2t)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}$
Exact Mass: 210.1045
2t was prepared according to general procedure 2.1 using $1 \mathbf{t}(35.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain $\mathbf{2 t}$ as colorless oil ($25.2 \mathrm{mg}, 60 \%$ yield).

The NMR data matched those reported in the literature. ${ }^{7}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.47$ (s, 2H), 1.79 (bs, 1H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 141.4,138.5,136.4,129.2,128.8,128.7,127.9,127.5,126.8$, 126.4, 68.5.
(E)-2,3-bis(4-chlorophenyl)prop-2-en-1-ol (2u)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}$
Exact Mass: 278.0265
$\mathbf{2 u}$ was prepared according to general procedure $2.1 \mathrm{using} \mathbf{1 u}(49.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain $\mathbf{2 u}$ as colorless oil ($27.3 \mathrm{mg}, 49 \%$ yield).

The NMR data matched those reported in the literature. ${ }^{8}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.76 (bs, 1H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.9,136.5,134.6,133.7,132.7,130.4,130.1,129.1,128.3$, 125.9, 68.0.

(E)-2,3-bis(4-fluorophenyl)prop-2-en-1-ol (2v)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}$
Exact Mass: 246.0856
$\mathbf{2 v}$ was prepared according to general procedure 2.1 using $\mathbf{1 v}(42.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=8 / 1$) to obtain $\mathbf{2 v}$ as colorless oil ($27.6 \mathrm{mg}, 56 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H})$, 6.86-6.79 (m, 2H), $6.66(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.10(\mathrm{~m}),-114.63(\mathrm{~m}) ;$
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.3(\mathrm{~d}, J=246.9 \mathrm{~Hz}), 161.7(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 140.2(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}), 134.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=7.8$ $\mathrm{Hz}), 125.9,116.0(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 68.3$.

HRMS: (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{2}^{+}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 229.0823$; found 229.0816 .

(E)-2,3-bis(4-methoxyphenyl)prop-2-en-1-ol (2w)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
Exact Mass: 270.1256
$\mathbf{2 w}$ was prepared according to general procedure 2.1 using $\mathbf{1 w}(47.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain $\mathbf{2 w}$ as colorless oil (34.0 mg, 63\% yield).

The NMR data matched those reported in the literature. ${ }^{9}{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.42$ (d, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.7(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.9,158.3,139.0,130.7,130.4,129.9,129.2,125.92,125.90$, 114.2, 68.8, 55.2, 55.1.

(E)-2,3-di(furan-3-yl)prop-2-en-1-ol (2x)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}$
Exact Mass: 190.0630
$\mathbf{2 x}$ was prepared according to general procedure 2.1 using $\mathbf{1 x}(31.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=8 / 1$) to obtain $\mathbf{2 x}$ as colorless oil ($20.1 \mathrm{mg}, 53 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.75-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H})$, 6.48-6.42(m, 1H), 6.40-6.36(m, 1H), 6.17-6.15(m, 1H), $5.15(\mathrm{bs}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, 2H);
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 143.6,143.5,142.1,140.8,133.1,122.7,122.6,115.5,111.5$, 110.5, 65.8;

HRMS: (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 173.0597$; found 173.0593.

(E)-2,3-di(thiophen-3-yl)prop-2-en-1-ol (2y)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{OS}_{2}$
Exact Mass: 222.0173
$\mathbf{2 y}$ was prepared according to general procedure $2.1 \mathrm{using} \mathbf{1 y}(38 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=8 / 1$) to obtain $\mathbf{2 y}$ as colorless oil ($22.2 \mathrm{mg}, 50 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H})$, $6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{bs}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 138.7,137.9,135.2,128.2,127.9,125.9,124.8,124.0,123.1$, 121.8, 68.3;

HRMS: (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{OS}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 245.0065$; found 245.0061.

(E)-2-propylhex-2-en-1-ol (2z)

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$
Exact Mass: 142.1358
$\mathbf{2 z}$ was prepared according to general procedure 2.1 using $\mathbf{1 z}(33.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$ to obtain $\mathbf{2 z}$ as colorless oil ($37.1 \mathrm{mg}, 87 \%$ yield).

The NMR data matched those reported in the literature. ${ }^{10}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 6 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.0,127.1,67.2,30.0,29.5,22.9,21.7,14.2,13.9$.

(E)-cyclododec-1-en-1-ylmethanol (2aa)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}$
Exact Mass: 196.1827

2aa was prepared according to general procedure 2.1 using $\mathbf{1 a a}(32.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain 2aa as colorless oil ($21.2 \mathrm{mg}, 54 \%$ yield).

The NMR data matched those reported in the literature. ${ }^{11}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.50$ $(\mathrm{m}, 2 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 9 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.9,127.9,66.8,26.9,25.1,24.9,24.7,24.5,24.2,24.1,23.9$, 22.4, 22.3.

(Z)-2-((benzyloxy)methyl)but-2-en-1-ol (2ab)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
Exact Mass: 192.1150

2ab was prepared according to general procedure 2.1 using $\mathbf{1 a b}(32.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain 2ab as colorless oil (18.8 mg, 49\% yield).

The NMR data matched those reported in the literature. ${ }^{12}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ - $7.29(\mathrm{~m}, 5 \mathrm{H}), 5.73(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{bs}, 1 \mathrm{H})$, $1.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 137.9,135.7,128.4,127.76,127.75,126.3,72.6,67.1,66.7$, 13.2.

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$
Exact Mass: 220.1463

2ac was prepared according to general procedure 2.1 using $1 \mathbf{a c}(37.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain 2ac as colorless oil ($25.1 \mathrm{mg}, 57 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{tt}, J=7.5,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.23(\mathrm{bs}, 1 \mathrm{H}), 2.03(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{q}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.9,134.9,131.9,128.4,127.74,127.72,72.5,67.1,67.0$, 29.5, 22.7, 13.7;

HRMS: (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$221.1536; found 221.1532.

(E)-2-((dibenzylamino)methyl)but-2-en-1-ol (2ad)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}$
Exact Mass: 281.1780
2ad was prepared according to general procedure $2.1 \mathrm{using} \mathbf{1 a d}(49.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain 2ad as colorless oil ($28.1 \mathrm{mg}, 50 \%$ yield).

The NMR data matched those reported in the literature. ${ }^{4}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-$ $7.32(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{bs}, 1 \mathrm{H})$, $4.06(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 4 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 138.4,135.2,129.1,128.5,127.3,125.9,69.6,58.5,52.5,13.1$.

(E)-2-(2-(benzyloxy)ethyl)pent-2-en-1-ol (2ae)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$
Exact Mass: 220.1463

2ae was prepared according to general procedure 2.1 using $\mathbf{1 a e}(49.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain 2ae as colorless oil ($26.9 \mathrm{mg}, 61 \%$ yield, $1 / 1 \mathrm{r} . \mathrm{r}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.54-5.37(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.51(\mathrm{~m}, 2 \mathrm{H})$, 4.07-3.93(m, 2H), 3.58-3.48(m, 2H), 2.47-2.35(m, 2H), 2.16-2.01(m, 2H), 1.84-1.45 (m, 1H), 1.02-0.94(m, 3H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 142.6,138.3,137.6,135.7,131.7,128.4,128.3,127.73,127.70$, $127.6,127.5,121.7,73.1,72.9,69.9,69.5,68.4,66.5,29.3,27.9,21.1,20.9,14.1,13.2$

HRMS: (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 221.1536$; found 221.1532.

(E)-2-benzylidenebut-3-en-1-ol (2af)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$
Exact Mass: 160.0888

2af was prepared according to general procedure $2.1 \mathrm{using} \mathbf{1 a f}(25.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to obtain 2af as colorless oil (13.5 mg, 42\% yield, 10/1 r.r).

The NMR data matched those reported in the literature. ${ }^{12}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.54-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.28$ - $5.22(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 1.62(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 137.3,136.6,132.5,129.6,129.4,128.1,127.2,115.8,64.5$.

(E)-N-(2-(hydroxymethyl)-3-phenylallyl)-4-methyl-N-(2-methylallyl)benzenesulfonamide

 (2ag)

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$
Exact Mass: 371.1555

2ag was prepared according to general procedure 2.1 using $\mathbf{1 a g}(25.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=4 / 1)$ to obtain 2ag as colorless oil ($32.0 \mathrm{mg}, 43 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H})$, $7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, 2H), 4.03-4.00(m, 2H), $3.54(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{bs}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,139.2,136.8,136.2,136.1,131.3,129.7,128.8,128.1$, $127.2,127.0,114.7,64.9,54.6,44.7,21.5,19.9$;

HRMS: (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 354.1522$; found 354.1523 .

(E)-3-benzylidene-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7a)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$
Exact Mass: 258.1256

7a was prepared according to general procedure 2.2 using $\mathbf{6 a}(45.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $7 \mathbf{a}$ as white solid ($37.2 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dt}$, $J=12.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{bs}$, $1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.4,136.3,132.6,128.8,128.2,126.8,125.6,103.1,66.6$, 53.0, 35.1, 32.9, 29.8, 20.7;

HRMS: (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$259.1329; found 259.1337.
(E)-7a-hydroxy-4a-methyl-3-(4-methylbenzylidene)hexahydrocyclopenta[b]pyran-

5(2H)-one (7b)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$
Exact Mass: 272.1412
7b was prepared according to general procedure 2.2 using $\mathbf{6 b}(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $\mathbf{7 b}$ as colorless oil ($32.7 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{dt}$, $J=12.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{bs}$, $1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.5,136.4,133.4,131.9,128.9,128.7,125.5,103.1,66.6$, 53.0, 35.1, 32.8, 29.8, 21.2, 20.6;

HRMS: (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3}^{+}[\mathrm{M}+\mathrm{H}]^{+}$273.1485; found 273.1481.

(E)-7a-hydroxy-3-(4-methoxybenzylidene)-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7c)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$
Exact Mass: 288.1362
7c was prepared according to general procedure 2.2 using $\mathbf{6 c}(51.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain 7 c as colorless oil ($45.0 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.61-$ $4.50(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{bs}, 1 \mathrm{H}), 2.53-2.31$ $(\mathrm{m}, 2 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.6,158.4,131.2,130.0,128.9,125.1,113.7,103.1,66.7$, 55.2, 53.0, 35.1, 32.9, 29.7, 20.7;

HRMS: (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 311.1254$; found 311.1253 .

ethyl (E)-4-((7a-hydroxy-4a-methyl-5-oxohexahydrocyclopenta[b]pyran-3(2H)ylidene)methyl)benzoate (7d)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}$
Exact Mass: 330.1467
$7 \mathbf{d}$ was prepared according to general procedure 2.2 using $\mathbf{6 d}(59.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $7 \mathbf{d}$ as colorless oil ($37.0 \mathrm{mg}, 56 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{dt}$, $J=12.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=14.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{bs}, 1 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}$, 3H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.2,166.6,141.0,134.7,129.6,128.78,128.77,124.9,103.1$, $66.5,60.9,53.1,35.1,32.9,29.8,20.7,14.4 ;$

HRMS: (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+} 331.1540$; found 331.1541.
(E)-3-(4-chlorobenzylidene)-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)one (7e)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3}$
Exact Mass: 292.0866

7e was prepared according to general procedure 2.2 using $\mathbf{6 e}(52 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain 7 e as colorless oil ($45.0 \mathrm{mg}, 77 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (dd, $J=12.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{bs}, 1 \mathrm{H}), 2.51-2.37(\mathrm{~m}, 2 \mathrm{H})$, 2.23-2.01(m, 3H), $1.04(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.5,134.7,133.4,132.5,130.1,128.4,124.4,103.0,66.4$, 53.1, 35.1, 32.8, 29.6, 20.6;

HRMS: (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 315.0758$; found 315.0763.
(E)-3-(4-fluorobenzylidene)-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)one (7f)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FO}_{3}$
Exact Mass: 276.1162
$7 \mathbf{f}$ was prepared according to general procedure 2.2 using $\mathbf{6 f}(48.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain 7 f as colorless oil ($33.2 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{dt}$, $J=12.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=14.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{bs}$, $1 \mathrm{H}), 2.53-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 115.27 (m);
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.5,161.7(\mathrm{~d}, J=245.9 \mathrm{~Hz}), 132.7,132.3(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, $130.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 124.5,115.1(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 103.1,66.5,53.1,35.1,32.8,29.6,20.7$; HRMS: (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$299.1054; found 299.1054.

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}$
Exact Mass: 326.1130
$7 \mathbf{g}$ was prepared according to general procedure 2.2 using $\mathbf{6 g}(58.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $\mathbf{7 g}$ as colorless oil ($35.2 \mathrm{mg}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{dt}$, $J=12.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=12.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=14.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{bs}$, $1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.4,140.0,134.9,129.1,128.8(\mathrm{q}, J=31.7 \mathrm{~Hz}), 125.2(\mathrm{q}, J$ $=3.8 \mathrm{~Hz}), 124.3(\mathrm{q}, J=273.3 \mathrm{~Hz}), 124.4,103.1,66.4,53.2,35.1,32.8,29.7,20.7$;
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.32$;
HRMS: (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$327.1203; found 327.1213.

(E)-7a-hydroxy-4a-methyl-3-(3-methylbenzylidene)hexahydrocyclopenta[b]pyran-

5(2H)-one (7h)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$
Exact Mass: 272.1412

7h was prepared according to general procedure 2.2 using $\mathbf{6 h}(48.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain 7 h as colorless oil ($40.3 \mathrm{mg}, 74 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H})$, $6.32(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dt}, J=12.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{bs}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 216.5,137.7,136.2,132.4,129.5,128.1,127.6,125.8,125.7$, $103.1,66.6,53.0,35.1,32.8,29.8,21.4,20.6$;

HRMS: (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$295.1305; found 295.1306.

(E)-7a-hydroxy-4a-methyl-3-(3-(trifluoromethoxy)benzylidene)hexahydro-cyclopenta[b]pyran-5(2H)-one (7i)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}$
Exact Mass: 342.1079
$7 \mathbf{i}$ was prepared according to general procedure 2.2 using $\mathbf{6 i}(62 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $7 \mathbf{i}$ as colorless oil $(41.1 \mathrm{mg}$, 60\% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.12-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dt}, J=12.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=12.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (dd, $J=14.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{bs}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.3,149.2,138.3,134.3,129.6,127.2,124.2,121.3,120.5(\mathrm{q}$, $J=257.3 \mathrm{~Hz}), 119.2,103.0,66.4,53.1,35.0,32.8,29.6,20.6 ;$
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.58 ;$
HRMS: (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 365.0971$; found 365.0985 .

(E)-7a-hydroxy-4a-methyl-3-(2-methylbenzylidene)hexahydrocyclopenta[b]pyran-5(2H)-one (7j)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$
Exact Mass: 272.1412
$7 \mathbf{j}$ was prepared according to general procedure 2.2 using $\mathbf{6 j}(48.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was
purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=6 / 1$) to obtain 7 j as colorless oil ($30.5 \mathrm{mg}, 56 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J$ $=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{bs}, 1 \mathrm{H}), 2.47-2.38$ $(\mathrm{m}, 2 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 6 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.0,136.5,135.4,132.6,129.7,129.1,127.2,125.5,124.9$, $103.1,66.3,53.0,35.1,32.8,29.8,20.5,19.8 ;$

HRMS: (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$295.1305; found 295.1302.

(E)-7a-hydroxy-4a-methyl-3-(naphthalen-2-ylmethylene)hexahydrocyclopenta[b]pyran-

$5(2 H)$-one (7k)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}$ Exact Mass: 308.1412
$7 \mathbf{k}$ was prepared according to general procedure 2.2 using $\mathbf{6 k}(55.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $7 \mathbf{k}$ as colorless oil ($37.6 \mathrm{mg}, 61 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{dt}$, $J=12.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=14.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{bs}$, $1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.5,133.8,133.3,133.1,132.3,128.0,127.7,127.64,127.57$, $127.1,125.9,125.72,125.67,103.1,66.6,53.1,35.1,32.8,29.8,20.7$;

HRMS: (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 331.1305$; found 331.1302 .
(E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)-7a-hydroxy-4a-methylhexahydro-cyclopenta[b]pyran-5(2H)-one (7l)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$ Exact Mass: 302.1154

71 was prepared according to general procedure 2.2 using $61(54 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $7 \mathbf{l}$ as colorless oil $(46.0 \mathrm{mg}$, 76% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.93(\mathrm{~m}$, $2 \mathrm{H}), 4.53(\mathrm{dd}, J=12.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=12.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=14.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.68(\mathrm{bs}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.5,147.4,146.3,131.7,130.3,125.3,122.6,109.1,108.2$, $103.1,100.9,66.6,53.0,35.1,32.8,29.7,20.6 ;$

HRMS: (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 325.1046$; found 325.1057.

(E)-3-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methylene)-7a-hydroxy-4a-methylhexahydrocyclopenta[b]pyran-5(2H)-one (7m)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
Exact Mass: 316.1311
$7 \mathbf{m}$ was prepared according to general procedure 2.2 using $\mathbf{6 m}(56.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $\mathbf{7 m}$ as colorless oil ($41.7 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.91-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dt}$, $J=12.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 4 \mathrm{H}), 3.85(\mathrm{dd}, J=12.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=14.6,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.04(\mathrm{bs}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.5,143.1,142.5,131.6,129.8,125.0,122.2,117.6,117.0$, 103.1, 66.6, 64.4, 64.3, 52.9, 35.1, 32.8, 29.8, 20.6;

HRMS: (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$339.1203; found 339.1193.

(E)-7a-hydroxy-4a-methyl-3-(thiophen-3-ylmethylene)hexahydrocyclopenta[b]pyran-

5(2H)-one (7n)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$
Exact Mass: 264.0820

7n was prepared according to general procedure 2.2 using $\mathbf{6 n}(46.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain 7 n as colorless oil (35.4 mg, 67\% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H})$, $6.26(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dt}, J=12.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=12.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=14.5$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{bs}, 1 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 216.8,137.1,132.2,128.5,125.1,123.3,119.9,103.1,66.6$, 53.2, 35.1, 32.9, 30.2, 20.7;

HRMS: (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$265.0893, found 265.0894.

(E)-3-(dibenzo $[b, d]$ furan-2-ylmethylene)-7a-hydroxy-4a-

 methylhexahydrocyclopenta[b]pyran-5(2H)-one (70)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
Exact Mass: 348.1362
$7 \boldsymbol{o}$ was prepared according to general procedure 2.2 using $\mathbf{6 0}(63.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=6 / 1$) to obtain 7 o as colorless oil ($42.0 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H})$,
$7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.42(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{dt}, J=12.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=12.2,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=14.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{bs}, 1 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.04(\mathrm{~m}$, $3 \mathrm{H}), 1.07$ ($\mathrm{s}, 3 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.6,156.5,155.1,132.4,131.1,128.1,127.1,125.6,124.3$, $124.2,122.7,120.9,120.8,111.6,111.3,103.2,66.7,53.1,35.2,32.9,29.7,20.7$;

HRMS: (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{4}^{+}[\mathrm{M}+\mathrm{H}]^{+} 349.1434$; found 349.1428.
(E)-3-(dibenzo[b,d]thiophen-2-ylmethylene)-7a-hydroxy-4a-methylhexahydro-cyclopenta[b]pyran-5(2H)-one (7p)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ Exact Mass: 364.1133
$7 \mathbf{p}$ was prepared according to general procedure 2.2 using $\mathbf{6 p}(66.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $\mathbf{7 p}$ as colorless oil ($54.6 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{dt}, J=12.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=12.3,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31(\mathrm{dd}, J=14.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.7,139.7,137.8,135.74,135.68,132.9,132.7,127.5,126.7$, $125.5,124.4,122.7,122.5,121.95,121.91,103.2,66.8,53.2,35.2,33.0,29.7,20.8 ;$

HRMS: (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 387.1025$; found 387.1020.
(E)-7a-hydroxy-4a-methyl-3-((1-methyl-1H-indol-5-
yl)methylene)hexahydrocyclopenta[b]pyran-5(2H)-one (7q)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$
Exact Mass: 311.1521
$7 \mathbf{q}$ was prepared according to general procedure 2.2 using $\mathbf{6 q}(55.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $\mathbf{7 q}$ as colorless oil ($34.8 \mathrm{mg}, 56 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=12.1$ Hz, 1H), 3.84-3.45 (m, 3H), $3.29(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{bs}, 1 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.28$ - $1.96(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 216.6,135.7,130.4,129.0,128.4,127.5,126.8,122.9,121.1$, $108.9,103.2,101.1,66.8,52.9,35.1,32.83,32.82,29.9,20.6$;

HRMS: (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 312.1594$, found 312.1594 .

(E)-7a-hydroxy-3-((6-methoxypyridin-3-yl)methylene)-4a-methylhexahydro-cyclopenta[b]pyran-5(2H)-one (7r)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$
Exact Mass: 289.1314
$7 \mathbf{r}$ was prepared according to general procedure 2.2 using $\mathbf{6 r}(51.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=6 / 1$) to obtain 7 r as colorless oil ($40.5 \mathrm{mg}, 70 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{~s}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{dd}, J=12.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{bs}, 1 \mathrm{H}), 3.09$ $(\mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 216.5,162.8,146.8,139.2,133.5,125.4,121.7,110.4,103.0$, $66.3,53.5,53.1,35.0,32.8,29.7,20.6 ;$

HRMS: (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 290.1387$; found 290.1397.
(E)-7a-hydroxy-4a-methyl-3-(((8R,9S,13S,14S)-13-methyl-17-oxo-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta $[a]$ phenanthren-3-
yl)methylene)hexahydrocyclopenta[b]pyran-5(2H)-one (7s)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{4}$
Exact Mass: 434.2457

7s was prepared according to general procedure 2.2 using $\mathbf{6 s}(80.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain 7 s as colorless oil ($56.5 \mathrm{mg}, 65 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H})$, $6.28(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{~s}, 1 \mathrm{H}), 2.96-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{dd}, J=19.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.33-$ $2.28(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 4 \mathrm{H})$, $1.05(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 221.2,216.7,216.6,138.28,138.27,136.2,133.8,132.2,132.1$, $129.40,129.38,126.23,126.17,125.3,125.2,103.0,66.5,52.94,52.92,50.5,48.0,44.4,44.3$, $38.08,38.06,35.8,35.1,32.8,31.5,29.8,29.35,29.33,26.5,25.60,25.58,21.6,20.7,13.8 ;$ HRMS: (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 435.2530$; found 435.2546.

(E)-3-benzylidene-4a-ethyl-7a-hydroxyhexahydrocyclopenta[b]pyran-5(2H)-one (7t)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$
Exact Mass: 272.1412
$7 \mathbf{t}$ was prepared according to general procedure 2.2 using $\mathbf{6 t}(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain 7 t as colorless oil $(28.3 \mathrm{mg}$, 52% yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{dt}$, $J=12.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=12.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.37(\mathrm{~m}$, $2 H), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 214.9,136.4,132.5,128.8,128.2,126.7,125.6,103.3,66.4$, 56.2, 35.2, 33.1, 26.6, 26.4, 7.4;

HRMS: (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$295.1305; found 295.1302.

(E)-4a-benzyl-3-benzylidene-7a-hydroxyhexahydrocyclopenta[b]pyran-5(2H)-one (7u)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3}$
Exact Mass: 334.1569
$7 \mathbf{u}$ was prepared according to general procedure 2.2 using $\mathbf{6 u}(60.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain $7 \mathbf{u}$ as colorless oil ($30.1 \mathrm{mg}, 45 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H})$, $6.33(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=12.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=14.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{bs}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}$, $1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.4,136.2,132.3,130.4,128.8,128.2,128.0,126.9,126.8$,
$125.5,103.1,66.2,57.8,41.6,36.3,33.3,29.7 ;$
HRMS: (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$335.1642; found 335.1643.

(E)-3-benzylidene-7a-hydroxy-4a-(3-phenylprop-2-yn-1-

yl)hexahydrocyclopenta[b]pyran-5(2H)-one (7v)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}$
Exact Mass: 358.1569
$\mathbf{7 v}$ was prepared according to general procedure 2.2 using $\mathbf{6 v}(65.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ to obtain 7 v as colorless oil ($22.2 \mathrm{mg}, 31 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dt}, J=12.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=12.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{dd}, J=14.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ $(\mathrm{d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.19(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 214.2,136.2,132.0,131.5,128.8,128.25,128.22,128.1,126.9$, $126.0,102.8,84.7,83.6,66.3,55.2,35.9,33.6,28.6,25.1$;

HRMS: (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 359.1642$; found 359.1636.
(E)-3-benzylidene-7a-hydroxy-4a-(2-methylallyl)hexahydrocyclopenta[b]pyran-5(2H)one (7w)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$
Exact Mass: 298.1569
$7 \mathbf{w}$ was prepared according to general procedure 2.2 using $\mathbf{6 w}(53.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and was
purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=6 / 1$) to obtain $7 \mathbf{w}$ as colorless oil ($25.2 \mathrm{mg}, 42 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H})$, $6.31(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=2.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dt}, J=12.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=12.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=14.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}$, $1 \mathrm{H}), 2.35(\mathrm{~s}, 2 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{dd}, J=1.5,0.9 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 218.2,142.6,138.1,134.8,129.9,129.1,127.6,125.9,116.0$, 103.7, 66.7, 57.7, 43.2, 36.1, 33.0, 28.9, 24.1;

HRMS: (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$299.1642; found 299.1656.
5. Crystallographic data for compound 7a

CCDC: 2058189

Table 1. Crystal data and structure refinement for $\mathbf{7 a}$.

Identification code	cu_190522c_0m
Empirical formula	C16H18O3
Formula weight	258.30
Temperature	296(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P $121 / \mathrm{c} 1$
Unit cell dimensions	$a=8.8774(4) \AA \quad a=90^{\circ}$.
	$b=11.4152(4) \AA \quad b=95.989(2)^{\circ}$.
	$\mathrm{c}=13.2381(5) \AA \quad \mathrm{g}=90^{\circ}$.
Volume	1334.19(9) \AA^{3}
Z	4
Density (calculated)	$1.286 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.708 \mathrm{~mm}^{-1}$
$F(000)$	552
Crystal size	$0.12 \times 0.12 \times 0.1 \mathrm{~mm}^{3}$
Theta range for data collection	5.009 to 64.990°.
Index ranges	$-8<=\mathrm{h}<=9,-13<=\mathrm{k}<=13,-13<=\mathrm{l}<=15$
Reflections collected	7918
Independent reflections	$2166[\mathrm{R}(\mathrm{int})=0.0279]$
Completeness to theta $=64.990^{\circ}$	95.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7533 and 0.6584
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2166 / 0 / 175
Goodness-of-fit on F^{2}	1.037
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0329, \mathrm{wR} 2=0.0869$
R indices (all data)	$\mathrm{R} 1=0.0372, \mathrm{w} 2=0.0901$
Extinction coefficient	0.0102(6)
Largest diff. peak and hole	0.193 and -0.126 e. \AA^{-3}

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for $7 \mathbf{a} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x		y	z
$\mathrm{C}(1)$	$3779(2)$	$6875(1)$	$766(1)$	$42(1)$
$\mathrm{C}(2)$	$2685(2)$	$7610(1)$	$1101(1)$	$45(1)$
$\mathrm{C}(3)$	$2245(2)$	$8620(1)$	$579(1)$	$50(1)$
$\mathrm{C}(4)$	$2869(2)$	$8917(1)$	$-296(1)$	$56(1)$
$\mathrm{C}(5)$	$3955(2)$	$8196(2)$	$-644(1)$	$61(1)$
$\mathrm{C}(6)$	$4411(2)$	$7194(1)$	$-115(1)$	$53(1)$
$\mathrm{C}(7)$	$4316(2)$	$5823(1)$	$1344(1)$	$45(1)$
$\mathrm{C}(8)$	$3481(2)$	$5042(1)$	$1779(1)$	$39(1)$
$\mathrm{C}(9)$	$1785(1)$	$5004(1)$	$1663(1)$	$37(1)$
$\mathrm{C}(10)$	$1163(2)$	$3757(1)$	$1539(1)$	$35(1)$
$\mathrm{C}(11)$	$1973(2)$	$2893(1)$	$2308(1)$	$41(1)$
$\mathrm{C}(12)$	$4207(2)$	$4107(1)$	$2464(1)$	$50(1)$
$\mathrm{C}(13)$	$1572(2)$	$1684(1)$	$1876(1)$	$49(1)$
$\mathrm{C}(14)$	$1625(2)$	$1848(1)$	$737(1)$	$45(1)$
$\mathrm{C}(15)$	$1463(2)$	$3154(1)$	$556(1)$	$36(1)$
$\mathrm{C}(16)$	$-562(2)$	$3765(1)$	$1570(1)$	$50(1)$
$\mathrm{O}(1)$	$3561(1)$	$2971(1)$	$2251(1)$	$45(1)$
$\mathrm{O}(2)$	$1585(2)$	$3131(1)$	$3281(1)$	$63(1)$
$\mathrm{O}(3)$	$1551(1)$	$3637(1)$	$-249(1)$	$50(1)$

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for $7 \mathbf{7 a}$.

$\mathrm{C}(1)-\mathrm{C}(2)$	1.391(2)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.395(2)
$\mathrm{C}(1)-\mathrm{C}(7)$	1.475(2)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9300
$\mathrm{C}(2)-\mathrm{C}(3)$	1.380(2)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(3)-\mathrm{C}(4)$	1.377(2)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(5)$	1.383(2)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9300
$\mathrm{C}(5)-\mathrm{C}(6)$	1.380(2)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9300
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9300
$\mathrm{C}(7)-\mathrm{C}(8)$	1.3288(19)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.4986(19)
$\mathrm{C}(8)-\mathrm{C}(12)$	1.5019(19)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9700
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9700
$\mathrm{C}(9)-\mathrm{C}(10)$	1.5284(17)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.5405(18)$
$\mathrm{C}(10)-\mathrm{C}(15)$	1.5206(17)
$\mathrm{C}(10)-\mathrm{C}(16)$	1.5357(19)
$\mathrm{C}(11)-\mathrm{C}(13)$	1.522(2)
$\mathrm{C}(11)-\mathrm{O}(1)$	1.4228(17)
$\mathrm{C}(11)-\mathrm{O}(2)$	$1.3947(16)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9700
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9700
$\mathrm{C}(12)-\mathrm{O}(1)$	1.4339(17)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9700
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9700
$\mathrm{C}(13)-\mathrm{C}(14)$	1.526(2)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9700
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9700
$\mathrm{C}(14)-\mathrm{C}(15)$	1.5148(18)
$\mathrm{C}(15)-\mathrm{O}(3)$	$1.2097(15)$
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9600

$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9600
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9600
$\mathrm{O}(2)-\mathrm{H}(2)$	0.8200
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	117.65(13)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	121.65(13)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	120.64(13)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.02(14)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.7
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.61(15)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.33 (15)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.9
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.13(15)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.9
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	119.4
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	121.26(15)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.4
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7)$	116.4
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$	127.29(13)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	116.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	125.14(12)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(12)$	121.02(13)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(12)$	113.83(12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	112.73(10)
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107.8
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.0
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	112.77(11)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(16)$	110.01(10)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(9)$	114.80(10)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)$	99.42(10)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(16)$	106.81(11)

$\mathrm{C}(16)-\mathrm{C}(10)-\mathrm{C}(11)$	112.57(11)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(10)$	104.97(11)
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	108.76(10)
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(13)$	103.36(11)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	110.03(11)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(13)$	116.94(12)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(1)$	112.22(11)
$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.1
$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.1
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	107.8
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(8)$	112.70(11)
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.1
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.1
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	111.1
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	111.1
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)$	103.32(10)
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.1
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	111.1
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	111.1
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	110.7
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	110.7
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.8
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	105.31(11)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	110.7
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	110.7
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	109.48(10)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(10)$	125.50(11)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(14)$	125.02(12)
$\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(12)$	115.12(11)
$\mathrm{C}(11)-\mathrm{O}(2)-\mathrm{H}(2)$	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $7 \mathbf{7}$. The anisotropic displacement factor exponent takes the form: $\quad-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a *^{*} \mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$40(1)$	$36(1)$	$50(1)$	$-4(1)$	$2(1)$	$-8(1)$
$\mathrm{C}(2)$	$54(1)$	$37(1)$	$46(1)$	$-5(1)$	$10(1)$	$-6(1)$
$\mathrm{C}(3)$	$56(1)$	$38(1)$	$58(1)$	$-5(1)$	$7(1)$	$1(1)$
$\mathrm{C}(4)$	$65(1)$	$43(1)$	$60(1)$	$9(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(5)$	$66(1)$	$58(1)$	$60(1)$	$12(1)$	$19(1)$	$-6(1)$
$\mathrm{C}(6)$	$46(1)$	$52(1)$	$65(1)$	$2(1)$	$17(1)$	$-2(1)$
$\mathrm{C}(7)$	$38(1)$	$42(1)$	$54(1)$	$-4(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(8)$	$45(1)$	$35(1)$	$37(1)$	$-6(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(9)$	$46(1)$	$31(1)$	$33(1)$	$-1(1)$	$7(1)$	$4(1)$
$\mathrm{C}(10)$	$42(1)$	$33(1)$	$31(1)$	$3(1)$	$9(1)$	$2(1)$
$\mathrm{C}(11)$	$58(1)$	$38(1)$	$29(1)$	$5(1)$	$10(1)$	$4(1)$
$\mathrm{C}(12)$	$56(1)$	$42(1)$	$47(1)$	$-1(1)$	$-10(1)$	$2(1)$
$\mathrm{C}(13)$	$63(1)$	$34(1)$	$51(1)$	$9(1)$	$10(1)$	$0(1)$
$\mathrm{C}(14)$	$57(1)$	$34(1)$	$45(1)$	$-4(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(15)$	$39(1)$	$36(1)$	$32(1)$	$0(1)$	$2(1)$	$0(1)$
$\mathrm{C}(16)$	$48(1)$	$44(1)$	$59(1)$	$6(1)$	$18(1)$	$0(1)$
$\mathrm{O}(1)$	$54(1)$	$36(1)$	$42(1)$	$3(1)$	$-4(1)$	$8(1)$
$\mathrm{O}(2)$	$105(1)$	$55(1)$	$32(1)$	$10(1)$	$22(1)$	$13(1)$
$\mathrm{O}(3)$	$75(1)$	$46(1)$	$30(1)$	$2(1)$	$8(1)$	$3(1)$

Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 7 a.

	x	y	Z	U(eq)
H(2A)	2243	7418	1686	54
H(3)	1520	9105	820	60
H(4)	2564	9596	-648	67
H(5)	4378	8387	-1237	73
H(6)	5154	6723	-351	64
H(7)	5356	5693	1410	54
H(9A)	1407	5463	1074	44
H(9B)	1415	5359	2255	44
H(12A)	5282	4078	2389	60
H(12B)	4095	4311	3164	60
H(13A)	570	1447	2026	59
H(13B)	2304	1103	2147	59
H(14A)	2580	1567	532	54
H(14B)	804	1425	356	54
H(16A)	-1012	4328	1092	74
H(16B)	-790	3969	2241	74
H(16C)	-961	3001	1397	74
H(2)	1727	2544	3637	94

Table 6. Torsion angles [${ }^{\circ}$] for $7 \mathbf{7 a}$.

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	0.8(2)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	7.6(2)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(12)$	-171.39(13)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-0.8(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	43.6(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.5(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.4(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$1.0(3)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-0.1(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	-139.49(16)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	176.90(12)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-177.83(14)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	138.81(13)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(1)$	-134.31(14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	45.77(14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	-67.16(14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(16)$	172.35(11)
$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(1)-\mathrm{C}(11)$	-57.23(16)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(1)$	46.62(17)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	-163.01(11)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	-52.93(14)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(2)$	70.36(15)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	148.79(12)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{O}(3)$	-31.56(18)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)$	39.02(14)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(12)$	59.42(13)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	28.20(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{O}(3)$	-152.15(13)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-20.39(15)
$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-42.16(15)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(12)$	170.59(10)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	-5.40(16)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(3)$	174.95(13)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	-40.95(13)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	69.14(12)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(2)$	-167.57(11)

$\mathrm{C}(16)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	$71.79(14)$
$\mathrm{C}(16)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	$-178.13(10)$
$\mathrm{C}(16)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(2)$	$-54.84(15)$
$\mathrm{C}(16)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	$-88.97(13)$
$\mathrm{C}(16)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{O}(3)$	$90.69(15)$
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)$	$-74.91(12)$
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)$	$161.27(12)$
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(12)$	$-62.55(14)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for $7 \mathbf{a}\left[\AA\right.$ and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<$ (DHA)
$\mathrm{O}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3) \# 1$	0.82	2.02	$2.8055(14)$	161.1

Symmetry transformations used to generate equivalent atoms:
\#1 $\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}+1 / 2$

6. Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

2a

2b

M
∞
∞
0
1
-15.16

2c

[^0]

2e

2f

 $\xrightarrow{ }$ \qquad

$2 g$

 $\stackrel{m}{\stackrel{n}{6}}$

Con

135.60
$\int_{1} 131.68$
$S_{129.77}$
-129.29
127.96
-121.43

5
0
1
1

Cors

2h

Con

$\mathbf{2 i}$

2j

∞
$\stackrel{\infty}{\infty} \underset{\sim}{\sim}$
$\stackrel{\sim}{\sim}$

OH

6C.	150	140	130	120	110	100	${ }_{90}$	80	70	60	50	40	30	10	10	0
								8								

2m

2n

20

$\underbrace{\infty} \underbrace{\infty} \infty \infty \infty \infty \infty \infty$
$\stackrel{8-8}{\stackrel{8}{\circ}} \stackrel{\infty}{\square}$
$\|\|\|$,

Coccer

∞
∞
∞

$\stackrel{\infty}{\infty}$

2p

Cols

2r

2s

N	∞	Σ	
\%	응NN	$\stackrel{\text { V }}{ }$	$\stackrel{\square}{9}$
$\stackrel{\square}{1}$	-5\%	$\stackrel{-}{+}$	¢

CoH

2t

\int

O-

(1) 0^{00+}

$2 u$

(

Cl

®
0
0
i
i

Cl

2v

2w

OMe

$2 x$
 NNNNNNNNN0 o o ooco.

1)

${ }^{80}$

$2 y$

(i)

∞
∞
1
1
i

$2 z$
(

Pr

2ab

2ac

$\int|\mid$

$\mathrm{Pr} \underset{\mathrm{OBn}}{\mathrm{OH}}$

[^1]2ad

2ae

2af

$12{ }^{0}$

2ag

7a

7b

7c

7d

$\begin{gathered} 0 \\ \underset{\sim}{\infty} \\ \underset{\sim}{n} \end{gathered}$	in 0 0		N \% \% I		

7e

7f

7g

[^2]

7h

Coses)

7j

7m

7n

NNNNNNNNNNぺ

 $\int|+|$

70

		$\begin{aligned} & \text { T } \\ & \text { in } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ! } \\ & \hline \end{aligned}$					$\begin{aligned} & \frac{T}{0} \\ & \underset{\sim}{2} \end{aligned}$					$\begin{aligned} & \text { W' } \\ & \stackrel{1}{c} \end{aligned}$			$\begin{aligned} & \text { Ho } \\ & \text { Cl } \end{aligned}$			
9.0	8.5	8. 0	7.5	7.0	6.5	6. 0	5.5	5.0	1	4.0	3.5			2.5		2.0	1.5	1.0	0.5	0.0	E

7p

$7 q$

7r

$$
\left|1 \int\right| 1|1|
$$

$7 u$

7v

7w

7. References

[1] S. Ni, H. Wei, B. Li, F. Chen, Y. Liu, W. Chen, Y. Xu, X. Qiu, X. Li, Y. Lu, W. Liu, L. Hu, D. Lin, M. Wang, X. Zheng, F. Mao, J. Zhu, L. Lan and J. Li, J. Med. Chem. 2017, 60, 8145.
[2] A. V. Malkov, L. Czemerys and D. A. Malyshev, J. Org. Chem. 2009, 74, 3350.
[3] R. Wang, Y. Tang, M. Xu, C. Meng and F. Li, J. Org. Chem. 2018, 83, 2274.
[4] P. V. Ramachandran, T. E. Burghardt and M. V. R. Reddy, Tetrahedron Let. 2005, 46, 2121.
[5] J. Deng, E. Feng, S. Ma, Y. Zhang, X. Liu, H. Li, H. Huang, J. Zhu, W. Zhu, X. Shen, L. Miao, H. Liu, H. Jiang and J. Li, J. Med. Chem. 2011, 54, 4508.
[6] W. Lölsberg, S. Y. Hans and G. Schmalz, Adv. Synth. Catal. 2010, 352, 2023.
[7] M. H. Babu, G. R. Kumar, R. Kantc and M. S. Reddy, Chem. Commun. 2017, 53, 3894.
[8] T. Fujihara, T. H. Xu, K. Semba, J. Terao and Y. Tsuji, Angew. Chem. Int. Ed. 2011, 50, 523.
[9] F. Habib and A. G. B. Reza, Chem. Soc. Jpn. 1995, 68, 2595-2602.
[10] M. R. Unroe and B. A. Reinhardt, Synthesis 1987, 11, 981.
[11] M. Kitamura, Y. Hirokawa and N. Maezaki, Chem. Eur. J. 2009, 15, 9911.
[12] B. N. Hemric, A. W. Chen and Q. Wang, ACS Catal. 2019, 9, 10070.

[^0]: Con

[^1]:

[^2]: $\begin{array}{llllllllllllll}1050 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 18 \\ 101\end{array}$

