Discovery of Four Modified Classes of Triterpenoids Delineated a Metabolic Cascade: Compound Characterization and Biomimetic Synthesis

Bin Zhou,^{a,‡} Xin-Hua Gao,^{a,‡} Min-Min Zhang,^b Cheng-Yu Zheng,^a Hong-Chun Liu,^b and Jian-Min Yue^{*a}

^aState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China

^bDivision of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China

[‡]The authors contribute equally to this work.

*Correspondence and requests for materials should be addressed to J. M. Yue (email: jmyue@simm.ac.cn)

Table of Contents

1. Summary of the Structural Types of Dichapetalins1
Chart S1. Representative structures of previously reported dichapetalin-type triterpenoids 1
2. Experimental Section
2.1 General Experimental Procedures3
2.2 Plant Material
2.3 Extraction and Isolation
2.4 Physical constants and spectral data of 1–204
2.5 X-ray Crystallographic Analysis for Compounds 1, 3 and 148
3. Structural Elucidation Section 10
3.1 structure elucidation of 1–2010
Table S1. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of compounds 1–4 in CDCl ₃ 12
Table S2. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of compounds 5–8 in CDCl ₃ 13
Table S3. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of compounds 9–12 in CDCl ₃
Table S4. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of compounds 13–16 in CDCl ₃ 15
Table S5. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of compounds 17–20 in acetone-d ₆ . 16
Table S6. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of compound 21a in acetone-d ₆ 17
3.2 NMR Calculations
Table S7. Differential carbon chemical shifts ($\Delta\delta_{\rm C}$) for selected carbons of isomeric pairs 18
Table S8. Re-optimized conformers, energies, and proportions for $Mlpha/Meta$ -Ph
Table S9. Re-optimized conformers, energies, and proportions for $M\alpha/M\beta$ -Me and –H 20
4. Synthesis Section
4.1 Biomimetic synthesis of 1a from 121
4.2 Biomimetic synthesis of 2a from 2
4.3 Biomimetic synthesis of 3a from 3
4.4 Biomimetic synthesis of 4a from 424
4.5 Biomimetic synthesis of 13 from 1a25
4.6 Biomimetic synthesis of 14 from 2a26
4.7 Biomimetic synthesis of 15 from 3a27
4.8 Biomimetic synthesis of 16 from 4a28
4.9 Biomimetic synthesis of 17 from 13 29
4.10 Biomimetic synthesis of 18 from 14 30
4.11 Biomimetic synthesis of 21 from 15
4.12 Biomimetic synthesis of 19 from 21 32
4.13 Biomimetic synthesis of 20 from 16
5. Cytotoxicity Assays
5.1 Methods
Table S10. Cytotoxic Activities of Compounds 1–20 against the NAMALWA Cells
Table S11. Cytotoxic Activities of Compounds 1–20 against the A549 Cells
Table S12. Cytotoxic Activities of Compounds 1–20 against the Hep G2 Cells. 37
6. NMR, MS, and IR spectra of compounds 1–21

6.1 NMR, MS, and IR spectra of compound 138
6.2 NMR, MS, and IR spectra of compound 246
6.3 NMR, MS, and IR spectra of compound 354
6.4 NMR, MS, and IR spectra of compound 462
6.5 NMR, MS, and IR spectra of compound 570
6.6 NMR, MS, and IR spectra of compound 678
6.7 NMR, MS, and IR spectra of compound 786
6.8 NMR, MS, and IR spectra of compound 894
6.9 NMR, MS, and IR spectra of compound 9102
6.10 NMR, MS, and IR spectra of compound 1010
6.11 NMR, MS, and IR spectra of compound 11118
6.12 NMR, MS, and IR spectra of compound 12126
6.13 NMR, MS, and IR spectra of compound 13134
6.14 NMR, MS, and IR spectra of compound 14142
6.15 NMR, MS, and IR spectra of compound 15150
6.16 NMR, MS, and IR spectra of synthetic 16158
6.17 NMR, MS, and IR spectra of compound 17166
6.18 NMR, MS, and IR spectra of compound 18174
6.19 NMR, MS, and IR spectra of synthetic 19182
6.20 NMR, MS, and IR spectra of compound 20190
6.21 NMR, MS, and IR spectra of compound 21198
6.22 ¹ H NMR and MS spectra of synthetic 1a–4a, 13–16, and 17–20 205
7. UPLC-MS Analysis of Ethanolic Crude Extract
Figure S228. UPLC-(+)-ESIMS (left) and UPLC-(–)-ESIMS (right) spectra of crude extract
Figure S229. UPLC-(-)-ESIMS analysis of compounds 1 and 2 in crude extract
Figure S230. UPLC-(-)-ESIMS analysis of compounds 5 and 11 in crude extract
Figure S231. UPLC-(+)-ESIMS analysis of compounds 8 and 9 in crude extract
Figure S232. UPLC-(+)-ESIMS analysis of compounds 13 and 16 in crude extract
Figure S233. UPLC-(+)-ESIMS analysis of compounds 17 and 19 in crude extract
7. References

1. Summary of the Structural Types of Dichapetalins

1. Ordinary dichapetalin-type triterpenoids with a 2-phenylpyran moiety fused to the A ring

1.1 With a lactone side chain at C-17

1.3 With a **lactol** side chain at C-17

1.5 With a **spiroketal** side chain at C-17

2. Skeletal new dichapetalin-type triterpenoids

2.1 With a 4,5-spirocyclic system fused to the A ring

References

(1) Achenbach, H.; Asunka, S. A.; Waibel, R.; Addae-Mensah, I.; Oppong, I. V. *Nat. Prod. Lett.*, 1995, 7, 93–100.

(2) Addae-Mensah, I.; Waibel, R.; Asunka, S. A.; Oppong, I. V.; Achenbach, H. *Phytochemistry*, 1996, 43, 649–656.

1.2 With a methyl ester side chain at C-17

1.4 With a **furan** side chain at C-17

2.1 With a 6/9/6 heterotricyclic system fused to the A ring

(3) Jing, S. X.; Luo, S. H.; Li, C. H.; Hua, J.; Wang, Y. L.; Niu, X. M.; Li, X. N.; Liu, Y.; Huang, C. S.; Wang, Y.; Li, S. H. *J. Nat. Prod.*, 2014, **77**, 882–893.

(4) Osei-Safo, D.; Chama, M. A.; Addae-Mensah, I.; Waibel, R.; Asomaning, W. A.; Oppong, I. V. *Phytochemisty Lett.*, 2008, **1**, 147–150.

(5) Fan, Y. Y.; Zhang, H.; Zhou, Y.; Liu, H. B.; Tang, W.; Zhou, B.; Zuo, J. P.; Yue, J. M. *J. Am. Chem. Soc.*, 2015, **137**, 138–141.

(6) Fan, Y. Y.; Gan, L. S.; Liu, H. C.; Li, H.; Xu, C. H.; Zuo, J. P.; Ding, J.; Yue, J. M. Org. Lett., 2017, 19, 4580–4583.

2. Experimental Section

2.1 General Experimental Procedures

The melting points were measured on an SGM X-4 analyzer (Shanghai Precision & Scientific Instrument Co. Ltd.) and were uncorrected. The X-ray crystallography was performed on a Bruker APEX-II CCD diffractometer equipped with graphite-monochromated Cu K α radiation ($\lambda = 1.54178$ Å). Optical rotations were determined on an Autopol VI polarimeter at room temperature; concentrations were reported in g/100 mL. UV data were obtained using a Shimadzu UV-2550 spectrophotometer. IR spectra were acquired on a Thermo IS5 spectrometer with KBr disks. NMR spectra were obtained on a Bruker AM-500 NMR spectrometer. ESIMS data were recorded via a Shimadzu LC-MS-2020 or Thermo Fisher Finnigan LCQ-DECA mass spectrometer, and HRMS (ESI) data were carried out on a Waters-Micromass Q-TQF Ultima Global or an Agilent 1290-6545 UHPLC-QTOF mass spectrometer, respectively. Semipreparative HPLC was performed on a Waters 1525 binary pump system with a Waters 2487 detector (210 nm) using a YMC-Pack ODS-A (250×10 mm, S-5 μ m). Silica gel (200–300 mesh, Qingdao Haiyang Chemical Co., Ltd., China), C18 reversed-phase (RP-C18) silica gel (20–45 µM, Fuji Silysia Chemical Ltd., Japan), CHP20P MCI gel (75–150 µM, Mitsubishi Chemical Corporation), and Sephadex LH-20 gel (Amersham Biosciences) were used for column chromatography (CC). Pre-coated silica gel GF254 plates (Qingdao Haiyang Chemical Co., Ltd.) were used for TLC detection. All solvents used for CC and synthesis were of analytical grade (Shanghai Chemical Reagents Co., Ltd.), and solvents used for HPLC were of HPLC grade. (J & K Scientific Ltd.)

2.2 Plant Material

The twigs and leaves of *Dichapetalum gelonioides* were collected from Ganning in Hainan Province, People's Republic of China, and were authenticated by Prof. S. M. Huang of Hainan University. A voucher specimen (accession no.: DG-2018HN-1Y) has been deposited in the Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

2.3 Extraction and Isolation

The dried powders of *D. gelonioides* (8 kg) was percolated with 95% EtOH (3×25 L, RT) and the crude extract (200 g) was partitioned with EtOAc/H₂O. The EtOAc soluble fraction (90 g) was fractionated using an MCI gel column eluted with MeOH/H₂O (from 3:7 to 10:0) to afford five major fractions (A–E). Fraction C (7.2 g) was separated by passage over a silica gel CC (petroleum ether/acetone, 8:1 to 1:2) to give five fractions (C1–C5). Fraction C4 (2.1 g) was subjected to a silica gel CC (petroleum ether/acetone, 5:1 to 1:5) and yielded six major fractions (C4a–C4f). C4c (130 mg) was purified by semipreparative HPLC (75% CH₃CN in H₂O, 3 mL/min) to afford **2** (13 mg) and **3** (24 mg). C4d (100

mg) was purified by semipreparative HPLC (75% CH₃CN in H₂O, 3 mL/min) to afford compound 13 (3.1 mg). Fraction C4e (700 mg) was fractionated on a column of silica gel (dichloromethane/methanol, 100:1 to 10:1), then purified by semipreparative HPLC (70-80% CH₃CN in H₂O, 3 mL/min) to afford compounds 7 (7.5 mg) and 9 (6.2 mg). Fraction D (7.9 g) was fractionated by a series of CC columns, including a reversed C-18 silica gel column (MeOH/H₂O, 5:5 to 10:0), and two steps of silica gel columns (fist eluted by petroleum ether-acetone, from 20:1 to 1:5, then dichloromethane-isopropanol, from 40:1 to 25:1), before being purified by semipreparative HPLC (70-80% CH₃CN in H₂O, 3 mL/min) to afford compounds 14 (1.5 mg), 18 (10 mg) and 20 (8.2 mg). Fraction E (8.2 g) was chromatographed over a silica gel CC (petrol ether-acetone, 20:1 to 1:1) to afford six subfractions E1–E6. Fraction E3 (720 mg) was orthogonally chromatographed on a reversed column (MeOH/H₂O, 5:5 to 10:0) and a normal (dichloromethane-isopropanol, 80:1 to 25:1) silica gel columns before being purified by semipreparative HPLC to afford compounds 4 (15 mg). Fraction E4 (1.1 g) was fractionated by silica gel CC (dichloromethane-isopropanol, 80:1 to 25:1) to afford E4a-E4f. Application of semipreparative HPLC (80% MeOH in H₂O, 3 mL/min) led to the purification of 8 (2.7 mg), 11 (9.0 mg) and 12 (9.6 mg) from fraction E4a; 10 (9.1 mg, 80% MeOH in H₂O, 3 mL/min) from E4b; 15 (5.5 mg, 65% CH₃CN in H₂O, 3 mL/min) from E4c; 6 (8.5 mg, 65% CH₃CN in H₂O, 3 mL/min) from E4d; and 1 (15 mg, 75% CH₃CN in H₂O, 3 mL/min) from E4e, respectively. Fraction E5 (570 mg) was chromatographed on a reversed C-18 silica gel column, and then purified by semipreparative HPLC to afford 5 (4.1 mg) and 17 (12 mg).

2.4 Physical constants and spectral data of 1-20

Compound 1 (5R, 7R, 8R, 9R, 10S, 13S, 14S, 17S, 20R, 22R, 23S): colorless crystals (MeOH); mp: 236–238 °C; $[\alpha]^{22}_{D}$ +4 (*c* 0.6, MeOH); UV (MeOH) λ_{max} (log ε) 283 (4.1) nm; ECD (MeOH) λ_{max} (log ε) 285 (+1), 226 (-4) nm; IR (KBr) ν_{max} 3467, 2962, 1748, 1599, 1391, 1299, 1197, 1168, 1028, 968, 754, 695 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 1; (-)-ESIMS *m/z* 629 [M + HCO₂]⁻; (-)-HRMS (ESI) *m/z* 629.3492 [M + HCO₂]⁻ (calcd for C₃₉H₄₉O₇, 629.3484).

Compound 2 (5R, 7R, 8R, 9R, 10S, 13S, 14S, 17R, 20R, 23R): white, amorphous powder; $[\alpha]^{22}_{D}$ +22 (*c* 0.5, MeOH); UV (MeOH) λ_{max} (log ε) 283 (4.3) nm; ECD (MeOH) λ_{max} (log ε) 287 (+3), 227 (-5) nm; IR (KBr) ν_{max} 3432, 2962, 2875, 1760, 1593, 1447, 1385, 1308, 1191, 1093, 1043, 986, 751, 695 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 1; (-)-ESIMS *m/z* 629 [M + HCO₂]⁻; (-)-HRMS (ESI) *m/z* 629.3452 [M + HCO₂]⁻ (calcd for C₃₉H₄₉O₇, 629.3484).

Compound 3 (5R, 8R, 9R, 10S, 13S, 14S, 17S, 20R, 22R, 23S): colorless crystals (MeOH); mp: 232–234 °C; $[\alpha]^{22}_{D}$ –32 (*c* 0.5, MeOH); UV(MeOH) λ_{max} (log ε) 280 (4.1) nm; ECD (MeOH) λ_{max} (log ε) 301 (–2),

266 (+2), 227 (-10) nm; IR (KBr) ν_{max} 3506, 2962, 2914, 1787, 1700, 1448, 1422, 1294, 1271, 1159, 985, 751, 694 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 1; (-)-ESIMS *m/z* 627 [M + HCO₂]⁻; (-)-HRMS (ESI) *m/z* 627.3329 [M + HCO₂]⁻ (calcd for C₃₉H₄₇O₇, 627.3327).

Compound 4 (5R, 8R, 9R, 10S, 13S, 14S, 17R, 20R, 23R): white, amorphous powder; $[\alpha]^{22}_{D}$ –17 (*c* 0.4, MeOH); UV(MeOH) λ_{max} (log ε) 281 (4.0) nm; ECD (MeOH) λ_{max} (log ε) 299 (–2), 265 (+2), 227 (–6) nm; IR (KBr) ν_{max} 3397, 2964, 1765, 1704, 1448, 1389, 1373, 1268, 1194, 1092, 994, 737, 694, 658 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 1; (–)-ESIMS *m/z* 627 [M + HCO₂][–]; (–)-HRMS (ESI) *m/z* 627.3327 [M + HCO₂][–] (calcd for C₃₉H₄₇O₇, 627.3327).

Compound 5 (2S, 5R, 7R, 8R, 9R, 10S, 13S, 14S, 17S, 20R, 22R, 23S, 2'S): white, amorphous powder; $[\alpha]^{22}_{D}$ –40 (*c* 0.4, MeOH); ECD (MeOH) λ_{max} (log ε) 286 (–1), 256 (–1), 220 (–7) nm; IR (KBr) ν_{max} 3411, 2954, 2872, 1759, 1453, 1386, 1267, 1194, 1161, 1055, 995, 735, 698 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 2; (+)-ESIMS *m/z* 617 [M + H]⁺; (–)-ESIMS *m/z* 615 [M – H][–], 661 [M + HCO₂][–]; (–)-HRMS (ESI) *m/z* 661.3381 [M + HCO₂][–] (calcd for C₃₉H₄₉O₉, 661.3382).

Compound 6 (2R, 5R, 7R, 8R, 9R, 10S, 13S, 14S, 17S, 20R, 22R, 23S, 2 R): white, amorphous powder; $[\alpha]^{22}_{D}$ –55 (*c* 0.5, MeOH); ECD (MeOH) λ_{max} (log ε) 285 (–1), 255 (–1), 225 (–16) nm; IR (KBr) ν_{max} 3416, 2937, 1762, 1452,1385, 1265, 1161, 1029, 1002, 986, 914, 734, 699 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 2; (–)-ESIMS *m/z* 661 [M + HCO₂][–]; (–)-HRMS (ESI) *m/z* 661.3378 [M + HCO₂][–] (calcd for C₃₉H₄₉O₉, 661.3382).

Compound 7 (2S, 5R, 7R, 8R, 9R, 10S, 13S, 14S, 17R, 20R, 23R, 2'S): white, amorphous powder; $[\alpha]^{22}_{D}$ -42 (*c* 0.8, MeOH); ECD (MeOH) λ_{max} (log ε) 276 (-1), 251 (-1), 219 (-7) nm; IR (KBr) ν_{max} 3426, 2956, 2872, 1772, 1620, 1447, 1385, 1325, 1200, 1090, 1049, 995, 763, 698, 662 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 2; (-)-ESIMS *m/z* 661 [M + HCO₂]⁻; (-)-HRMS (ESI) *m/z* 661.3376 [M + HCO₂]⁻ (calcd for C₃₉H₄₉O₉, 661.3382).

Compound **8** (*2R*, *5R*, *7R*, *8R*, *9R*, *10S*, *13S*, *14S*, *17R*, *20R*, *23R*, *2*'*R*): white, amorphous powder; $[\alpha]^{22}_{D}$ –28 (*c* 0.4, MeOH); ECD (MeOH) λ_{max} (log ε) 287 (–1), 251 (0), 223 (–9) nm; IR (KBr) v_{max} 3438, 2926, 1759, 1452, 1389, 1326, 1260, 1193, 1090, 1041, 995, 941, 734, 698, 661 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 2; (–)-ESIMS *m/z* 661 [M + HCO₂][–]; (–)-HRMS (ESI) *m/z* 661.3381 [M + HCO₂][–] (calcd for C₃₉H₄₉O₉, 661.3382).

Compound **9** (2*S*, 5*R*, 8*R*, 9*R*, 10*S*, 13*S*, 14*S*, 17*S*, 20*R*, 22*R*, 23*S*, 2'*S*): white, amorphous powder; $[\alpha]^{22}_{D}$ -83 (*c* 0.3, MeOH); ECD (MeOH) λ_{max} (log ε) 292 (-6), 254 (-2), 222 (-9) nm; IR (KBr) ν_{max} 3434, 2958, 1767, 1705, 1453, 1389, 1272, 1167, 1070, 999, 759, 735, 699 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500

MHz), see Table 3; (+)-ESIMS *m/z* 615 [M + H]⁺; (-)-ESIMS *m/z* 659 [M + HCO₂]⁻; (-)-HRMS (ESI) *m/z* 659.3201 [M + HCO₂]⁻ (calcd for C₃₉H₄₇O₉, 659.3226).

Compound **10** (*2R*, *5R*, *8R*, *9R*, *10S*, *13S*, *14S*, *17S*, *20R*, *22R*, *23S*, *2R*): white powder; $[\alpha]^{22}_{D}$ –113 (*c* 0.3, MeOH); ECD (MeOH) λ_{max} (log ε) 294 (–3), 255 (–1), 222 (–14) nm; IR (KBr) ν_{max} 3407, 2938, 2877, 1768, 1704, 1452, 1391, 1166, 1074, 699 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 3; (+)-ESIMS *m*/*z* 615.5 [M + H]⁺; (–)-ESIMS *m*/*z* 659.5 [M + HCO₂]⁻; (–)-HRMS (ESI) *m*/*z* 659.3216 [M + HCO₂]⁻ (calcd for C₃₉H₄₇O₉, 659.3226).

Compound **11** (2*S*, 5*R*, 8*R*, 9*R*, 10*S*, 13*S*, 14*S*, 17*R*, 20*R*, 23*R*, 2'*S*): white, amorphous powder; $[\alpha]^{22}_{D}$ –91 (*c* 0.3, MeOH); ECD (MeOH) λ_{max} (log ε) 296 (–4), 245 (0), 219 (–8) nm; IR (KBr): v_{max} 3418, 2958, 2876, 1766, 1705, 1602, 1453, 1389, 1195, 1056, 758, 735, 699, 660 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 3; (+)-ESIMS *m/z* 615.5 [M + H]⁺; (–)-ESIMS *m/z* 659.5 [M + HCO₂]⁻; (–)-HRMS (ESI) *m/z* 659.3224 [M + HCO₂]⁻ (calcd for C₃₉H₄₇O₉, 659.3226).

Compound **12** (*2R*, *5R*, *8R*, *9R*, *10S*, *13S*, *14S*, *17R*, *20R*, *23R*, *2R*): white, amorphous powder; $[\alpha]^{22}_{D}$ –50 (*c* 0.3, MeOH); ECD (MeOH) λ_{max} (log ε) 292 (–4), 255 (–2), 225 (–6) nm; IR (KBr) ν_{max} 3435, 2923, 2854, 1766, 1704, 1454, 1375, 1326, 1264, 1193, 1092, 966, 940, 878, 736, 699 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 3; (–)-ESIMS *m/z* 613 [M – H][–], *m/z* 659 [M + HCO₂][–]; (–)-HRMS (ESI) *m/z* 613.3184 [M – H][–] (calcd for C₃₈H₄₅O₇, 613.3171).

Compound **13** (5*R*, 7*R*, 8*R*, 9*R*, 10*S*, 13*S*, 14*S*, 17*S*, 20*R*, 22*R*, 23*S*): white, amorphous powder; $[\alpha]^{22}_{D}$ –69 (*c* 0.2, MeOH); UV(MeOH) λ_{max} (log ε) 223 (4.0), 293 (4.2) nm; ECD (MeOH) λ_{max} (log ε) 279 (–4), 257 (–3), 234 (–7), 210 (–1) nm; IR (KBr) ν_{max} 3414, 2927, 1762, 1603, 1449, 1384, 1265, 1161, 1068, 1002, 760, 736, 693 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 4; (–)-ESIMS *m/z* 643 [M + HCO₂]⁻, 579 [M – H₂O – H]⁻; (+)-HRMS (ESI) *m/z* 599.3376 [M + H]⁺(calcd for C₃₈H₄₇O₆, 599.3367).

Compound 14 (5R, 7R, 8R, 9R, 10S, 13S, 14S, 17R, 20R, 23R): colorless crystals (MeOH); mp: 190–192 °C; $[\alpha]^{22}_{D}$ –54 (*c* 0.3, MeOH); UV(MeOH) λ_{max} (log ε) 223 (4.0), 295 (4.2) nm; ECD (MeOH) λ_{max} (log ε) 286 (–3), 245 (–1), 232 (–5), 216 (+2) nm; IR (KBr) ν_{max} 3397, 2958, 1761, 1602, 1384, 1196, 760, 693 cm⁻¹; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 4; (+)-ESIMS *m/z* 599.5 [M + H]⁺, (–)-ESIMS *m/z* 643.6 [M + HCO₂]⁻; (–)-HRMS (ESI) *m/z* 643.3262 [M + HCO₂]⁻ (calcd for C₃₉H₄₇O₈, 643.3276).

Compound **15** (*5R*, *8R*, *9R*, *10S*, *13S*, *14S*, *17S*, *20R*, *22R*, *23S*): white, amorphous powder; $[\alpha]^{22}_{D}$ –131 (*c* 0.2, MeOH); UV(MeOH) λ_{max} (log ε) 222 (4.0), 293 (4.2) nm; IR (KBr): v_{max} 3417, 2961, 2878, 1770, 1705, 1602, 761, 736, 694 cm⁻¹; ECD (MeOH) λ_{max} (log ε) 294 (–7), 251 (–1), 232 (–9), 214 (+3) nm; ¹H and ¹³C NMR (CDCl₃, 500 MHz), see Table 4; (+)-ESIMS *m/z* 597.6 [M + H]⁺, (–)-ESIMS *m/z* 641.4

[M + HCO₂]⁻; (-)-HRMS (ESI) *m*/*z* 641.3101 [M + HCO₂]⁻ (calcd for C₃₉H₄₅O₈, 641.3120).

Compound **16** (*5R*, *8R*, *9R*, *10S*, *13S*, *14S*, *17R*, *20R*, *23R*): white, amorphous powder; $[\alpha]^{22}_{D}$ –100 (*c* 0.1, MeOH); UV(MeOH) λ_{max} (log ε) 222 (3.9), 292 (4.1) nm; ECD (MeOH) λ_{max} (log ε) 294 (–7), 251 (–1), 232 (–5), 214 (+3) nm; IR (KBr): v_{max} 3443, 2961, 2878, 1770, 17065, 1603, 1165, 1069, 760, 736, 693 cm⁻¹; ¹H and ¹³C NMR data (CDCl₃, 500 MHz), see Table 4; (+)-ESIMS *m/z* 597.4 [M + H]⁺, (–)-ESIMS *m/z* 595.0 [M – H]⁻; (+)-HRMS (ESI) *m/z* 597.3219 [M + H]⁺ (calcd for C₃₈H₄₅O₆, 597.3211).

Compound 17 (5*R*, 7*R*, 8*R*, 9*R*, 10*S*, 13*S*, 14*S*, 17*S*, 20*R*, 22*R*, 23*S*): white, amorphous powder; $[\alpha]^{22}_{D}$ –24 (*c* 0.3, MeOH); UV(MeOH) λ_{max} (log ε) 224 (4.1), 255 (4.1) nm; ECD (MeOH) λ_{max} (log ε) 288 (+1), 220 (–8) nm; IR (KBr): v_{max} 3425, 2959, 2927, 2876, 1767, 1683, 1661, 1597, 1448, 1384, 1264, 735, 694 cm⁻¹; ¹H and ¹³C NMR data (acetone-*d*₆, 500 MHz), see Table 5; (+)-ESIMS *m*/*z* 615.6 [M + H]⁺; (–)-ESIMS *m*/*z* 659.5 [M + HCO₂]⁻; (–)-HRESIMS *m*/*z* 659.3220 [M + HCO₂]⁻ (calcd for C₃₉H₄₇O₉, 659.3226).

Compound **18** (*5R*, *7R*, *8R*, *9R*, *10S*, *13S*, *14S*, *17R*, *20R*, *23R*): white, amorphous powder; $[\alpha]^{22}_{D}$ –11 (*c* 0.4, MeOH); UV(MeOH) λ_{max} (log ε) 219 (4.0), 255 (4.1) nm; ECD (MeOH) λ_{max} (log ε) 278 (+1), 219 (–5) nm; IR (KBr): v_{max} 3444, 2960, 2877, 1765, 1687, 1661, 1597, 1448, 1391, 1327, 1195, 734, 693 cm⁻¹; ¹H and ¹³C NMR data (acetone-*d*₆, 500 MHz), see Table 5; (+)-ESIMS *m/z* 615.8 [M + H]⁺; (–)-ESIMS *m/z* 659.5 [M + HCO₂]⁻; (–)-HRESIMS *m/z* 659.3215 [M + HCO₂]⁻ (calcd for C₃₉H₄₇O₉, 659.3226).

Compound **19** (*5R*, *8R*, *9R*, *10S*, *13S*, *14S*, *17S*, *20R*, *22R*, *23S*): white, amorphous powder; $[\alpha]^{22}_{D}$ –40 (*c* 0.1, MeOH); UV(MeOH) λ_{max} (log ε) 215 (4.1), 253 (4.1) nm; ECD (MeOH) λ_{max} (log ε) 295 (–4), 263 (–1), 220 (–10) nm; IR (KBr): v_{max} 3397, 2970, 2926, 1770, 1705, 1663, 1597, 1449, 1393, 1271, 1196, 1172, 735, 701 cm⁻¹; ¹H and ¹³C NMR data (acetone-*d*₆, 500 MHz), see Table 5; (+)-ESIMS *m/z* 613.3 [M + H]⁺, (–)-ESIMS 611.3 [M – H]⁻; (–)-HRMS (ESI) *m/z* 613.3160 [M + H]⁻ (calcd for C₃₈H₄₅O₇, 613.3160).

Compound **20** (*5R*, *8R*, *9R*, *10S*, *13S*, *14S*, *17R*, *20R*, *23R*): white, amorphous powder; $[\alpha]^{22}D-85$ (*c* 0.3, MeOH); UV(MeOH) λ_{max} (log ε) 215 (4.1), 251 (4.1) nm; ECD (MeOH) λ_{max} (log ε) 293 (–4), 266 (–1), 219 (–7) nm; IR (KBr): v_{max} 3444, 2963, 2879, 1766, 1704, 1662, 1597, 1448, 1195, 735, 702 cm⁻¹; ¹H and ¹³C NMR data (acetone-*d*₆, 500 MHz), see Table 5; (+)-ESIMS *m/z* 613.3 [M + H]⁺, (–)-ESIMS 657.6 [M + HCO₂]⁻; (–)-HRMS (ESI) *m/z* 657.3057 [M + HCO₂]⁻ (calcd for C₃₉H₄₅O₉, 657.3069).

2.5 X-ray Crystallographic Analysis for Compounds 1, 3 and 14

2.5.1 X-ray Crystallographic Data of 1

Colorless single crystals of compound **1** were obtained in MeOH at room temperature. A suitable crystal with approximate dimensions $0.12 \times 0.1 \times 0.08 \text{ mm}^3$, was selected for the X-ray crystallographic analysis on the Bruker APEX-II CCD diffractometer using Cu K α radiation ($\lambda = 1.34139$ Å). Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using least-squares minimisation.¹ Crystallographic data of **1** were deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2010767). Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: + 44(0)-1233-336033 or e-mail: deposit@ccdc.cam.ac.uk].

Crystallographic data of 1. C₃₈H₄₈O₅, M = 584.76, Monoclinic, space group was P121, a = 46.6254(9)Å, b = 6.72390(10) Å, c = 10.3609(2) Å, $\alpha = \gamma = 90$ °, $\beta = 96.1270(10)$ °, V = 3229.63(10) Å³, Z = 4, T = 169.98 K, $D_{calcd} = 1.203$ g/cm³, μ (Cu K α) = 0.396 mm⁻¹, and F(000) = 1264. A total of 21379 reflections were collected in the range 6.636°< 2θ < 109.770°, including 6014 independent reflections ($R_{int} = 4.67\%$, $R_{sigma} = 3.96\%$). The final R_1 was 0.0554 ($I > 2\sigma(I)$), and wR_2 was 0.1514 (all data). The goodness of fit on F^2 was 1.021. The absolute configuration was determined by the Flack parameter = 0.04 (13).

2.5.2 X-ray Crystallographic Data of 3

Colorless single crystals of compound **3** were obtained in MeOH at room temperature. A suitable crystal with approximate dimensions $0.09 \times 0.06 \times 0.04 \text{ mm}^3$, was selected for the X-ray crystallographic analysis on the Bruker D8 VENTURE diffractometer using Cu K α radiation ($\lambda = 1.54178$ Å). Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using least-squares minimisation.¹ Crystallographic data of **3** were deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2082769). Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: + 44(0)-1233-336033 or e-mail: deposit@ccdc.cam.ac.uk].

Crystallographic data of 3. C₃₈H₄₆O₅, M = 582.75, Monoclinic, space group was *C*2, a = 18.0938(10)Å, b = 7.0743(4) Å, c = 24.2239(14) Å, $\alpha = \gamma = 90$ °, $\beta = 92.505(3)$ °, V = 3097.7(3) Å³, Z = 4, T = 170.0 K, $D_{calcd} = 1.250$ g/cm³, μ (Cu K α) = 0.641 mm⁻¹, and F(000) = 1256.0. A total of 19994 reflections were collected in the range 3.65°< 2θ < 144.206°, including 5765 independent reflections ($R_{int} = 5.67\%$, $R_{sigma} = 5.50\%$). The final R_1 was 0.0516 ($I > 2\sigma(I)$), and wR_2 was 0.1279 (all data). The goodness of fit on F^2 was 1.087. The absolute configuration was determined by the Flack parameter = 0.13 (12).

2.5.3 X-ray Crystallographic Data of 14

Colorless single crystals of compound **14** were obtained in MeOH at room temperature. A suitable crystal with approximate dimensions $0.12 \times 0.08 \times 0.06 \text{ mm}^3$, was selected for the X-ray crystallographic analysis on the Bruker APEX-II CCD diffractometer using Cu K α radiation ($\lambda = 1.34139$ Å). Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using least-squares minimisation.¹ Crystallographic data of **14** were deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2010766). Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: + 44(0)-1233-336033 or e-mail: deposit@ccdc.cam.ac.uk].

Crystallographic data of **14**. C₃₉H₅₀O₇, M = 630.79, orthorhombic, space group was $P2_12_12_1$, a = 10.4979(3) Å, b = 43.8716(9) Å, c = 7.7286(2) Å, $\alpha = \beta = \gamma = 90$ °, V = 3508.99(13) Å³, Z = 4, T = 170.02 K, $D_{calcd} = 1.194$ g/cm³, μ (Cu K α) = 0.415 mm⁻¹, and F(000) = 1360. A total of 36336 reflections were collected in the range 7.012 °< 2 θ < 109.848 °, including 6629 independent reflections ($R_{int} = 3.97\%$, $R_{sigma} = 2.55\%$). The final R_1 was 0.0384 ($I > 2\sigma(I)$), and wR_2 was 0.0998 (all data). The goodness of fit on F^2 was 1.013. The absolute configuration was determined by the Flack parameter = 0.03 (5).

3. Structural Elucidation Section

3.1 structure elucidation of 1–20

The structure of dichapegenin A (1) was assigned by the COSY, HMBC, and NOESY data, as drawn (Figure S1).

Figure S1. (A) Key HMBC, COSY (bold bonds), and (B) NOESY correlations for 1.

Dichapegenin B (2) shared the molecular formula, C₃₈H₄₈O₅, with 1 based on the HRMS (ESI) and ¹³C NMR data. Analysis of the NMR data (Table 1) of 2 revealed its structure to be closely related with that of compound 1, with the only difference being the location of the hydroxy group within the γ -lactone moiety. Instead of having a HO-22 group in 1, compound 2 contained a HO-20 group, as deduced by the HMBC correlations (Figure S29) from H₂-22 to C-20 (& 79.8) and C-21 (& 177.1). Observed negative Cotton effect at ~230 nm in the ECD spectrum caused by a γ -lactone n $\rightarrow \pi^*$ transition, suggested a 23*S* absolute configuration for 2.² The downfield shifted H-23 ($\Delta \delta_{\rm H}$ 0.29) of 2 to that in dichapetalin A,³ caused by a 1,3-diaxial steric hindrance effect between HO-20 and H-23, indicated that the HO-20 group is α -oriented. The stereochemistry for other chiral carbons in compound 2 was assigned the same as these in compound 1, as supported by their similar NMR and NOESY data (Figure S30).

The molecular formula, $C_{38}H_{46}O_5$, of **3**, established by the HR ESIMS and ¹³C NMR data combined with initial interpretation of the NMR data (Table S1), suggested compound **3** to be a structural analogue of **1**. Comparison of the NMR data revealed compound **3** contains a C-7 keto-carbonyl group instead of the HO-7 group in **1**, based on the HMBC correlations from H₃-18 ($\delta_{\rm H}$ 1.20, s) and H-5 ($\delta_{\rm H}$ 1.67, dd, J =14.3, 3.0 Hz) to C-7 ($\delta_{\rm C}$ 214.7). The structure of dichapegenin C (**3**), established by the HMBC and NOESY data (Figures S38 and S39), was thus assigned as shown.

Analysis of the NMR data indicated that compound **4** is structurally related with that of compound **2**, with the major difference being the presence of an extra keto-carbonyl group. The carbonyl group was attached to C-7, as verified by the HMBC cross-peaks from H₃-18 ($\delta_{\rm H}$ 1.21, s) and H-5 ($\delta_{\rm H}$ 1.68, dd, J = 14.3, 3.0 Hz) to C-7 ($\delta_{\rm C}$ 214.7). The structure of dichapelonin D (**4**) was thus established by the HMBC and NOESY data (Figures S47 and S48), as shown.

Four pairs of isolates 5/6, 7/8, 9/10, and 11/12, each sharing a common 2D structure with a novel phenyl-endoperoxide functionality, were established by their HMBC and COSY correlations (Figure S2A). Compounds 13–15 were verified to possess a new phenyl-furan moiety that fused with the A ring through C-2 and C-3 (Figure S2B). Compounds 17, 18, and 20 were assigned to possess a novel phenyl-enedione functionality that furnished between the A ring and C-3 appendage (Figure S2C).

Figure S2. Key HMBC and COSY (bold bonds) correlations for the shared partial structures of (A) compounds **5–12**, (B) compounds **13–15**, and (C) compounds **17**, 1**8**, and **20**.

Table S1. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of compounds 1–4 in CDCl₃.

	1				2		3			4		
No.	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H}$, mult (J in Hz)	δς	type	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H}$, mult (J in Hz)	δc	type
1α	1.76, brd (17.3)	42.0	CH ₂	1.77, brd (17.4)	42.0	CH ₂	1.73, brd (17.4)	41.8	CH ₂	1.72, brd (17.5)	41.8	CH ₂
1β	2.23, dd (17.3, 6.6)			2.23, dd (17.4, 6.6)			2.31, dd (17.4, 6.6)			2.30, dd (17.5, 6.6)		
2	5.85, dd (6.6, 1.9)	119.8	СН	5.85, dd (6.6, 2.1)	119.9	CH	5.85, dd (6.6, 2.1)	119.3	СН	5.86, dd (6.6 2.1)	119.4	CH
3	, , , ,	144.4	С		144.4	С		143.9	С		143.9	С
4		36.4	Ċ		36.4	Ċ		37.4	Ċ		37.4	Ċ
5	1 84*	44.2	CH	1 84*	44.2	СH	1 67 dd (14 3 3 0)	54.1	СH	1.68 dd (14.3.3.0)	54.1	CH
6α	1 84*	25.9	CH ₂	1.82*	25.9	CH ₂	2.32 dd $(13.0, 3.0)$	37.4	CH ₂	2.32 dd (13.0, 3.0)	37.4	CH2
68	1.01	2010	0112	1.02	20.0	0112	2.82, dd (13.0, 14.3)	57.1	0112	2.52, dd (13.0, 3.6)	57.1	0112
7	3.98 brs	72.8	СН	3.97 brt (2.7)	72.9	СН	2.02, uu (15.0, 11.5)	214.7	C	2.01, 44 (15.0, 11.5)	214.7	С
8	5.96, 615	36.3	C	5.57, 617 (2.7)	36.2	C		48.1	Č		48.0	č
0	201 dd (2024)	46.1	СН	2.00 dd (3.0, 2.5)	15.7	СН	1.94 dd (3.0, 2.6)	53.0	СН	1.96 dd (3.1, 2.4)	52.6	СН
10	2.01, du (2.9, 2.4)	40.1	C	2.00, uu (5.0, 2.5)	45.7	C	1.94, dd (5.0, 2.0)	25.7	C	1.90, uu (5.1, 2.4)	25.7	C
10	5 52 44 (10.0, 2.4)	125.2	CH	5.43 dd (10.0, 2.5)	124.1	CH	5 44 44 (0 0 2 6)	121.5	CH	5 37 dd (10 1 2 4)	120.4	СЦ
12	5.52, dd (10.0, 2.4)	123.2		5.45, dd (10.0, 2.5)	124.1		5.44, dd (9.9, 2.0)	121.5		5.57, dd (10.1, 2.4)	120.4	CII
12	6.13, dd (10.0, 2.9)	128.4	Сн	6.49, dd (10.0, 3.0)	131.3	Сн	6.24, dd (9.9, 3.0)	130.5	Сн	6.60, dd (10.1, 3.1)	133.5	СН
15		29.5	C		29.1	C		30.8	C		30.3	C
14	1.71 11 (12.7 0.2)	35.7	C	1 (0, 11 (12 (0.2)	35.7	C	214 11(12.0.9.2)	35.9	C	216 11 (121 0.5)	36.0	CII
15α 15α	1./1, dd (12./, 8.3)	25.0	CH ₂	1.68, dd (12.6, 8.3)	24.9	CH ₂	2.14, dd (13.0, 8.3)	27.1	CH ₂	2.16, dd (13.1, 8.5)	26.9	CH ₂
15 <i>β</i>	2.08, m	22.1	<u>au</u>	2.05		au	1.99, m	22.2	<u>au</u>	1.98, m	24.0	CI I
16α	1.16*	23.1	CH_2	1.10*	24.7	CH_2	1.20*	23.3	CH_2	1.13*	24.9	CH_2
16β	1.82*			1.81*			1.76*			1.77*		
17	2.67, ddd (11.8, 7.4, 4.8)	40.1	СН	2.54, dd (11.1, 7.4)	47.8	СН	2.57, ddd (12.1, 7.5, 5.0)	40.2	СН	2.46, dd (11.1, 7.6)	47.8	СН
18	0.93, s	17.6	CH_3	0.94, s	17.6	CH_3	1.20, s	17.1	CH_3	1.21, s	17.1	CH_3
19	0.99, s	17.8	CH ₃	0.99, s	17.8	CH ₃	1.19, s	17.4	CH ₃	1.18, s	17.4	CH ₃
20	3.12, dd (9.6, 4.8)	48.9	СН		79.8	С	3.06, dd (9.3, 5.0)	48.9	СН		79.9	С
21		175.3	С		177.1	С		175.3	С		177.2	С
22α		74.3	СН	2.40, dd (13.8, 5.6)	38.3	CH ₂		74.3	СН	2.38, dd (13.6, 5.7)	38.5	CH_2
22β	4.22, dd (9.6, 7.8)			2.04*			4.22, dd (9.3, 7.5)			2.04, dd (13.6, 9.4)		
23	4.90, dd (8.7, 7.8)	79.3	СН	5.43, m	74.9	CH	4.89, dd (8.9, 7.5)	79.2	СН	5.43, ddd (9.4, 8.7, 5.7)	74.9	CH
24	5.53, dq (8.7, 1.4)	119.6	СН	5.51, dq (8.7, 1.3)	121.5	CH	5.49, dq (8.9, 1.5)	119.7	СН	5.52, dq (8.7, 1.5)	121.6	CH
25		144.3	С		142.5	С		144.2	С		142.5	С
26a	4.08, d (15.2)	67.3	CH_2	4.06, d (15.2)	67.2	CH_2	4.07, d (15.0)	67.3	CH_2	4.09, brs	67.3	CH_2
26b	4.11, d (15.2)			4.09, d (15.2)			4.09, d (15.0)					
27	1.81, d (1.4)	14.6	CH ₃	1.77, d (1.3)	14.3	CH ₃	1.79, d (1.5)	14.6	CH ₃	1.77, d (1.5)	14.3	CH ₃
28	1.14. s	29.5	CH ₃	1.14. s	29.5	CH ₃	1.11. s	29.3	CH ₃	1.11. s	29.3	CH ₃
29	1.02. s	21.3	CH ₃	1.02. s	21.3	CH ₃	1.06. s	21.0	CH ₃	1.05. s	21.0	CH ₃
30a	0.90. d (5.0)	15.1	CH ₂	0.96 d (5.2)	16.1	CH ₂	0.95 d (5.9)	13.9	CH ₂	1.00 d (6.1)	14.9	CH ₂
30b	1.23, brd (5.0)			1.31, brd (5.2)			1.17, brd (5.9)			1.28 brd (6.1)		
1'	6 81 d (15 8)	129.0	CH	6.81 d (15.8)	129.1	CH	6 78 d (15 7)	128.2	СН	6.78 d (15.8)	128.3	CH
2'	6 70 d (15 8)	128.5	СН	6.70 d (15.8)	128.5	СН	6.71 d(15.7)	120.2	СН	6.71 d (15.8)	129.2	CH
2'	0.70, 0 (15.0)	138.1	C	0.70, u (15.0)	138.2	C	0.71, 0 (10.7)	137.0	C	0.71, 0 (15.0)	137.0	C
J 4'(8')	7.40 brd (7.6)	126.4	СН	7.40 brd (7.6)	126.4	СН	7.40 brd (7.2)	126.5	СН	7.40 brd (7.2)	126.5	СН
+(0) 5'(7')	7.30 hrt(7.6)	120.4	CH	7.31 brt(7.6)	120.4	CH	7.31 hrt (7.6)	120.5	CH	7.31 brt (7.6)	120.5	CH
5(1)	7.30, $DII(7.0)$	120.7		7.31, 011(7.0) 7.21 brt (7.2)	120.7		7.31, 011(7.0)	120./		7.31, brt(7.3)	120./	
ט אמי יס*	7.20, DIL (7.2)	127.2	Сп	7.21, UIL (7.5)	127.1	Сп	/.22, UII (/.5)	127.4	Сп	(.21, DIL (7.3)	127.4	СП
"Signals	are overlapped.											

Table S2. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of compounds 5–8 in CDCl_{3.}

	(/	(,	1		5.					
No		5			6			7			8		
1101	$\delta_{\rm H}$, mult (J in Hz)	ć	бc	type	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type
1α	1.85, dd (13.3, 9.9)	4	45.6	CH_2	0.97, dd (11.9, 11.9)	43.8	CH_2	1.87, dd (13.2, 9.9)	45.6	CH_2	0.97, dd (11.9, 12.1)	43.5	CH_2
1β	1.96, dd (13.3, 7.9)				2.20, dd (11.9, 4.9)			1.96, dd (13.2, 8.3)			2.20, dd (11.9, 4.8)		
2	4.85, ddt (9.9, 7.9, 2.1)	7	75.3	CH	5.00, ddt (11.9, 4.9, 1.9)	75.0	СН	4.85, ddt (9.9, 8.3, 2.1)	75.3	CH	5.01, ddt (12.1, 4.8, 1.9)	75.0	CH
3		1	146.6	С		147.3	С		146.6	С		147.3	С
4		3	37.5	С		38.8	С		37.6	С		38.7	С
5	1.99, dd (11.9, 3.8)	4	42.5	CH	1.72, dd (12.7, 2.1)	47.4	CH	1.99, m	42.5	CH	1.72, dd (12.6, 2.3)	47.3	CH
6α	1.75-1.80*	2	26.4	CH ₂	1.91, ddd (14.2, 3.5, 2.1)	25.4	CH ₂	1.75-1.80*	26.4	CH_2	1.92, ddd (14.2, 3.7, 2.5)	25.5	CH ₂
6β					1.83, ddd (14.2, 12.7, 2.2)						1.84*		
7	3.95, brt (2.6)	7	72.4	CH	3.96, dd (3.5, 2.2)	72.6	СН	3.93, brt (2.4)	72.4	С	3.95, dd (3.6, 2.2)	72.6	С
8		3	36.4	С		36.9	С		36.3	С		36.8	С
9	2.14, dd (3.1, 2.4)	4	47.1	CH	1.94, dd (3.0, 2.4)	47.8	СН	2.13, dd (3.1, 2.4)	46.8	CH	1.95, dd (3.0, 2.5)	47.4	CH
10		3	37.9	С		37.7	С		37.9	С		37.6	С
11	5.46, dd (10.0, 2.4)	1	125.2	CH	5.47, dd (10.0, 2.4)	124.5	СН	5.36, dd (10.0, 2.4)	124.2	CH	5.38, dd (10.2, 2.5)	123.5	CH
12	6.13, dd (10.0, 3.1)	1	128.7	CH	6.09, dd (10.0, 3.0)	128.7	СН	6.48, dd (10.0, 3.1)	131.7	CH	6.45, dd (10.2, 3.0)	131.7	CH
13	,,	2	29.4	C	,	29.6	Ċ		29.2	C		29.3	Ċ
14		3	35.4	Ċ		35.1	Ċ		35.4	C		35.2	Ċ
15α	1.70. dd (12.8.8.3)	2	25.0	CH ₂	1.68 dd (12.9, 8.3)	25.0	CH ₂	1.66. dd (12.9. 8.5)	24.9	CH ₂	1.66. dd (12.9. 8.5)	24.9	CH ₂
158	2.06 m				2.06 m			2.03 m			2.07 m		
16α	1.15*	2	23.0	CH ₂	1.13*	23.0	CH ₂	1.08*	24.6	CH ₂	1.09 m	24.7	CH_2
168	1.83*			2	1.81*		0.002	1.83*		2	1.82*		2
17	2.67 ddd (11.9 7.3 4.7)	3	39.9	CH	2.65 ddd (11.9 7.3 4.7)	39.9	CH	2.51 dd (11.1.7.4)	47 7	CH	2.52 dd (11.1.7.5)	47 7	CH
18	0.89 s	1	17.2	CH	0.91 s	17.6	CH ₂	0.89 s	17.2	CH	0.93 s	17.6	CH ₂
19	1 12 s	2	20.7	CH ₂	1 14 s	18.6	CH ₂	1 11 s	20.7	CH	1 13 s	18.5	CH ₂
20	3 12 dd (96 47)	- 4	18 7	CH	3.09 dd (9.6 4.7)	48 7	CH	, 0	79.8	C	1.10,0	79.8	C
21	5.12, 44 (5.6, 1.7)	1	175.2	C	5.09, 44 (5.0, 1.7)	175.3	C		177.0	Č		177.0	Č
$\frac{21}{22\alpha}$		7	74.2	СН		74.1	СН	2 42 dd (13 8 5 6)	38.2	CH	2 39 dd (13 8 5 6)	38.1	CH
22a 22B	4 21 ddd (9 6 7 7 3 8)	/	1.2	CII	4 18 dd (9 6 7 7)	/4.1	CII	2.42, dd (13.8, 9.0)	50.2	0112	2.02 dd (13.8, 9.4)	50.1	0112
220	4.21, ddd (9.0, 7.7, 5.0)	7	70.2	СН	4.10, dd (9.0, 7.7)	70.2	СН	5.44 ddd (9.2, 8.8, 5.6)	74.0	СН	5.44 ddd (9.4, 8.8, 5.6)	75.0	CH
23	5.52 da (8.8, 1.5)	1	119.5	СН	5.52 da (8.9, 1.5)	119.5	СН	5.44, ddd $(9.2, 8.6, 5.6)$	121.4	СН	5.49 da (8.8, 1.5)	121.3	СН
27	5.52, uq (6.6, 1.5)	1	117.5	C	5.52, uq (6.9, 1.9)	144.5	C	5.50, uq (6.6, 1.5)	142.6	C	5.47, uq (8.8, 1.5)	142.6	C
25	4.10 brs	1	57.2	CH	4.09 brs	67.2	CH	4.08 brs	67.2	CH	4.07 brs	67.2	CH
20	1.80 d(1.5)	1	14.6	CH ₂	1.79 d(1.5)	14.6	CH ₂	1.76 d (1.5)	14.3	CH ₂	1.76 d (1.5)	14.3	CH
20	1.16 a	1	22.0		1.79, u (1.5)	27.5		1.70, u (1.5)	22.0		1.20 a	27.5	
20	1.10, 5	2	2.0	CIL	1.21, 8	27.5		1.15, 8	32.0	CII	1.20, 8	27.5	CIL
29	1.10, 8		15.2	CII CII	1.00, 8	24.0		1.10, 8	16.2	CII	1.00, 8	24.1	СП3
201	1.20 had (5.0)	1	13.2	CH_2	1.16 hrd(5.0)	14.9	CH_2	1.20 had (5.4)	10.2	CH_2	$1.28 \text{ hm}^{-1}(5.0)$	10.0	$C\Pi_2$
30D	1.20, brd(5.0)	1	117.1	CU	1.10, Drd (5.0)	116.1	CII	1.29, Drd (5.4)	1171	CU	1.28, Drd (5.0)	116.1	CU
1	5.80, DTL (2.1)	1	11/.1	CH	5.90, dd (5.8, 1.0)	110.1	CH	5.85, DT (2.1)	11/.1	CH	5.90, dd (5.8, 1.6)	110.1	CH
2	5.57, DTT (2.2)	8	0.0	СН	3.43, dd (3.8, 1.8)	81.0	СН	3.37, DTT (2.2)	80.0	Сн	J.4J, dd (J.8, 1.8)	81.0	СН
5 '	7.2/*	1	138.2	C	7.20*	139.2	CU	7.27*	138.2	C	7.20*	139.3	CIL
4'(8')	7.36*	1	128.7	CH	7.38	128.7	CH	7.37*	128.7	CH	7.39	128.7	CH
5'(7')	/.50*	l	128.8	CH	/.35*	128.5	CH	/.3/*	128.8	CH	/.30	128.5	CH
6'	7.36*	1	129.0	СН	7.31*	128.5	СН	1.57*	129.0	СН	1.33	128.5	СН

*Signals are overlapped.

Table S3. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of compounds 9–12 in CDCl_{3.}

	× ×	,	`	,	1							
No		9		10			1	1		12		
1101	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H}$, mult (J in Hz)	δ_{c}	type	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type
1α	1.84, dd (13.6, 9.7)	45.0	CH_2	0.98, dd (12.0, 12.0)	43.8	CH_2	1.84, dd (13.6, 9.9)	44.9	CH_2	0.98, dd (12.1, 12.4)	43.7	CH_2
1β	2.03, dd (13.6, 7.9)			2.30, dd (12.0, 4.9)			2.02, dd (13.6, 7.9)			2.30, dd (12.1, 4.8)		
2	4.79, ddt (9.7, 7.9, 2.1)	74.7	CH	5.01, ddt (12.0, 4.8, 1.9)	74.5	CH	4.79, ddt (10.0, 8.0, 2.0)	74.8	CH	5.02, ddt (12.4, 4.8, 1.9)	74.6	CH
3		145.3	С		146.1	С		145.4	С		146.2	С
4		38.2	С		39.6	С		38.2	С		39.6	С
5	1.84, dd (14.2, 3.5)	52.1	CH	1.45, dd (14.4, 2.4)	56.6	СН	1.84, dd (14.2, 3.5)	52.1	СН	1.46, dd (14.4, 2.4)	56.6	CH
6α	2.23, dd (13.2, 3.5)	37.4	CH ₂	2.42, dd (13.2, 2.4)	37.0	CH ₂	2.22, dd (13.2, 3.5)	37.4	CH ₂	2.41, dd (13.3, 2.4)	37.0	CH_2
6β	2.81, dd (13.2, 14.2)			2.85, dd (13.2, 14.4)			2.80, dd (13.2, 14.2)			2.84, dd (13.3, 14.4)		
7		213.8	С		213.2	С		214.0	С		213.3	С
8		47.9	С		48.4	С		47.6	С		48.2	С
9	2.08, dd (3.1, 2.6)	53.8	CH	1.92, dd (3.1, 2.6)	53.8	СН	2.07, dd (3.1, 2.6)	53.5	СН	1.92, dd (3.0, 2.5)	53.4	CH
10	, , , ,	37.9	С		37.7	С		37.8	С	· · · · ·	37.7	С
11	5.40, dd (10.0, 2.6)	121.6	CH	5.43. dd (10.0. 2.6)	121.0	СН	5.29. dd (10.0. 2.6)	120.3	CH	5.33. dd (10.0. 2.5)	120.0	CH
12	6.22. dd (10.0. 3.1)	131.0	CH	6.19 dd (10.0, 3.1)	130.9	CH	6.58 dd (10.0, 3.1)	134.1	CH	6.56 dd (10.0, 3.1)	133.8	CH
13	, (,)	30.7	C	,	31.1	C	,	30.4	C		30.6	C
14		35.8	č		35.7	Č		35.8	č		35.8	Č
15α	2.16. dd (13.3.8.3)	27.1	CH ₂	2.18. dd (13.3. 8.3)	27.2	CH ₂	2.12 dd (13.2, 8.5)	26.9	CH ₂	2.16 dd (13.4-8.5)	27.1	CH ₂
158	1.97 m			2.00 m			1.92 m			1.98 m	_,	
16α	1.15*	23.1	CH ₂	1.10*	23.3	CH ₂	1.07. m	24.8	CH ₂	1.10*	24.9	CH ₂
16 <i>B</i>	1.78*		0.1.2	1.76*		2	1.74*		0002	1.77*		2
17	2.58 ddd (11.7, 7.4, 4.8)	40.1	CH	2.57. ddd (11.7. 7.4. 4.9)	40.1	СН	2 41 dd (11 1 7 5)	47.8	CH	2.43 dd (11.1.7.5)	47.8	CH
18	1.18.8	16.8	CH ₃	1.18 s	17.2	CH ₃	1.17. s	16.7	CH ₃	1.18.8	17.1	CH ₃
19	1.32.8	20.2	CH ₃	1.34. s	18.1	CH ₃	1.31.8	20.1	CH ₃	1.34.8	18.1	CH ₃
20	3.08. dd (9.5. 4.8)	48.9	CH	3 06 dd (9.5, 4 9)	48.9	CH) -	79.9	C		79.9	Ċ
21		175.2	C	, (,)	175.3	C		177.1	č		177.0	č
22α		74.3	CH		74.3	CH	2.38 dd (13.8, 5.6)	38.2	CH ₂	2.37. dd (13.8.5.6)	38.3	CH ₂
228	4.22 dd (9.4, 7.7)			4 20, dd (9,5,7,6)			2.03 dd (13.8, 9.4)			2.02 dd (13.8.9.4)		
23	4 89 dd (8 9 7 7)	79.1	CH	4 87 dd (8 8 7 6)	79.2	CH	543 ddd (948757)	75.0	СН	542, ddd (94, 88, 56)	74 9	CH
24	5.52 dq (8.9, 1.5)	119.6	CH	5.52 dq (8.8, 1.5)	119.7	CH	5.50 dg (8.7, 1.5)	121.6	CH	5.51 dg $(8.8, 1.5)$	121.5	CH
25		144.3	C		144.3	C		142.5	C		142.6	C
26	4.11. brs	67.3	CH ₂	4.10 brs	67.3	CH ₂	4 07 brs	67.3	CH ₂	4.08, brs	67.3	CH ₂
27	1.80 d (1.5)	14.6	CH ₃	1.79. d (1.5)	14.6	CH ₃	1.75 d (1.5)	14.3	CH ₃	1.76 d (1.5)	14.3	CH ₃
28	1 15 8	31.8	CH ₃	1 18 s	27.2	CH ₃	115 s	31.8	CH ₃	118 s	27.2	CH3
29	1 18 8	22.0	CH ₃	1 10 s	23.3	CH ₃	1 18 s	22.0	CH ₃	1 10 8	23.4	CH ₃
30a	0.94 d (5.6)	14.1	CH	0.91 d (5.9)	13.8	CH2	0.94 d (6.2)	15.1	CH ₂	0.96 d (5.0)	14.9	CH
30h	1.16 brd(5.6)		0.1.2	1.18 brd (5.9)		2	1.23 d(6.2)		2	1.27 d(5.0)	,	2
1'	5.92 brt (2.1)	118.1	CH	5.92 dd (3.7, 1.7)	117.4	СН	5.92 brt (2.1)	118.0	CH	5.92, dd $(3.7, 1.7)$	117.3	CH
2'	5.58 brt (2.1)	80.5	CH	5.45, dd (3.7, 1.8)	80.8	CH	5.58 brt (2.1)	80.5	CH	546 dd (3.7, 1.8)	80.9	CH
3'		137.9	C	, (,)	138.8	C		137.9	C	, == (,)	138.8	C
4'(8')	7.37*	129.1	CH	7.31-7.36*	128.5	СН	7 37*	128.7	СH	7 31-7.36*	128.5	СН
5'(7')	7.37*	128.8	CH	7.31-7.36*	128.6	CH	7.37*	128.8	CH	7.31–7.36*	128.6	CH
6'	7.37*	128.6	CH	7.31-7.36*	128.7	СН	7.37*	129.1	CH	7.31–7.36*	128.7	CH
*0. 1	1 1	120.0			120.7						120.7	

*Signals are overlapped.

Table S4. 1 H (500 MHz) and 13 C (125 MHz) NMR data of compounds 13–16 in CDCl₃. No. 13 14 15 No. 13 14 15

No	13			14			15			16		
INO.	$\delta_{\rm H}$, mult (J in Hz)	δ_{Γ}	type	$\delta_{\rm H}$, mult (J in Hz)	δ_{Γ}	type	$\delta_{\rm H}$, mult (J in Hz)	δ_{Γ}	type	$\delta_{\rm H}$, mult (J in Hz)	δ_{Γ}	type
1α	2.25. d (15.7)	39.5	ĆĤ2	2.25. d (15.7)	39.5	ĆĤ2	2.24, d (15.8)	39.4	ĆĤ ₂	2.24. d (15.6)	39.4	ĆH ₂
18	2.79 d(15.7)		2	2.79 d(15.7)		2	2.87 d (15.8)		0.002	2.88 d (15.6)		2
2	2.//>, u (10.//)	1477	С	=./,, u (10./)	147.8	С	2.07, 2 (10.0)	147.0	С	2.00, u (10.0)	147 1	С
3		128.1	č		128.1	č		127.6	č		127.6	č
1		33.5	č		33.5	č		34.4	Č		34.4	č
5	1.05 dd (12.0, 2.0)	14.2		1.05 dd (12.1, 2.0)	14.2		1.79 dd (14.4, 2.1)	54.4		1.80 dd (14.4, 2.1)	54.4	CU
5	1.95, uu(12.9, 2.9) 1.95, 1.02*	44.5		1.95, du (15.1, 2.9)	44.5		1.70, uu (14.4, 5.1)	26.0		1.60, uu (14.4, 5.1)	26.0	
60	1.63-1.92	23.7	$C\Pi_2$	1.00, III	23.7	$C\Pi_2$	2.38, dd (13.2, 3.1)	50.9	$C\Pi_2$	2.57, dd(15.1, 5.1)	30.9	$C\Pi_2$
$\frac{dp}{dp}$	4.00 1 ((2.0)	72 (CU	1.69, uuu (14.1, 15.1, 2.9)	72 (CU	2.95 11(12.2, 14.4)	214.1	C	2.84, dd (15.1, 14.4)	214.2	0
/	4.00, brt (2.8)	/2.6	Сн	3.98, brt (2.9)	/2.6	Сн	2.85, dd (13.2, 14.4)	214.1	C		214.2	C
8		36.6	C		36.5	C		48.0	C		47.8	C
9	2.19, dd (3.0, 2.4)	46.0	СН	2.19, dd (3.2, 2.9)	45.6	СН	2.14, dd (3.1, 2.6)	52.5	СН	2.14, dd (3.1, 2.6)	52.1	CH
10		38.9	C		38.8	C		38.8	C		38.8	C
11	5.56, dd (10.0, 2.4)	124.8	СН	5.46, dd (10.0, 2.9)	123.6	СН	5.51, dd (10.0, 2.6)	121.0	СН	5.42, dd (10.1, 2.6)	121.6	СН
12	6.19, dd (10.0, 3.0)	128.8	СН	6.55, dd (10.1, 3.2)	131.9	CH	6.28, dd (10.0, 3.1)	131.1	СН	6.66, dd (10.1, 3.1)	134.0	СН
13		29.5	С		29.3	С		30.9	С		30.4	С
14		35.7	С		35.7	С		36.1	С		36.1	С
15α	1.73, dd (12.6, 8.3)	25.1	CH_2	1.69, dd (12.6, 8.3)	24.9	CH_2	2.20, dd (12.9, 8.3)	27.2	CH_2	2.18, dd (13.0, 8.5)	27.0	CH_2
15β	2.10, m			2.05*			2.00, m			1.99, m		
16α	1.18*	23.1	CH ₂	1.11*	24.7	CH ₂	1.19*	23.3	CH ₂	1.15*	24.9	CH ₂
16 <i>B</i>	1.84*		-	1.83*		-	1.80^{*}		-	1.78*		-
17	2.71 ddd (11.8.7.4.4.8)	40.0	CH	2.56 dd (11.2, 7.5)	47.8	CH	2.61 ddd (11.8 7.4 4.9)	40.3	CH	2.47 dd (11.3.7.6)	47.8	CH
18	0.95 s	17.6	CH ₂	0.96 s	17.5	CH ₂	1 23 s	17.2	CH ₂	1 24 s	17.1	CH
19	1.01.5	18.3	CH	101 s	18.2	CH	1 23 s	17.9	CH ₂	1 22 5	17.8	CH
20	3 14 dd (96 48)	18.9	CH CH	1.01, 5	79.8	C	310 dd (95 50)	49.0	CH,	1.22, 5	79.9	C C
20	5.14, dd (7.0, 4.8)	175.2	C		177.2	č	5.10, dd (7.5, 5.0)	175.3	C		177 1	č
$\frac{21}{22\alpha}$		74.3	СН	242 44 (138 56)	383	CH		74.4	CH	2 42 dd (13 8 5 6)	38.6	CH.
220	4.24 dd $(0.6, 7.7)$	74.5	CII	2.42, dd (13.8, 3.0)	58.5	CH_2	4 24 ddd (0 5 7 7 2 2)	/4.4	CII	2.42, uu (13.8, 5.0)	58.0	CH_2
$\frac{22p}{22}$	4.24, dd (9.0, 7.7)	70.2	CU	2.03, dd (15.8, 9.4)	75.0	CU	4.24, ddd (9.3, 7.7, 5.5)	70.2	CII	2.03, dd (15.8, 9.4)	74.0	CU
25	4.92, dd (8.9, 7.7)	/9.2	CH	5.44, ddd (9.4, 8.7, 5.6)	/5.0	CH	4.91, dd (8.9, 7.7)	/9.5	CH	5.44, ddd (9.4, 8.7, 5.6)	/4.9	CH
24	5.54, dq (8.9, 1.5)	119.0	Сн	5.49, dq(8.7, 1.4)	121.5	Сн	5.55, dd (8.9, 1.5)	119.7	Сн	5.52, dq (8.7, 1.5)	119.9	СН
25	4.11.1	144.4	C	4.00.1	142.6	C	4 11 1	144.3	C	4.00.1	142.6	C
26	4.11, Drs	67.3	CH ₂	4.09, brs	67.2	CH ₂	4.11, brs	67.3	CH ₂	4.09, brs	67.3	CH ₂
27	1.81, d (1.5)	14.6	CH ₃	1.77, d (1.4)	14.3	CH ₃	1.81, d (1.5)	14.6	CH ₃	1.77, d (1.5)	14.3	CH ₃
28	1.22, s	31.5	CH_3	1.22, s	31.5	CH_3	1.20, s	31.3	CH_3	1.20, s	31.3	CH_3
29	1.12, s	23.5	CH_3	1.12, s	23.5	CH_3	1.15, s	23.2	CH ₃	1.15, s	23.2	CH_3
30a	0.93, d (5.0)	15.2	CH_2	0.99, d (5.0)	16.2	CH_2	0.96, d (5.8)	14.0	CH_2	1.03, d (5.8)	15.1	CH_2
30b	1.25, brd (5.0)			1.34, brd (5.0)			1.21, brd (5.8)			1.31, brd (5.8)		
1'	6.57, s	104.0	CH	6.57, s	104.0	CH	6.56, s	103.8	СН	6.56, s	103.8	CH
2'		152.4	С		152.4	С		153.1	СН		153.0	CH
3'		131.5	С		131.5	С		131.2	С		131.3	С
4'(8')	7.61, brd (8.4)	123.3	СН	7.61, brd (8.4)	123.3	CH	7.61, brd (8.4)	123.4	СН	7.61, brd (8.3)	123.4	CH
5'(7)	7.34, brt (7.8)	128.7	ĊH	7.34, brt (7.8)	128.7	ĊH	7.35, brt (7.8)	128.8	ĊH	7.35, brt (7.8)	128.8	ĊH
6'	7.19. brt (7.4)	126.8	ĊH	7.19. brt (7.4)	126.8	ĊH	7.21. brt (7.4)	127.1	ĊH	7.21. brt (7.4)	127.0	ĊH
*Signalo	are overlapped			,,			,				-=9	
orginals	are overlapped.											

Table S5. ¹ H (500 MHz) and	d ¹³ C (125 MHz) NMR data of compounds 17–20 in acetone- d_6

17			-	,		10			20			
No.		17		18			19			20		
	$\delta_{\rm H}$, mult (J in Hz)	δc	type	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	type
1α	2.16, d (15.7)	57.1	CH_2	2.15, d (15.7)	57.0	CH_2	2.26, d (15.7)	55.9	CH_2	2.26, d (15.7)	55.9	CH_2
1β	2.67, d (15.7)		~	2.66, d (15.7)		~	2.70, d (15.7)		~	2.70, d (15.7)		~
2		203.7	C		203.8	C		202.5	C		202.5	C
3		159.7	C		159.8	C		157.4	C		157.5	С
4		41.7	С		41.7	С		41.9	С		41.9	С
5	2.22, dd (12.6, 3.1)	46.0	СН	2.21, dd (12.8, 2.9)	45.9	CH	2.06*	54.3	СН	2.07, dd (14.0, 3.1)	54.4	CH
6α	1.84, dt (13.9, 3.4)	28.0	CH_2	1.83, ddd (13.9, 3.6, 2.9)	28.0	CH_2	2.31, dd (13.3, 3.1)	37.9	CH_2	2.33, dd (13.5, 3.1)	37.9	CH_2
6β	1.95, m			1.95, dd (13.9, 12.8)			3.03*			3.04, dd (14.0, 13.5)		
7	3.97, brt (2.8)	72.3	СН	3.96, dd (3.6, 3.1)	72.0	СН		212.7	С		212.5	С
8		37.3	С		37.0	С		48.9	С		48.5	С
9	2.26, dd (3.1, 2.4)	46.7	СН	2.26, dd (3.1, 2.4)	46.4	CH		52.5	СН	2.27, dd (3.1, 2.5)	52.2	CH
10		39.9	С		39.9	С		39.7	С		39.7	С
11	5.36, dd (10.1, 2.4)	122.6	СН	5.51, dd (10.1, 2.4)	122.3	CH	5.39, dd (10.0, 2.6)	119.8	СН	5.36, dd (10.1, 2.5)	119.6	CH
12	6.35, dd (10.1, 3.1)	132.3	CH	6.59, dd (10.1, 3.1)	134.4	CH	6.41, dd (10.0, 2.9)	133.7	CH	6.67, dd (10.1, 3.1)	135.7	CH
13		31.0	С		30.2	С		32.5	С		31.8	С
14		37.1	С		36.7	С		36.8	С		36.5	С
15α	1.76, m	25.2	CH_2	1.74*	25.0	CH_2	2.08, m	27.7	CH_2	2.10*	27.8	CH_2
15β	2.01, m			2.02*			1.97, m			1.99, m		
16α	1.38, m	24.7	CH_2	1.12*	25.3	CH_2	1.41, m	24.7	CH_2	1.16, m	25.1	CH_2
16β	1.70, dt (13.1, 8.0)			1.69, dt (13.1, 8.0)			1.68, dt (12.9, 8.0)			1.66, dt (13.1, 8.1)		
17	2.52, ddd (11.1, 7.5, 5.6)	42.0	CH	2.60, dd (11.3, 7.5)	47.8	CH	2.46, ddd (11.1, 7.7, 6.0)	42.0	CH	2.54, dd (11.3, 7.6)	47.7	CH
18	0.93, s	17.9	CH ₃	0.95, s	17.8	CH_3	1.22, s	17.0	CH_3	1.23, s	17.0	CH_3
19	1.14, s	18.8	CH ₃	1.14, s	18.7	CH ₃	1.34, s	18.1	CH ₃	1.34, s	18.1	CH ₃
20	3.00, dd (8.9, 5.6)	50.0	CH		80.2	C	2.99*	49.9	CH		80.3	C
21	, , , ,	176.4	CH		177.2	С		176.5	С		177.1	С
22α		75.5	CH	2.30. dd (13.6, 5.3)	38.7	CH ₂		75.5	CH	2.27. dd (13.6, 5.4)	38.7	CH ₂
22 <i>B</i>	4.18. dd (8.9. 7.1)			2.15, dd (13.6, 9.4)		-	4.17. brt (7.9)			2.20, dd (13.6, 9.4)		-
23	4.88, dd (9.0, 7.1)	81.0	CH	5.44, ddd (9.4, 8.8, 5.3)	75.0	CH	4.87. dd (9.0. 7.0)	81.0	CH	5.43, ddd (9.4, 9.0, 5.4)	75.1	CH
24	5.51, dq (9.0, 1.4)	120.6	ĊН	5.51, dg (8.8, 1.4)	122.0	CH	5.50, dq (9.0, 1.4)	120.6	CH	5.52, dg (9.0, 1.4)	122.1	CH
25		144.4	Č		143.2	Ċ		144.4	Č		143.3	Ċ
26	3.99. brs	67.0	CH ₂	3.97. brs	66.9	ČH ₂	3.98. brs	67.0	CH ₂	4.00. brs	67.0	CH ₂
27	1.74. d (1.4)	14.4	CH ₂	1.74. d (1.4)	14.0	CH ₂	1.74. d (1.4)	14.4	CH ₂	1.73 d (1.4)	14.0	CH ₂
28	1 30 s	31.5	CH	1 30 8	31.4	CH ₃	1 34 8	31.1	CH ₂	1 34 8	31.1	CH ₂
29	1 29 8	24.7	CH	1.28, 8	24.6	CH ₃	1 33 8	24.5	CH ₂	1 33 8	24.5	CH
30a	1.05 d (5.8)	17.2	CH	1.04 d (5.8)	17.4	CH	1.00 d (6.3)	15.0	CH	1.02 d(61)	15.2	CH
30h	1.24 brd(5.8)	· / .=	0112	1.26 hrd(5.8)	1711	0112	1.26 brd(6.3)	10.0	0112	1.30 brd (6.1)	1012	0112
1'	6.85 s	129.8	СН	6.85 s	129.8	СН	6 90 s	131.6	СН	6.91 s	131.4	CH
2'	0.00, 5	194.5	C	0.00, 5	194.4	C	0.90, 8	194.7	C	0.91, 5	194.6	C
<u>-</u> 3'		138.1	č		138.0	č		137.0	Č		137.0	č
4'(8')	7.92 brd(8.2)	120.1	СН	7.92 hrd (8.0)	120.0	СН	7.91 brd (7.7)	129.1	СН	7.91 brd (8.2)	129.1	СН
	7.92, 010(0.2)	129.1	CH	7.92, bid (0.0) 7.49 brt (7.8)	129.1	CH	7.91, 010(7.7) 7.40 brt (7.9)	129.1	СН	7.91, 010(0.2) 7.50 brt (7.7)	129.1	СН
5(1) 6'	7.50 brt (7.5)	129.4	СЦ	7.49, 011 (7.6)	127.4		7.57, $OII(7.5)$ 7.60, brt (7.4)	122.4		7.50, bit (7.7)	127.4	СЦ
1 P.0	1.57, 011 (1.5)	155./	CII	7.57, UIL (7.4)	155.7	CII	7.00, UIL (7.4)	133.7	CII	7.37, OIL (7.4)	155.7	CII

N		21a		21b	
No.	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	$\delta_{ m C}$	type	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	type
1α	2.10, d (14.9)	49.3	CH ₂	1.27, d (13.9)	CH_2
1β	2.37, d (14.9)			3.10, d (13.9)	
2		115.7	С		С
3		148.2	С		С
4		35.7	С		С
5	2.02, dd (14.6, 3.6)	51.4	CH	1.38*	СН
6α	2.14*	37.2	CH_2	2.20, dd (13.5, 2.2)	CH ₂
6β	2.81*			2.97*	
7		213.2	С		С
8		48.3	С		С
9	2.01, dd (2.9, 2.4)	54.0	СН	1.99*	СН
10		38.6	Ċ		Ċ
11	5.44. dd (10.0. 2.4)	120.7	ĊH	5.49. dd (10.2. 2.4)	СН
12	6.42. dd (10.0. 2.9)	133.6	CH	6.39. dd (10.2. 3.1)	СН
13		32.3	C	,,	C
14		36.8	Č		Č
15α	1 93*	27.6	CH		CH
150	2.04*	27.0			
15p	1.27*	24.6	CH.		CH.
16 <i>B</i>	1.57 1.65 ddd (13.5 8.0 8.0)	24.0	0112		0112
10p	1.05, ddd (15.5, 8.0, 8.0)	42.0	CU		CU
17	2.07, 111	42.0	СП		СП
10	1.14, 8	10.9		154 0	СЦ
19	1.03, 8	19.5	CH ₃	1.54, 8	CH ₃
20	3.01, dd (9.6, 4.8)	49.9	Сн	2.99	Сн
21		1/6.5	C		U
22α		/5.4	СН	1.00*	CH
22β	4.20, dd (8.8, 7.0)			4.20	
23	4.88, dd (8.9, 7.1)	81.0	СН	4.88*	СН
24	5.51, dq (8.9, 1.5)	120.5	СН	5.51*	СН
25		144.4	С		С
26	3.98*	67.0	CH ₂	3.98*	CH ₂
27	1.75, brs	14.4	CH ₃		CH ₃
28	1.24, s	31.1	CH ₃	1.26, s	CH ₃
29	1.14, s	24.0	CH ₃	1.20, s	CH ₃
30a	1.01, d (6.1)	15.2	CH ₂		CH ₂
30b	1.24, brd (6.1)				
1'	6.01, s	128.5	CH	5.89, s	СН
2'		112.3	С		С
3'		141.8	С		С
4'(8')	7.57, brd (7.4)	127.3	CH	7.49, brd (7.4)	СН
5'(7')	7.40, brt (7.6)	129.2	СН	7.33, brt (7.6)	СН
6'	7.20, brt (7.3)	128.9	СН	7.27, brt (7.3)	СН
<u>H</u> OO-2	10.36, s		HOO	10.58, s	HOO
<u>CH</u> ₃ O-2'	3.22, s		CH ₃	3.23, s	CH ₃
*Signals are	overlapped.				

Table S6. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of compound 21a in acetone-d₆.

Due to small amount of **21b**, only part of its ¹H NMR data were assigned.

3.2 NMR Calculations

The ChemDraw_15.0 software with the MM2 force field was used to establish the initial conformers for the target molecules. A molecular mechanics conformational analysis was carried out using mixed torsional/low-mode sampling method with the MMFF force field (gas phase) on Maestro 10.2 software (Maestro Technologies, Inc., Trenton, NJ, USA). The lowest energy conformers within 21.0 kcal/mol were subjected to further DFT calculations. The geometries of the conformers were optimized at the B3LYP/6-31+G (d,p) level in gas using the Gaussian 09 program (Gaussian, Inc., Wallingford, CT, USA),⁴ and the following NMR calculations were performed at the B3LYP/6-311+G (2d,p) level in chloroform (SMD model). The calculated chemical shifts of each conformer were empirically scaled according to the formula $\delta_{cal} = (b - \sigma)/-m$, where δ_{cal} is the calculated chemical shift relative to TMS, σ is the computed isotropic shielding constant, *m* is the slope, and *b* is the intercept. The ¹³C shifts used the generic scaling factors m = -1.0537, and b = 181.7815, as obtained from the CHESHIRE Web page.⁵ The final chemical shifts were generated by averaging the data of all the conformers according to their Boltzmann distribution at 298.15 K.

$\Delta\delta$	5 vs. 6	7 vs.8	9 vs.10	11 vs.12	$M\alpha$ -Ph vs. $M\beta$ -Ph	$M\alpha$ -Me vs. $M\beta$ -Me	$M\alpha$ -H vs. $M\beta$ -H
C-1	1.8	2.1	1.2	1.2	-0.2	-0.5	-0.2
C-2	0.3	0.3	0.2	0.2	0.4	0.1	0.4
C-3	-0.7	-0.7	-0.8	-0.8	-1.2	-1.0	-1.2
C-4	-1.3	-1.1	-1.4	-1.4	-1.3	-1.5	-1.3
C-5	-4.9	-4.8	-4.5	-4.5	-4.9	-4.8	-4.9
C-6	1	0.9	0.4	0.4	1.4	1.5	1.4
C-19	2.1	2.2	2.1	2	1.9	2.1	1.9
C-28	4.5	4.5	4.6	4.6	3.9	3.6	3.9
C-29	-1.8	-1.9	-1.3	-1.4	-2.5	-2.4	-2.5

Table S7. Differential carbon chemical shifts ($\Delta \delta_{\rm C}$) for selected carbons of isomeric pairs.

Number	Conformer	Energy (hartree)	Energy (Kcal/mol)	Proportion (%)
		Mα-Ph		
1		-967.4830459	-607105.2861	75.49
2		-967.4810624	-607104.0415	9.22
3		-967.4806521	-607103.784	5.97
4		-967.4810719	-607104.0474	9.32
		Mβ-Ph		
1	COOL SEC	-967.4854005	-607106.764	29.05
2	COOR CARE	-967.4854213	-607106.777	29.70
3		-967.4845715	-607106.243	12.07
4	COOR CASE	-967.4854047	-607106.766	29.18

Table S8. Re-optimized conformers, energies, and proportions for $M\alpha/M\beta$ -Ph.

Table S9. Re-optimized conformers, energies, and proportions for $M\alpha/M\beta$ -Me and –H.

Number	Conformer	Energy (hartree)	Energy (Kcal/mol)	Proportion (%)
		Mα-Me	e	
1		-775.7462211	-486788.511	81.76
2		-775.7448054	-486787.623	18.24
		Μ <i>β</i> -Μ6	e	
1		-775.7488	-486790.1429	62.52
2		-775.7483	-486789.84	37.48
		Мα-Н		
1		-736.4239	-462113.382	74.60
2		-736.4229	-462112.744	25.40
		Мβ-Н		
3		-736.4269	-462115.2558	73.02
4		-736.426	-462114.6662	26.98

4. Synthesis Section

4.1 Biomimetic synthesis of 1a from 1

To an oxygen bubbled solution of **1** (4.5 mg, 7.7 μ mol) in CH₂Cl₂ (1.5 mL) at room temperature was added methylene blue (0.2 mg, 0.6 μ mol). The reaction mixture was irradiated with a U-shaped fluorescent lamp (Essential 23 W, PHILIPS, distance ~2 cm) at room temperature until complete consumption of the starting material was detected by TLC (~20 min). The reaction solvent was removed in vacuo to give a residue that contained methylene blue. The residue was then subjected to column chromatography (using a dropper that loaded with 200~300 mesh silica gel), and quickly eluted with acetone to give **1a** (4.8 mg, ~99%) as white powder. ESI-MS: m/z 617.2 [M + H]⁺, 615.4 [M – H]⁻. The ¹H NMR spectra (Figure S3) showed **1a** contain a mixture of an equal proportion of α - and β -adducts, similar to these of phyenyl-endoperoxides **5** and **6**.

Figure S3. (A) Comparison of the ¹H NMR spectra of **1a** with **5** and **6**, and (B) expanded ¹H NMR spectra of **1a**

4.2 Biomimetic synthesis of 2a from 2

To an oxygen bubbled solution of **2** (3.8 mg, 6.5 μ mol) in CH₂Cl₂ (1.5 mL) at room temperature was added methylene blue (0.2 mg, 0.6 μ mol). The reaction mixture was irradiated with a U-shaped fluorescent lamp (Essential 23 W, PHILIPS, distance ~2 cm) at room temperature until complete consumption of the starting material was detected by TLC (~20 min). The reaction solvent was removed in vacuo to give a residue that contained methylene blue. The residue was then subjected to column chromatography (using a dropper that loaded with 200~300 mesh silica gel), and quickly eluted with acetone to give **2a** (4.1 mg, ~99%) as white powder. ESI-MS: m/z 615.4 [M – H][–]. The ¹H NMR data (Figure S4) showed **2a** contain a mixture of an equal proportion of α - and β -adducts, similar to these of phyenyl-endoperoxides **7** and **8**.

Figure S4. (A) Comparison of the ¹H NMR spectra of **2a** with **7** and **8**, and (B) expanded ¹H NMR spectra of **2a**

4.3 Biomimetic synthesis of 3a from 3

To an oxygen bubbled solution of **3** (6.5 mg, 11 μ mol) in CH₂Cl₂ (1.5 mL) at room temperature was added methylene blue (0.2 mg, 0.6 μ mol). The reaction mixture was irradiated with a U-shaped fluorescent lamp (Essential 23 W, PHILIPS, distance ~2 cm) at room temperature until complete consumption of the starting material was detected by TLC (~20 min). The reaction solvent was removed in vacuo to give a residue that contained methylene blue. The residue was then subjected to column chromatography (using a dropper that loaded with 200~300 mesh silica gel), and quickly eluted with acetone to give **3a** (6.8 mg, ~99%) as white powder. ESI-MS: m/z 615.4 [M + H]⁺, 613.5 [M – H]⁻. ¹H NMR analysis (Figure S5) showed **3a** contain a mixture of an equal proportion of α - and β -adducts, similar to these of phyenyl-endoperoxides **9** and **10**.

Figure S5. (A) Comparison of the ¹H NMR spectra of **3a** with **9** and **10**, and (B) expanded ¹H NMR spectra of **3a**

4.4 Biomimetic synthesis of 4a from 4

To an oxygen bubbled solution of **4** (2.2 mg, 3.8 μ mol) in CH₂Cl₂ (1.5 mL) at room temperature was added methylene blue (0.2 mg, 0.6 μ mol). The reaction mixture was irradiated with a U-shaped fluorescent lamp (Essential 23 W, PHILIPS, distance ~2 cm) at room temperature until complete consumption of the starting material was detected by TLC (~20 min). The reaction solvent was removed in vacuo to give a residue that contained methylene blue. The residue was then subjected to column chromatography (using a dropper that loaded with 200~300 mesh silica gel), and quickly eluted with acetone to give **4a** (2.3 mg, ~99%) as white powder. ESI-MS: m/z 613.3 [M – H][–], 1227.3 [2M – H][–]. ¹H NMR analysis (Figure S6) showed **4a** containe a mixture of an equal proportion of α - and β -adducts, similar to these of phyenyl-endoperoxides **11** and **12**.

Figure S6. (A) Comparison of the ¹H NMR spectra of **4a** with **11** and **12**, and (B) expanded ¹H NMR spectra of **4a**

4.5 Biomimetic synthesis of 13 from 1a

To 1.0 mL methanol solution of **1a** (3.8 g, 6.2 μ mol), catalytic Et₃N (20 μ L) was added and the solution was kept at room temperature until a complete conversion of the starting material was detected by TLC (~4 h). Methanol and residue Et₃N were removed in vacuo to afford **13** (3.5 mg, ~95%) as white powder. ESI-MS: m/z 597.3 [M – H]⁻, 579.4 [M – H₂O – H]⁻.

4.6 Biomimetic synthesis of 14 from 2a

To 1.0 mL methanol solution of **2a** (2.8 g, 4.5 μ mol), catalytic Et₃N (15 μ L) was added and the solution was kept at room temperature until a complete conversion of the starting material was detected by TLC (~4 h). Methanol and residue Et₃N were removed in vacuo to afford **14** (2.7 mg, ~95%) as white powder. ESI-MS: m/z 599.4 [M + H]⁺, 597.1 [M – H]⁻.

Figure S8. (A) Comparison of the ¹H NMR spectra of synthetic 14 and isolated 14

4.7 Biomimetic synthesis of 15 from 3a

To 1.0 mL methanol solution of **3a** (3.8 g, 6.2 μ mol), catalytic Et₃N (20 μ L) was added and the solution was kept at room temperature until a complete conversion of the starting material was detected by TLC (~4 h). Methanol and residue Et₃N were removed in vacuo to afford **15** (3.7 mg, ~95%) as white powder. ESI-MS: m/z 595.2 [M – H]⁻, 1190.9 [2M – H]⁻.

6.5 6.0 2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -(

4.8 Biomimetic synthesis of 16 from 4a

To 1.0 mL methanol solution of **4a** (1.8 g, 2.9 μ mol), catalytic Et₃N (10 μ L) was added and the solution was kept at room temperature until a complete conversion of the starting material was detected by TLC (~4 h). Methanol and residue Et₃N were removed in vacuo to afford **16** (1.7 mg, ~95%) as white powder. ESI-MS: m/z 595.0 [M – H]⁻, 597.4 [M + H]⁺. HRMS (ESI): m/z 597.3219 [M + H]⁺ (calcd for C₃₈H₄₅O₆, 597.3211). The structure of compound **16** was established as shown by analysis of its 1D and 2D NMR data (Figures S10, and S151–156), which was not obtained in our isolation.

Figure S10. Key HMBC and COSY (bold bonds) correlations for 16.

4.9 Biomimetic synthesis of 17 from 13

To an oxygen bubbled solution of synthetic **13** (1.0 mg, 1.7 μ mol) in MeOH (1.0 mL) at room temperature was added methylene blue (0.1 mg, 0.3 μ mol). The reaction mixture was irradiated with a U-shaped fluorescent lamp (Essential 23 W, PHILIPS, distance ~2 cm) at room temperature until complete consumption of the starting material was detected by TLC (~20 min). The reaction solvent was removed in vacuo to give a residue that contained methylene blue. The residue was subjected to column chromatography (using a dropper that loaded with 200~300 mesh silica gel), and quickly eluted with acetone to remove methylene blue. The concentrated product was dissolved in 500 μ L MeOH, followed by adding 100 μ L aqueous CF₃COOH solution (0.02%), the reaction mixture was kept in room temperature for overnight (~12 h). Methanol and residue CF₃COOH were removed in vacuo to afford **17** (1.0 mg, ~90%) as white powder. ESI-MS: m/z 613.2 [M – H]⁻, 615.4 [M + H]⁺, 637.5 [M + Na]⁺.

Figure S11. (A) Comparison of the ¹H NMR spectra of synthetic 17 and isolated 17

4.10 Biomimetic synthesis of 18 from 14

To an oxygen bubbled solution of synthetic **14** (1.0 mg, 1.7 μ mol) in MeOH (1.0 mL) at room temperature was added methylene blue (0.1 mg, 0.3 μ mol). The reaction mixture was irradiated with a U-shaped fluorescent lamp (Essential 23 W, PHILIPS, distance ~2 cm) at room temperature until complete consumption of the starting material was detected by TLC (~20 min). The reaction solvent was removed in vacuo to give a residue that contained methylene blue. The residue was subjected to column chromatography (using a dropper that loaded with 200~300 mesh silica gel), and quickly eluted with acetone to remove methylene blue. The concentrated product was dissolved in 500 μ L MeOH, followed by adding 100 μ L aqueous CF₃COOH solution (0.02%), the reaction mixture was kept in room temperature for overnight (~12 h). Methanol and residue CF₃COOH were removed in vacuo to afford **18** (1.0 mg, ~90%) as white powder. ESI-MS: m/z 613.2 [M – H]⁻, 615.4 [M + H]⁺, 637.4 [M + Na]⁺.

Figure S12. (A) Comparison of the ¹H NMR spectra of synthetic 18 and isolated 18

4.11 Biomimetic synthesis of 21 from 15

To an oxygen bubbled solution of **15** (2.0 mg, 3.4 μ mol) in MeOH (1.0 mL) at room temperature was added methylene blue (0.1 mg, 0.3 μ mol). The reaction mixture was irradiated with a U-shaped fluorescent lamp (Essential 23 W, PHILIPS, distance ~2 cm) at room temperature until complete consumption of the starting material was detected by TLC (~20 min). The reaction solvent was removed in vacuo to give a residue that contained methylene blue. The residue was subjected to column chromatography (using a dropper that loaded with 200~300 mesh silica gel), and quickly eluted with acetone to afford **21** (2.0 mg, ~95%) as white powder. ESI-MS: m/z 659.3 [M – H]⁻, 683.2 [M + Na]⁺. HRMS (ESI): m/z 683.3192 [M + Na]⁺ (calcd for C₃₉H₄₈O₉Na, 683.3191). **21** were elucidated as a pair of diastereoisomers (**21a/21b** = 5:1) by analysis of 1D and 2D NMR data. The predominant α -adduct **21a** was actually resulted from the formation of intermediate **i** via a [4 + 2] Diels-Alder cycloaddition, and was probably caused by the relatively less steric hindrance of the α -face in the furan ring.

The 2D and 3D structures of **21** was established by analysis of the COSY, HMBC, and NOESY data (Figures S13, and S198–S200). The major component **21a** was verified with α -oriented HOO-2 and CH₃O-2 groups, based on the NOESY correlations of HOO-2/H₃-28, CH₃O-2', and H-1 α . In contrast, both the HOO-2 and CH₃O-2 groups in **21b** were elucidated in a β -configuration by the NOESY correlations from HOO-2 to CH₃O-2', H₃-19, and H₃-29.

Figure S13. Key HMBC, COSY (bold bonds), and NOESY correlations for 21a/21b.

4.12 Biomimetic synthesis of 19 from 21

Compound **21** (2.0 mg, 3.0 μ mol) dissolved in 500 μ L MeOH, followed by adding 100 μ L aqueous CF₃COOH solution (0.02%), the reaction mixture was kept in room temperature for overnight (~12 h). Methanol and residue CF₃COOH were removed in vacuo to afford **19** (1.9 mg, 90% pure) as white powder. ESI-MS: m/z 611.3 [M – H][–], 613.4 [M + H]⁺. HRMS (ESI): m/z 613.3160 [M + H]⁺ (calcd for C₃₈H₄₅O₇, 613.3160). The structure of **19** was unambiguously assigned by NMR and MS data (Figures S14), which was not obtained in the isolation.

Figure S14. Key HMBC and COSY (bold bonds) correlations for 19.

4.13 Biomimetic synthesis of 20 from 16

To an oxygen bubbled solution of **16** (1.0 mg, 1.7 μ mol) in MeOH (1.0 mL) at room temperature was added methylene blue (0.1 mg, 0.3 μ mol). The reaction mixture was irradiated with a U-shaped fluorescent lamp (Essential 23 W, PHILIPS, distance ~2 cm) at room temperature until complete consumption of the starting material was detected by TLC (~20 min). The reaction solvent was removed in vacuo to give a residue that contained methylene blue. The residue was subjected to column chromatography (using a dropper that loaded with 200~300 mesh silica gel), and quickly eluted with acetone to remove methylene blue. The concentrated product was dissolved in 500 μ L MeOH, followed by adding 100 μ L aqueous CF₃COOH solution (0.02%), the reaction mixture was kept in room temperature for overnight (~12 h). Methanol and residue CF₃COOH were removed in vacuo to afford **20** (1.0 mg, ~90%) as white powder. ESI-MS: m/z 611.4 [M – H]⁻, 613.4 [M + H]⁺.

Figure S15. Comparison of the ¹H NMR spectra of synthetic 20 and isolated 20

5. Cytotoxicity Assays

5.1 Methods

The cytotoxic activities of compounds **1–20** against three human tumor cell lines, including human burkitt lymphoma cell line (NAMALWA), human alveolar basal epithelial cell line (A549), and human liver hepatocellular carcinoma cell line (Hep G2), were evaluated (Tables S9–S11).

The antiproliferative activities of the compounds were evaluated against NAMALWA using the CCK-8 (cell counting kit 8, Life ilab Bio, Shanghai) assay performed according to the manufacturer's instructions, with adriamycin as the positive control.⁶ Briefly, 90 μ L of the cells in logarithmic phase were seeded into 96-well plates (1.2×10^4 cell/well) and incubated overnight. Then, the cells were incubated with compounds in triplicate at various concentrations for 72 h followed by the addition of 10 μ L CCK-8 reagent, and kept in the incubator for further 4 h. The OD value of each well was measured at 450 nm using multiwell spectrophotometer (SpectraMax, Molecular Devices, U.S.A).

The growth inhibition of human tumor cell lines (A549 and Hep G2) was determined by sulforhodamine B (SRB) assay.⁷ Briefly, A549 and Hep G2 (2×10^3 cell/well) were seeded into 96-well plates in triplicates. After incubation overnight, Cells were then treated with increasing concentrations of compounds and cultured at 37 °C for another 72 h. At the end of exposure time, the cells were fixed with 10% pre-cooled trichloroacetic acid overnight and stained with 4 mg/mL sulforhodamine B (SRB, Sigma, St. Louis, MO) in 1% acetic acid. The SRB in the cells was dissolved in 10 mM Tris-HCl and measured at 560 nm using multiwell spectrophotometer (SpectraMax, Molecular Devices, U.S.A).

Table S10. Cytotoxic Activities of Compounds 1–20 against the NAMALWA Cells.

	Concentration (μM)							$IC_{50} \pm SD$
Cmpd	10	3 3 3 3	1 111	0 370	0.123	0.041	(μM)	$(\mu \mathbf{M})$
	77.8	79.3	79.1	76.6	45.7	27.2	0.135	(pill)
1	74.5	75.2	75.3	70.0	36.0	17.1	0.135	0.182 ± 0.051
1	83.6	63.1	65.8	62.7	28.8	9.1	0.236	0.102 ± 0.001
	78.6	76.8	77.4	77.5	71.5	29.2	0.064	
2	75.3	70.0	73.6	72.8	69.0	31.5	0.063	0.078 ± 0.025
4	75.5	60.2	62.9	64.3	53.3	20.0	0.005	0.078 ±0.025
	70.7	76.7	75.3	73.0	57.0	10.8	0.100	
2	77.1	70.7	73.4	70.2	57.0	24.1	0.103	0.151 ± 0.080
3	79.9	50.6	60.0	60.5	37.5	12.2	0.057	0.151 ±0.007
	87.3	70.4	75.2	75.5	<u> </u>	33.0	0.254	
4	867	77.4	73.8	73.5	68.1	33.7 41.4	0.001	0.067 ± 0.015
4	763	61.1	64.1	64.8	56.1	41.4 34.3	0.050	0.007 ± 0.015
		24.0	12.6	12.5	10.1	12.1	4 252	
$1_{0}(5+6)$	77.7	20.0	12.0	14.2	10.1	12.1	4.352	4 502 + 0 250
1a(5+0)	70.8	21.5	10.9	14.2 6 1	14.4	12.5	4.373	4.393 ± 0.230
	74.2	10.1	9.1	10.2	7.4	0.2	4.652	
20(7+8)	72.2	22.5	11.2	5.0	8.2	57	7 112	5.611 ± 1.770
2a(1+6)	71.3 67.0	23.5	3.1	5.0	0.2	2.1	6.074	5.011 ± 1.779
	07.0	41.9	7.2	<u> </u>	0.0	2.0	2 7/6	
$3_{0}(0+10)$	00.0 88 5	41.0 52.0	13.2	8.0 5.1	9.0	4.0	3.740	3 682 ±0 454
3a(9+10)	64.5	36.4	13.2	J.1 0.7	4.7	4.2	4 101	5.062 ± 0.454
	55.0	18.2	7.0	12.0	10.2	15.9	2.841	
$A_{0}(11 + 12)$	50.1	10.2	1.9	12.0	10.4	15.0	10.021	7 842 + 2 471
4a(11 + 12)	52.0	20.0	10.1 6 7	9.0	10.2	9.9	0.656	7.043 ± 3.471
	37.0	80	13.2	<u> </u>	10.6	12.2	>10	
12	37.9	0.9 8 0	13.2	0.9 7 2	10.0	12.2 9.2	>10	> 10
15	34.9 20.7	0.2 5.0	8.0 7.0	6.2	9.2	0.5	>10	>10
	20.7	3.0	10.2	4.0	0.8	9.2	5 144	
14	09.2 97.4	21.2	10.2	4.0	5.0	5.1	J.144 4.075	5 020 + 0 008
14	87.4 (C.0	51.2 22.2	9.2	4.5	3.4 2.0	0.0	4.973	5.050 ± 0.098
	00.9	53.2	/.1	5.0	3.9	4.5	4.972	
15	88.1	51.4	0.0	0.0	0.0	0.0	3.325	2.974 ± 0.716
15	80.8	44.3	1.5	0.0	0.0	0.0	3.013	$3.8/4 \pm 0.710$
	63.6	49.0	3.9	2.8	4.2	3.5	4.684	
16	55.7	22.0	11.6	10.3	7.0	9.2	8.701	. 10
10	41.2	17.6	12.8	5.2	3.6	5.7	>10	>10
	28.3	14.2	10.0	8.3	8.5	8.2	>10	
17	50.7	1/./	14.5	11.4	11.8	11.5	9.900	0.700 ± 0.150
17	51.6	23.3	18.6	15.2	16.0	15.4	9.679	9.790 ± 0.156
	44.6	17.0	10.2	8.5	8.0	9./	>10	
10	55.6	26.6	1/.4	15.0	10.5	11.4	8.620	0.000 0.000
18	54.0	22.7	14.9	10.3	6.3	8.5	9.143	8.882 ± 0.370
	53.3	10.0	8.0	6.0	4.7	0.0	>10	
10	43.4	11.9	8.5	8.6	8.4	10.8	>10	. 10
19	42.9	10.3	6.9	4.7	5.3	4.3	>10	>10
	38.3	9.6	4.8	2.4	2.8	1.9	>10	
• •	37.0	21.4	12.9	14.5	12.9	12.5	>10	10
20	37.0	21.4	12.9	14.5	12.9	12.5	>10	>10
	36.0	9.1	8.0	6.2	4.8	4.3	>10	
D	79.3 75.5	/6.6	57.0	20.5	33.5 05.0	18.5	0.315	0.050 0.000
Doxorubicin	76.6	75.5	55.2	24.3	25.0	21.8	0.365	0.352 ± 0.033
	65.0	61.8	50.8	27.4	18.9	8.4	0.376	

Table S11. Cytotoxic Activities of Compounds 1–20 against the A549 Cells.

	Concentration (μM)							$IC_{50} \pm SD$
Cmpd	10	3 333	1 111	0 370	0.123	0.041	(μM)	(μM)
	63.7	50.2	39.6	19.9	67	4 2	2 530	(11-1-)
1	65.3	47.9	38.6	15.4	5 5	2.1	2.831	3.021 ± 0.609
-	64.5	45.6	32.0	92	5.0	2.1	3 703	5.021 - 0.007
	58.1	52.4	46.3	34.6	21.4	5.7	1 683	
2	58.6	51.3	41.8	31.1	14.9	0.0	2 103	2430 ± 0297
2	64 3	45 7	38.1	26.2	5.8	0.0	3 505	2.150 ± 0.297
	68.0	48.5	42.2	25.0	13.1	2.4	2 624	
3	67.5	40.5	43.1	23.0	19.1	13	2.024	2832 ± 0257
5	64.5	47.5	45.1	13.1	5.8	0.7	2.752	2.052 ± 0.257
	<u> </u>	54.6	45.2	22.0	12.6	2.6	1.964	
4	01.9 04.6	50.4	43.2	22.4	13.0	3.0	1.604	2.007 ± 0.167
4	04.0 72.1	30.4 47.7	44.1	25.2	12.9	0.0	2 100	2.007 ± 0.107
	/2.1	4/./	42.1	53.2	12.0	1.0	2.190	
1- (- (40.7	0.9	5.2	5.2	4.8	5.0	>10	> 10
1a(5+6)	43.7	3.8	0.0	0.9	4.7	5.6	>10	>10
	44.3	9.4	3.7	5.4	3.7	5.3	>10	
	50.8	10.5	4.2	3.0	6.3	5.1	4.272	
2a (7 + 8)	42.6	1.5	0.0	0.0	2.2	1.8	>10	4.026 ± 0.349
	78.3	9.5	3.8	4.2	5.9	3.7	3.779	
	70.9	16.8	5.9	2.8	4.7	3.4	7.367	
3a (9 + 10)	66.0	7.7	0.0	0.0	0.0	1.2	3.762	5.899 ± 1.893
	59.2	8.4	4.2	3.8	6.0	7.2	6.568	
	37.9	4.3	3.2	5.8	7.0	5.6	>10	
4a (11 + 12)	3.8	18.8	0.0	0.0	0.0	2.1	>10	>10
	41.3	12.6	9.2	8.4	10.7	8.5	>10	
	39.0	12.4	0.0	1.4	8.4	5.3	>10	
13	24.4	5.2	3.3	2.0	7.4	3.1	>10	>10
	43.9	19.0	7.7	6.9	7.0	3.4	>10	
	81.7	23.7	8.2	0.0	4.0	7.5	5.743	
14	88.7	17.7	7.1	2.0	5.7	5.1	6.870	6.911 ± 1.190
	90.5	6.4	4.2	4.5	4.1	0.1	8.121	
	83.2	46.8	13.2	6.6	7.8	5.3	3.570	
15	80.2	42.4	8.7	3.0	8.2	6.6	3.827	5.123 ± 2.471
	58.3	20.7	7.8	7.3	7.3	4.3	7.972	
	40.7	11.8	11.3	6.2	9.2	5.7	>10	
16	44.0	14.4	5.5	7.4	4.4	5.5	>10	>10
	42.7	10.5	10.1	10.7	14.3	6.0	>10	
17	24.4	3.9	4.7	3.7	0.0	0.0	>10	
	28.7	6.8	73	8.8	89	6.9	>10	>10
- /	38.3	10.6	4 2	5.0	47	4 5	>10	10
	49.9	18.1	14.9	87	7.6	4 7	>10	
18	16.5	17.4	9.8	11.1	5.4	62	>10	>10
10	34 3	16.6	9.5	7.0	2.5	1.0	>10	10
19	14.2	6.5	8.6	6.2	6.9	0.7	>10	
	12.4	7 2	6.9	63	8.1	73	>10	>10
	14.6	4.8	2.5	0.8	0.0	0.0	>10	10
20	9.8	11.1	6.5	10.6	10.9	7.8	>10	
	18.0	163	8.5 8.8	6.8	75	7.0 77	>10	>10
	3/1 1	14.0	0.0 0.1	5.0	20	10	>10	~ 10
	02.0	70.2	57.0	16.0	2.7	7.9	0.204	
Doxorubicin	92.9 02.9	79.3 707	57.0 57.7	40.0	20.0	1.0	0.204	0.22 + 0.020
	92.0	19.1 70.2	540	40.9	30.1 19 5	4./ 10.1	0.162	0.22 ± 0.039
	92.9	10.5	20.9	42.3	18.5	10.1	0.238	

Table S12. Cytotoxic Activities of Compounds 1–20 against the Hep G2 Cells.

	Concentration (<i>u</i> M)							$IC_{50} \pm SD$
Cmpd	10	3.333	1.111	0.370	0.123	0.041	(μM)	(μM)
	62.1	42.5	19.8	0.0	0.0	2.8	4.253	1
1	73.8	49.7	36.4	12.4	9.2	8.4	2.911	3.662 ± 0.685
	66.3	45.1	31.9	10.9	6.4	5.0	3.821	
	53.1	42.9	36.6	20.1	1.9	3.2	8.929	
2	59.3	51.0	42.4	28.8	3.1	4.3	8.791	6.989 ± 3.242
	68.5	43.5	37.9	27.5	10.2	0.0	3.246	
	63.5	45.5	34.8	6.2	0.0	0.0	3.031	
3	75.6	52.5	42.3	16.0	5.3	6.2	2.214	2.637 ± 0.409
-	67.7	49.9	39.8	15.5	9.5	5.9	2.666	2.037 =0.109
	66.0	43.3	40.7	25.6	0.0	0.0	2.703	2.134 +0.498
4	73.4	50.6	42.9	28.6	0.0	0.0	1.926	
	87.6	53.4	45.2	35.4	19.8	11.2	1.774	
	35.1	0.0	0.0	0.0	2.0	0.2	>10	
1a(5+6)	53.6	9.9	4.3	4.3	9.5	0.0	>10	>10
	49.1	21.3	11.7	11.1	13.1	11.7	>10	, 10
	81.5	4.3	2.1	1.6	0.0	0.5	8.380	
2a (7 + 8)	91.6	9.9	10.9	0.0	79	4 2	7 706	6 620 +2 487
2a (7 + b)	88.1	11.8	4 5	9.6	7.0	9.4	3 775	0.020 ±2.407
	67.7	0.7	0.0	0.0	1.0	0.4	4 325	
3a(9+10)	56.8	15.8	6.9	14	3.8	43	8 859	6 592 + 3 206
<i>ou</i> (<i>y</i> + 10)	45.9	10.9	3.4	5 7	7.5	57	>10	0.572 _5.200
	27.5	2.5	1.2	0.5	0.0	-0.7	>10	
$49(11 \pm 12)$	45.1	12.0	13.3	11.2	5.0	3.2	>10	>10
4a(11 + 12)	58.3	17.8	12.9	8.5	9.4	12.2	8 923	>10
	45.4	11.0	5.5	1.6	5.9	-0.3	>10	
13	33.1	80	5.3	7.1	1.5	-0.5	>10	6 592 + 3 206
15	75.6	28.0	18.6	16.0	18.3	4.1 11 /	6 708	0.372 ± 3.200
	95.1	39.5	15.0	3.3	6.5	5.3	4 260	
14	95.0	10.3	6.9	3.3 4 7	3.0	3.5	4.200	5.960 ± 1.502
14	93.9	17.5	13.8	4.7	9.4	3.J 1 3	7 107	5.900 ± 1.502
	95.0	<u> </u>	15.0	<u> </u>	12.2	4.3	2.028	
15	95.1	62.2	10.5	0.4 4 5	13.2	3.5	2.038	4 156 + 2 062
15	93.9	10.7	10.5	4.5	0.5	4.7	2.703	4.130 ± 3.062
	52.0	19.7	15.1	12.2	6.1	2.9	0.525	
16	JJ.9 41.6	12.2	13.4	10.1	0.1	5.0	9.525	8 800 ± 1 000
10	41.0	10.2	4.0	5.0 12.5	4.2	J.J 15 0	>10	8.802 ± 1.022
	30.5	1.1	17.0	13.3	10.7	0.6	>10	
17	30.3 20.1	4.4 0.0	0.0	0.0	0.0	0.0	>10	>10
17	57.8	22.5	12.0	14.8	12.2	0.0	>10	>10
	/2 1	23.3	12.0	14.0	13.3	7.9	>10	
10	43.1	10.8	7.0 15.1	0.0	1.0	∠.4 2.0	>10	>10
18	51.5	19.1	15.1	0.0 10.0	4.4 9.7	2.9	>10	>10
	14.0	20.0	10.3	10.0	<u> 8.7</u>	7.0	>10	
10	14.9	2.4	5.9	5.1	1.0	0.8	>10	× 10
19	22.0	/./	9.1	5.0	3.8	2.1	>10	>10
	40.4	13.1	12.4	9.1	ð.U 2.0	ð.2	>10	
20	23.4	9.8	4.0	5.4 5.2	3.0	1.1	>10	. 10
	28.6	11.5	/.1	5.2	1.2	1.5	>10	>10
	49.2	24.5	1/.6	13.0	16.8	13.2	>10	
Doxorubicin	93.7	89.2	/5.1	62.0	44.5	1/.4	0.064	0.000 0.000
	92.9	87.8	76.5	61.1	43.8	22.0	0.064	0.069 ± 0.009
	92.5	82.5	66.6	53.8	44.1	28.9	0.079	

6. NMR, MS, and IR spectra of compounds 1–21

6.1 NMR, MS, and IR spectra of compound 1

Figure S16. ¹H NMR spectrum (500 MHz) of 1 in CDCl₃

Figure S18. ¹H–¹H COSY spectrum of 1 in CDCl₃

Figure S19. HSQC spectrum of 1 in CDCl₃

Figure S20. HMBC spectrum of 1 in CDCl₃

Figure S21. NOESY spectrum of 1 in CDCl₃

Figure S22. (\pm)-ESIMS spectra of 1

Figure S23. (-)-HRESIMS spectrum of 1

Figure S24. IR spectrum of 1

6.2 NMR, MS, and IR spectra of compound 2

Figure S25. ¹H NMR spectrum (500 MHz) of 2 in CDCl₃

Figure S26. ¹³C NMR spectrum (125 MHz) of 2 in CDCl₃

Figure S27. ¹H–¹H COSY spectrum of 2 in CDCl₃

Figure S28. HSQC spectrum of 2 in CDCl₃

Figure S29. HMBC spectrum of 2 in CDCl₃

Figure S30. NOESY spectrum of 2 in CDCl₃

Figure S31. (±)-ESIMS spectra of 2

Figure S32. (–)-HRESIMS spectrum of 2

Figure S33. IR spectrum of 2

6.3 NMR, MS, and IR spectra of compound 3

Figure S34. ¹H NMR spectrum (500 MHz) of 3 in CDCl₃

Figure S36. ¹H–¹H COSY spectrum of 3 in CDCl₃

Figure S37. HSQC spectrum of 3 in CDCl₃

Figure S38. HMBC spectrum of 3 in CDCl₃

Figure S39. NOESY spectrum of 3 in CDCl₃

Figure S40. (±)-ESIMS spectra of 3

Figure S41. (–)-HRESIMS spectrum of 3

Figure S42. IR spectrum of 3

6.4 NMR, MS, and IR spectra of compound 4

Figure S43. ¹H NMR spectrum (500 MHz) of 4 in CDCl₃

Figure S46. HSQC spectrum of 4 in CDCl₃

Figure S47. HMBC spectrum of 4 in CDCl₃

FigureS48. NOESY spectrum of 4 in CDCl₃

Figure S49. (±)-ESIMS spectra of 4

Figure S50. (-)-HRESIMS spectrum of 4

Figure S51. IR spectrum of 4

6.5 NMR, MS, and IR spectra of compound 5

Figure S52. ¹H NMR spectrum (500 MHz) of 5 in CDCl₃

Figure S55. HSQC spectrum of 5 in CDCl₃

Figure S56. HMBC spectrum of 5 in CDCl₃

Figure S57. NOESY spectrum of 5 in CDCl₃

Figure S58. (±)-ESIMS spectra of 5

Figure S59. (–)-HRESIMS spectrum of 5

Figure S60. IR spectrum of 5

6.6 NMR, MS, and IR spectra of compound 6

Figure S61. ¹H NMR spectrum (500 MHz) of 6 in CDCl₃

Figure S62. ¹³C NMR spectrum (125 MHz) of 6 in CDCl₃

Figure S64. HSQC spectrum of 6 in CDCl₃

Figure S65. HMBC spectrum of 6 in CDCl₃

Figure S66. NOESY spectrum of 6 in CDCl₃

Figure S67. (±)-ESIMS spectra of 6

Figure S68. (–)-HRESIMS spectrum of 6

Figure S69. IR spectrum of 6

6.7 NMR, MS, and IR spectra of compound 7

Figure S70. ¹H NMR spectrum (500 MHz) of 7 in CDCl₃

Figure S72. ¹H–¹H COSY spectrum of 7 in CDCl₃

Figure S73. HSQC spectrum of 7 in CDCl₃

Figure S74. HMBC spectrum of 7 in CDCl₃

Figure S75. NOESY spectrum of 7 in CDCl₃

Figure S76. (±)-ESIMS spectra of 7

Figure S77. (–)-HRESIMS spectrum of 7

Figure S78. IR spectrum of 7

6.8 NMR, MS, and IR spectra of compound 8

Figure S79. ¹H NMR spectrum (500 MHz) of 8 in CDCl₃

Figure S81. ¹H–¹H COSY spectrum of 8 in CDCl₃

Figure S82. HSQC spectrum of 8 in CDCl₃

Figure S83. HMBC spectrum of 8 in CDCl₃

Figure S84. NOESY spectrum of 8 in CDCl₃

Figure S85. (±)-ESIMS spectra of 8

Figure S86. (-)-HRESIMS spectrum of 8

Figure S87. IR spectrum of 8

6.9 NMR, MS, and IR spectra of compound 9

Figure S88. ¹H NMR spectrum (500 MHz) of 9 in CDCl₃

Figure S90. ¹H–¹H COSY spectrum of 9 in CDCl₃

Figure S91. HSQC spectrum of 9 in CDCl₃

Figure S92. HMBC spectrum of 9 in CDCl₃

Figure S93. NOESY spectrum of 9 in CDCl₃

Figure S94. (±)-ESIMS spectra of 9

Figure S95. (–)-HRESIMS spectrum of 9

Figure S96. IR spectrum of 9

6.10 NMR, MS, and IR spectra of compound 10

Figure S97. ¹H NMR spectrum (500 MHz) of 10 in CDCl₃

Figure S98. ¹³C NMR spectrum (125 MHz) of 10 in CDCl₃

Figure S100. HSQC spectrum of 10 in CDCl₃

Figure S101. HMBC spectrum of 10 in CDCl₃

Figure S102. NOESY spectrum of 10 in CDCl₃

Figure S103. (±)-ESIMS spectra of 10

Figure S104. (-)-HRESIMS spectrum of 10

6.11 NMR, MS, and IR spectra of compound 11

Figure S106. ¹H NMR spectrum (500 MHz) of 11 in CDCl₃

Figure S109. HSQC spectrum of 11 in CDCl₃

Figure S110. HMBC spectrum of 11 in CDCl₃

Figure S111. NOESY spectrum of 11 in CDCl₃

Figure S112. (±)-ESIMS spectra of 11

Figure S113. (–)-HRESIMS spectrum of 11

Figure S114. IR spectrum of 11

6.12 NMR, MS, and IR spectra of compound 12

Figure S115. ¹H NMR spectrum (500 MHz) of 12 in CDCl₃

Figure S116. ¹³C NMR spectrum (125 MHz) of 12 in CDCl₃

Figure S118. HSQC spectrum of 12 in CDCl₃

Figure S119. HMBC spectrum of 12 in CDCl₃

Figure S120. NOESY spectrum of 12 in CDCl₃

Figure S121. (±)-ESIMS spectra of 12

Figure S122. (-)-HRESIMS spectrum of 12

Figure S123. IR spectrum of 12

6.13 NMR, MS, and IR spectra of compound 13

Figure S124. ¹H NMR spectrum (500 MHz) of 13 in CDCl₃

Figure S127. HSQC spectrum of 13 in CDCl₃

Figure S128. HMBC spectrum of 13 in CDCl₃

Figure S129. NOESY spectrum of 13 in CDCl₃

Figure S130. (±)-ESIMS spectra of 13

Figure S131. (-)-HRESIMS spectrum of 13

Figure S132. IR spectrum of 13

6.14 NMR, MS, and IR spectra of compound 14

Figure S133. ¹H NMR spectrum (500 MHz) of 14 in CDCl₃

Figure S136. HSQC spectrum of 14 in CDCl₃

Figure 137. HMBC spectrum of 14 in CDCl₃

Figure S138. NOESY spectrum of 14 in CDCl₃

Figure S139. (±)-ESIMS spectra of 14

Figure S140. (-)-HRESIMS spectrum of 14

Figure S141. IR spectrum of 14

6.15 NMR, MS, and IR spectra of compound 15

Figure S142. ¹H NMR spectrum (500 MHz) of 15 in CDCl₃

Figure S145. HSQC spectrum of 15 in CDCl₃

Figure S146. HMBC spectrum of 15 in CDCl₃

Figure S147. NOESY spectrum of 15 in CDCl₃

Figure S148. (±)-ESIMS spectra of 15

Figure S149. (–)-HRESIMS spectrum of 15

Figure S150. IR spectrum of 15

6.16 NMR, MS, and IR spectra of synthetic 16

Figure S151. ¹H NMR spectrum (500 MHz) of 16 in CDCl₃

Figure S152. ¹³C NMR spectrum (125 MHz) of 16 in CDCl₃

Figure S154. HSQC spectrum of 16 in CDCl₃

Figure S155. HMBC spectrum of 16 in CDCl₃

Figure S156. NOESY spectrum of 16 in CDCl₃

Figure S157. (±)-ESIMS spectra of 16

Figure S158. (–)-HRESIMS spectrum of 16

Figure S159. IR spectrum of 16

6.17 NMR, MS, and IR spectra of compound 17

Figure S160. ¹H NMR spectrum (500 MHz) of **17** in acetone- d_6

Figure S161. ¹³C NMR spectrum (125 MHz) of 17 in acetone- d_6

Figure S166. (±)-ESIMS spectra of 17

Figure S167. (-)-HRESIMS spectrum of 17

659.322

659.3226 0.6 0.91 C39 H47 O9 (M+COOH	4	-	en (mea)	en (ppin)	a officient of the area	
		659.3226	0.6	0.91	C39 H47 O9	(M+COOH)-

Figure S168. IR spectrum of 17

6.18 NMR, MS, and IR spectra of compound 18

Figure S169. ¹H NMR spectrum (500 MHz) of **18** in acetone- d_6

Figure S170. ¹³C NMR spectrum (125 MHz) of 18 in acetone- d_6

Figure S174. NOESY spectrum of 18 in acetone-*d*₆

Figure S175. (±)-ESIMS spectra of 18

Figure S176. (-)-HRESIMS spectrum of 18

Figure S177. IR spectrum of 18

6.19 NMR, MS, and IR spectra of synthetic 19

Figure S178. ¹H NMR spectrum (500 MHz) of **19** in acetone- d_6

Figure S179. ¹³C NMR spectrum (125 MHz) of **19** in acetone- d_6

Figure S180. $^{1}H^{-1}H$ COSY spectrum of **19** in acetone- d_{6}

Figure S181. HSQC spectrum of **19** in acetone-*d*₆

Figure S182. HMBC spectrum of 19 in acetone-*d*₆

Figure S184. (±)-ESIMS spectra of 19

Figure S185. (-)-HRESIMS spectrum of 19

Figure S186. IR spectrum of 19

6.20 NMR, MS, and IR spectra of compound 20

Figure S187. ¹H NMR spectrum (500 MHz) of **20** in acetone- d_6

Figure S190. HSQC spectrum of **20** in acetone-*d*₆

Figure S193. (±)-ESIMS spectra of 20

Figure S194. (-)-HRESIMS spectrum of 20

Figure S195. IR spectrum of 20

6.21 NMR, MS, and IR spectra of compound 21

Figure S196. ¹H NMR spectrum (500 MHz) of **21** in acetone- d_6

Figure S197. ¹³C NMR spectrum (125 MHz) of 21 in acetone- d_6

Figure S199. HSQC spectrum of 21 in acetone-*d*₆

Figure S200. HMBC spectrum of 21 in acetone-*d*₆

Figure S202. (±)-ESIMS spectra of 21

Figure S203. (-)-HRESIMS spectrum of 21

6.22 ¹H NMR and MS spectra of synthetic 1a–4a, 13–16, and 17–20

Figure S204. ¹H NMR spectrum (500 MHz) of 1a in CD₃OD

Figure S205. (±)-ESIMS spectra of 1a

Figure S207. (±)-ESIMS spectra of 2a

Figure S209. (±)-ESIMS spectra of 3a

Figure S211. (±)-ESIMS spectra of 4a

Figure S213. (±)-ESIMS spectra of 13

Figure S215. (±)-ESIMS spectra of 14

Figure S216. ¹H NMR spectrum (500 MHz) of 15 in CD₃OD

Figure S217. (±)-ESIMS spectra of 15

Figure S218. ¹H NMR spectrum (500 MHz) of 16 in CD₃OD

Figure S219. (±)-ESIMS spectra of 16

Figure S220. ¹H NMR spectrum (500 MHz) of 17 in CD₃OD

Figure S221. (±)-ESIMS spectra of 17

$\begin{array}{c} 0.62 \\ 0.$ تحجي -1-OH 'nΗ O= HO 3 0 Ο Ĥ ΌΗ ХĤ AA N ┝┿┍┥┥┥ 747 Ψ ۲ 17 4 ተ 74-54 4888 88 8 <u>8</u> 8 8 <u>8</u> 9 2284248 NNEN 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Figure S222. ¹H NMR spectrum (500 MHz) of 18 in CD₃OD

Figure S223. (±)-ESIMS spectra of 18

Figure S225. (±)-ESIMS spectra of 19

Figure S226. ¹H NMR spectrum (500 MHz) of 20 in CD₃OD

Figure S227. (±)-ESIMS spectra of 20

Crude extract

7. UPLC-MS Analysis of Ethanolic Crude Extract

To verify the existence of isolated four compound classes in plant, especially 16 and 19 that were not obtained in the current study, a direct UPLC-MS(ESI) analysis of the ethanolic crude extract were carried out. Refering to the diagnostic ion peaks and retention time of isolated and synthesized reference compounds, indicating their presence in D. gelonioides.

Crude extract 3: Diode Array Range: 5.121e+2 3: Diode Array Range: 5.254e+2 ę 2

Figure S228. UPLC-(+)-ESIMS (left) and UPLC-(-)-ESIMS (right) spectra of crude extract

Figure S229. UPLC-(-)-ESIMS analysis of compounds 1 and 2 in crude extract

Figure S230. UPLC-(-)-ESIMS analysis of compounds 5 and 11 in crude extract

Figure S232. UPLC-(+)-ESIMS analysis of compounds 13 and 16 in crude extract

7. References

- a) Sheldrick, G. M. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8; b) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341.
- [2] a) Gan, M. L.; Liu, M. T.; Gan, L. S.; Lin, S.; Liu, B.; Zhang, Y. L.; Zi, J. C.; Song, W. X.; Shi, J. G. *J. Nat. Prod.* 2012, 75, 1373–1382; b) Huang, Y. J.; Lu, H.; Yu, X. L.; Zhang, S. W.; Wang, W. Q.; Fen, L. Y.; Xuan, L. J. *J. Nat. Prod.* 2014, 77, 1201–1209; c) Jing, S. X.; Luo, S. H.; Li, C. H.; Hua, J.; Wang, Y. L.; Niu, X. M.; Li, X. N.; Liu, Y.; Huang, C. S.; Wang, Y.; Li, S. H. *J. Nat. Prod.* 2014, 77, 882–893.
- [3] Addae-Mensah, I.; Waibel, R.; Asunka, S. A.; Oppong, I. V.; Achenbach, H. Phytochemistry 1996, 43, 649–656.
- [4] Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; IyengarS. S.; Tomasi, J.; Cossi, M.; Rega; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R. E.; Stratmann, O.; Yazyev, A. J.; Austin, R.; Cammi, C.; Pomelli, J. W.; Ochterski, R.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision B.01; Gaussian Inc: Wallingford, CT, 2009.
- [5] http://cheshirenmr.info.
- [6] Jin, S. F.; Ma, H. L.; Liu, Z. L.; Fu, S. T.; Zhang, C. P.; He, Y. Exp. Cell Res. 2015, 339, 289–299.
- [7] Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; Mcmahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. *J. Natl. Cancer Inst.* **1990**, *82*, 1107–1112.