# Natural Products Dereplication by Diffusion Ordered NMR Spectroscopy (DOSY)

Guy Kleks, <sup>ab</sup> Darren C. Holland, <sup>ab</sup> Joshua Porter<sup>ab</sup> and Anthony R. Carroll\*<sup>ab</sup>

<sup>a</sup>School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia

<sup>b</sup>Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia

## **Supporting Information**

### Table S1 List of compounds used to generate models 1-4

| #  | Compound             | Code    | MW     | Class           | Group | MeOH% | clogP  | δ <sub>H</sub><br>protic | <sup>eff</sup> δ <sub>H</sub><br>protic | Α (Δδ <sub>Η</sub> )⁰ | D         | MW <sub>pre</sub><br>Model 1 | MW <sub>pre</sub><br>Model 2 | MW <sub>pre</sub><br>Model 3 |
|----|----------------------|---------|--------|-----------------|-------|-------|--------|--------------------------|-----------------------------------------|-----------------------|-----------|------------------------------|------------------------------|------------------------------|
| 1  | niacin               | nia     | 123.11 | NP <sup>a</sup> | HBD   | 6%    | 0.144  | 13.43                    | 13.43                                   |                       | 3.817E-10 | 153                          | 116                          | 112                          |
| 2  | salicyclic acid      | sal     | 138.12 | NP              | HBD   | 22%   | 0.799  | 11.35                    | 11.35                                   |                       | 3.714E-10 | 160                          | 132                          | 130                          |
| 3  | acetaminophen        | ace     | 151.16 | drug            | HBD   | 24%   | 1.018  | 9.64                     | 9.64                                    |                       | 3.013E-10 | 226                          | 198                          | 183                          |
| 4  | menthol              | men     | 156.27 | NP              | HBD   |       | 2.411  | 4.28                     | 4.28                                    |                       | 4.071E-10 | 137                          | 148                          |                              |
| 5  | phenanthrene         | phe     | 178.23 | NP              | disc  | 86%   | 4.048  |                          | 0                                       |                       | 4.489E-10 | 117                          | 148                          | 150                          |
| 6  | 2-aminoanthracene    | ant     | 193.24 | Syn             | HBD   | 75%   | 3.371  | 5.55                     | 5.55                                    | 0.22<br>(1.63)        | 3.497E-10 | 177                          | 181                          | 205                          |
| 7  | caffeine             | caf     | 194.19 | NP              | HBA   | 37%   | -0.178 |                          | 0                                       |                       | 3.822E-10 | 153                          | 193                          | 138                          |
| 8  | Pyrene               | pyr     | 202.25 | NP              | disc  | 90%   | 4.690  |                          | 0                                       |                       | 4.155E-10 | 133                          | 168                          | 174                          |
| 9  | ibuprofen            | ibu     | 206.28 | drug            | HBD   | 68%   | 3.003  | 12.24                    | 12.24                                   |                       | 2.924E-10 | 237                          | 189                          | 257                          |
| 10 | 7-hydroxydictamnine  | hyd     | 215.20 | NP              | HBD   | 62%   | 2.294  | 10.16                    | 10.16                                   |                       | 2.959E-10 | 233                          | 200                          | 242                          |
| 11 | farnesol             | far     | 222.37 | NP              | HBD   |       | 5.657  | 4.42                     | 4.42                                    |                       | 3.130E-10 | 212                          | 227                          |                              |
| 12 | bisphenol A          | bisA    | 228.29 | Syn             | HBD   | 67%   | 2.866  | 9.15                     | 9.15                                    | 0.48<br>(3.56)        | 2.460E-10 | 316                          | 282                          | 333                          |
| 13 | naproxen             | nap     | 230.26 | drug            | HBD   | 57%   | 2.695  | 12.28                    | 12.28                                   |                       | 2.742E-10 | 264                          | 209                          | 281                          |
| 14 | Kavain               | kav     | 230.26 | NP              | HBA   | 66%   | 2.072  |                          | 0                                       |                       | 3.177E-10 | 207                          | 262                          | 210                          |
| 15 | nalidixic acid       | nal     | 232.24 | drug            | HBA   | 55%   | 0.536  | 14.89                    | 0                                       |                       | 3.349E-10 | 190                          | 240                          | 191                          |
| 16 | lignocaine           | lig     | 234.34 | drug            | HBD   | 70%   | 2.157  | 9.15                     | 9.15                                    | 0.04<br>(0.22)        | 3.239E-10 | 200                          | 179                          | 222                          |
| 17 | fragrolide           | fra     | 248.32 | NP              | HBA   | 64%   | 2.129  |                          | 0                                       |                       | 3.253E-10 | 199                          | 252                          | 212                          |
| 18 | parthenolide         | par     | 248.32 | NP              | HBA   | 68%   | 2.753  |                          | 0                                       |                       | 3.256E-10 | 199                          | 251                          | 217                          |
| 19 | gemfibrozil          | gem     | 250.33 | drug            | HBD   | 78%   | 3.555  | 12.03                    | 12.03                                   |                       | 2.712E-10 | 269                          | 215                          | 309                          |
| 20 | hexazinone           | hex     | 252.31 | Syn             | НВА   | 60%   | 1.384  |                          | 0                                       |                       | 3.002E-10 | 227                          | 287                          | 234                          |
| 21 | bis-indole-methanone | bis-ind | 260.29 | NPd             | HBD   | 63%   | 2.868  | 11.81                    | 11.81                                   |                       | 2.607E-10 | 287                          | 232                          | 297                          |
| 22 | woodsianone B        | woo     | 266.33 | NP              | НВА   | 79%   | 1.746  |                          | 0                                       |                       | 2.971E-10 | 231                          | 292                          | 269                          |
| 23 | atenolol             | ate     | 266.34 | drug            | HBD   | 26%   | 0.307  | 7.38                     | 7.38                                    |                       | 2.364E-10 | 337                          | 322                          | 269                          |
| 24 | imazapic             | ima     | 275.30 | Syn             | HBD   | 24%   | 0.642  | 11.8                     | 11.8                                    |                       | 2.357E-10 | 339                          | 273                          | 266                          |

| 25 | artemisinin          | art    | 282.33 | NP               | HBA | 74%  | 2.258  |                   | 0                 |        | 3.256E-10 | 199 | 251 | 227 |
|----|----------------------|--------|--------|------------------|-----|------|--------|-------------------|-------------------|--------|-----------|-----|-----|-----|
| 26 | acrophylline*        | acr*   | 397.35 | NP               | HBA | 75%  | 3.498  |                   | 0                 |        | 2.673E-10 | 275 | 348 | 310 |
| 27 | arborinine           | arb    | 285.29 | NP               | HBA | 69%  | 2.635  | 14.86             | 0                 |        | 3.092E-10 | 216 | 274 | 238 |
| 28 | trimethoprim         | tri2   | 290.32 | drug             | HBD | 43%  |        | 6.07              | 6.07              | 0.18   | 2.299E-10 | 353 | 354 | 314 |
|    |                      |        |        |                  |     |      | 1.069  |                   |                   | (1.30) |           |     |     |     |
| 29 | lamourouic acid*     | Lam*   | 308.21 | NP               | HBD |      | -4.642 | 12.7              | 12.7              |        | 2.219E-10 | 374 | 292 |     |
| 30 | toddalolactone       | todd   | 308.33 | NP               | HBD | 59%  | 1.363  | 4.14              | 4.14              |        | 2.520E-10 | 304 | 328 | 303 |
| 31 | quinine              | qui    | 324.42 | NP               | HBD | 72%  | 2.610  | 5.61              | 5.61              |        | 2.520E-10 | 303 | 310 | 332 |
| 32 | boldine              | bol    | 327.37 | NP               | HBD | 54%  |        | 9.09              | 9.09              | 0.52   | 2.153E-10 | 394 | 352 | 375 |
|    |                      |        |        |                  |     |      | 2.788  |                   |                   | (3.89) |           |     |     |     |
| 33 | 9-demethylaaptamine* | aap*   | 328.24 | NP               | HBD |      | 1.059  | 10.14             | 10.14             |        | 2.255E-10 | 365 | 313 |     |
| 34 | Sanguinarine (OH-)   | san    | 349.10 | NP               | HBA | 85%  | 0.664  |                   | 0                 |        | 2.585E-10 | 291 | 367 | 348 |
| 35 | penicillin G         | pen    | 334.39 | NP               | HBD |      | 1.538  | 8.68              | 8.68              |        | 2.121E-10 | 403 | 366 |     |
| 36 | colchicine           | col    | 399.44 | NP               | HBD | 58%  | 1.863  | 8.57              | 8.57              |        | 2.058E-10 | 424 | 386 | 412 |
| 37 | α-tocopherol         | toc    | 430.71 | NP               | HBD | 100% |        | 7.35              | 7.35              | 0.43   | 2.126E-10 | 402 | 383 | 521 |
|    |                      |        |        |                  |     |      | 9.644  |                   |                   | (3.17) |           |     |     |     |
| 38 | quinine*             | qui*   | 438.44 | NP               | HBD |      | 0.501  | 5.61              | 5.61              |        | 2.147E-10 | 395 | 403 |     |
| 39 | folic acid           | fol    | 441.40 | NP               | HBD | 17%  | -1.646 | 12.1              | 12.1              |        | 1.523E-10 | 697 | 555 | 498 |
| 40 | boldine*             | bol*   | 441.40 | NP               | HBD |      | 0.679  | 9.55              | 9.55              |        | 1.855E-10 | 503 | 442 |     |
| 41 | sanguinarine*        | san*   | 445.34 | NP               | HBA |      | 0.664  |                   | 0                 |        | 2.279E-10 | 358 | 452 |     |
| 42 | tobramycin           | tob    | 467.51 | NP               | HBD |      | -7.020 | 4.88              | 4.88              |        | 1.693E-10 | 585 | 612 |     |
| 43 | rigidin              | rig    | 363.32 | NP               | HBD |      | 1.738  | 11.86             | 11.86             |        | 1.686E-10 | 589 | 473 |     |
| 44 | emetine              | eme    | 480.64 | NP               | HBD | 72%  | 4.910  | 2.00 <sup>d</sup> | 2.00 <sup>d</sup> |        | 2.019E-10 | 438 | 511 | 467 |
| 45 | doxycycline hyclate  | doxy   | 480.90 | NPd <sup>b</sup> | HBD |      | -2.466 | 11.48             | 10.19             |        | 1.707E-10 | 577 | 494 |     |
| 46 | fusidic acid         | fus    | 516.71 | NP               | HBD |      | 5.823  | 4.03              | 4.03              |        | 1.672E-10 | 597 | 646 |     |
| 47 | prunolide C          | prunC  | 574.53 | NP               | HBD | 64%  | 2.860  | 10.4              | 10.4              |        | 1.499E-10 | 715 | 607 | 700 |
| 48 | rutin                | rut    | 610.52 | NP               | HBD | 51%  | -1.257 | 12.60             | 10.72             |        | 1.420E-10 | 782 | 656 | 696 |
| 49 | oleandomycin         | oleery | 687.86 | NP               | HBD |      | 1.473  | 4.23              | 4.23              |        | 1.676E-10 | 595 | 638 |     |
| 50 | erythromycin         | ery    | 733.93 | NP               | HBD | 67%  | 1.672  | 4.28              | 4.28              |        | 1.606E-10 | 639 | 684 | 643 |
| 51 | clarithromycin       | clar   | 747.95 | NPd              | HBD | 73%  | 2.100  | 5.00              | 5.00              |        | 1.707E-10 | 577 | 601 | 609 |

| 52 | oleandomycin                                     | ole-tri    | 813.97  | NPd | HBA             | 83% |        |                   | 0                 | 1.660E-10 | 604  | 761  | 681  |
|----|--------------------------------------------------|------------|---------|-----|-----------------|-----|--------|-------------------|-------------------|-----------|------|------|------|
|    | triacetate                                       |            |         |     |                 |     | 2.927  |                   |                   |           |      |      |      |
| 53 | rifampicin                                       | rifa       | 822.94  | NPd | HBD             | 73% | 4.713  | 12.44             | 9.52              | 1.456E-10 | 751  | 658  | 780  |
| 54 | digitonin                                        | dig        | 1229.31 | NP  | HBD             | 81% | -5.302 | 5.00 <sup>d</sup> | 5.00 <sup>d</sup> | 1.078E-10 | 1234 | 1282 | 1304 |
| 55 | vancomycin                                       | vanco      | 1485.71 | NP  | HBD             |     |        | 9.46              | 9.46              | 8.942E-11 | 1679 | 1471 |      |
|    | hydrochloride                                    |            |         |     |                 |     | -4.551 |                   |                   |           |      |      |      |
| 56 | botryllamide C                                   | botC       | 404.265 | NP  | Br <sup>e</sup> |     |        |                   |                   | 2.048E-10 | 427  |      |      |
| 57 | methyl 2-(5-bromo-                               | 5-BIO      | 282.09  | NP  | Br              |     |        |                   |                   | 3.234E-10 | 199  |      |      |
|    | 1 <i>H</i> -indol-3-yl)-2-                       |            |         |     |                 |     |        |                   |                   |           |      |      |      |
|    | oxoacetate                                       |            |         |     |                 |     |        |                   |                   |           |      |      |      |
| 58 | methyl 2-(6-bromo-                               | 6-BIO      | 282.09  | NP  | Br              |     |        |                   |                   | 3.333E-10 | 190  |      |      |
|    | 1 <i>H</i> -indol-3-yl)-2-                       |            |         |     |                 |     |        |                   |                   |           |      |      |      |
|    | oxoacetate                                       |            |         |     |                 |     |        |                   |                   |           |      |      |      |
| 59 | prunolide B                                      | prunB      | 1047.91 | NP  | Br              |     |        |                   |                   | 1.410E-10 | 792  |      |      |
| 60 | prunolide A                                      | prunA      | 1205.70 | NP  | Br              |     |        |                   |                   | 1.402E-10 | 799  |      |      |
| 61 | procerolide B                                    | procB      | 563.03  | NP  | Br              |     |        |                   |                   | 2.092E-10 | 414  |      |      |
| 62 | echinosulfone A                                  | echA       | 498.15  | NP  | Br              |     |        |                   |                   | 2.338E-10 | 343  |      |      |
| 63 | bis(6-bromo-1 <i>H</i> -indol-<br>3-yl)methanone | Br-bis-ind | 418.08  | NPd | Br              |     |        |                   |                   | 2.448E-10 | 318  |      |      |

<sup>\*</sup>TFA salt. <sup>*a*</sup>NP = Natural Product. <sup>*b*</sup>NPd = Natural Product-derived. <sup>*c*</sup>Determined H-bond acidity ( $\Delta \delta_{H}$  DMSO/CDCl<sub>3</sub>). <sup>*d*</sup>Not observed, estimated chemical shift. <sup>*e*</sup>Br = Brominated.







































Br\_

0







Br















**Fig. S1** <sup>1</sup>H DOSY spectrum of rifampicin (**53**), acquired on Bruker 500 MHz spectrometer (upper) and 800 MHz (bottom). The data was acquired for different samples at different concentrations (20.6 mM and 10.4 mM), prepared on different days (08/03/2020 and 20/11/2019 respectively). Both spectra were referenced to the TTMS signal at  $3.157 \cdot 10^{-10}$ .



**Fig. S2** Principal component analysis (PCA) plot generated for the following physicochemical properties: Total Molweight, cLogP, H-Acceptors, H-Donors, Polar Surface Area, Shape Index, Molecular Flexibility, Electronegative Atoms, Rotatable Bonds, Small Rings, Aromatic Rings, Aromatic Atoms, sp3-Atoms, Symmetric atoms, Amides, Amines, Alkyl-Amines, Aromatic Amines, Aromatic Nitrogens, Basic Nitrogens, Acidic Oxygens. The figure contains the NP data set (n = 55) and those compounds used by Stalke and co-workers (n = 27) to create MW prediction models for expanded disc-like (ED), compact spherical molecules (CS) and dissipated spheres and ellipsoids (DSE).<sup>16</sup>



**Fig. S3** Residual plot of MW<sub>pre</sub> errors for model 1 generated for HBDs, non-HBDs and discs (*n*=55). HBDs are in blue, non-HBDs in black, discs in magenta, spheres in green, brominated in brown. Average MW<sub>pre</sub> error range displayed by red dashed lines.

**Table S2.** Model 1 (*n*=55, R<sup>2</sup>=0.852, adjusted R<sup>2</sup>=0.849)

| Coefficients | Estimate | SE       | tStat   | pValue   |
|--------------|----------|----------|---------|----------|
| log(A)       | -8.0952  | 0.087971 | -92.021 | 3.75E-60 |
| α            | -0.60572 | 0.034735 | -17.439 | 1.30E-23 |



Fig. S4 Residual plot of MW<sub>pre</sub> errors using Model 1 (red) and Model 2 (blue), with average MW<sub>pre</sub> error range displayed by dashed lines.

**Table S3.** Model 2 (*n*=55, R<sup>2</sup>=0.949, adjusted R<sup>2</sup>=0.947)

| Coefficients                | Estimate | SE       | tStat    | pValue   |
|-----------------------------|----------|----------|----------|----------|
| Intercept                   | -8.02802 | 0.052556 | -152.752 | 1.16E-70 |
| logMW                       | -0.6077  | 0.02058  | -29.529  | 3.66E-34 |
| ${}^{ m eff} \delta_{ m H}$ | -0.01019 | 0.001024 | -9.95027 | 1.23E-13 |



Fig. S5 MW vs. Predicted MW for natural products, drug and synthetic compounds (n= 55) derived from the diffusion model 2.

**Table S4.** Model:  $logD = lowMW + clogP + intercept (n=55, R^2=0.87, adjusted R^2=0.865)$ 

|           | Estimated coefficients | SE       | tStat   | pValue   |
|-----------|------------------------|----------|---------|----------|
| Intercept | -8.1686                | 0.087434 | -93.425 | 1.34E-59 |
| clogP     | 0.007662               | 0.002832 | 2.7051  | 0.00921  |
| logMW     | -0.58146               | 0.034025 | -17.089 | 5.50E-23 |



Model: logD ~ 1 + MeOH + logMW

Fig. S6 Residual plot of MWpre errors using Model 1 (red) and Model 3 (blue), with average MWpre error range displayed by dashed lines.

**Table S5.** Model 3 (*n*=41, R<sup>2</sup>=0.908, adjusted R<sup>2</sup>=0.903)

| Coefficients | Estimate | SE     | tStat     | pValue   |
|--------------|----------|--------|-----------|----------|
| Intercept    | -8.0979  | 0.0789 | -102.5700 | 4.75E-48 |
| MeOH%        | 0.1906   | 0.0354 | 5.3831    | 3.99E-06 |
| logMW        | -0.6497  | 0.0337 | -19.2890  | 3.17E-21 |

#### Table S6. Model 4 Data and NPs tested using Model 4

| #  | Compound             | code    | MW    | <b>Dref</b> <sub>TTMS</sub> | Polarity | Shape | %acid/ | %NHBD | %Br   | %AHBD | HeavyO | D <sub>model</sub> 4 | % error |
|----|----------------------|---------|-------|-----------------------------|----------|-------|--------|-------|-------|-------|--------|----------------------|---------|
|    |                      |         |       |                             |          |       | ArOH   |       |       |       |        |                      |         |
| 1  | Niacin               | nia     | 123.1 | 3.817E-10                   | 0.386    | 0.667 | 0.138  | 0.000 | 0.000 | 0.000 | 1      | 3.659E-10            | -4.1    |
| 2  | Salicyclic acid      | sal     | 138.1 | 3.714E-10                   | 0.378    | 0.600 | 0.123  | 0.000 | 0.000 | 0.000 | 2      | 3.600E-10            | -3.1    |
| 3  | Acetaminophen        | ace     | 151.2 | 3.013E-10                   | 0.311    | 0.727 | 0.112  | 0.099 | 0.000 | 0.000 | 1      | 3.024E-10            | 0.4     |
| 4  | Menthol              | men     | 156.3 | 4.071E-10                   | 0.097    | 0.636 | 0.000  | 0.000 | 0.000 | 0.109 | 0      | 4.247E-10            | 4.3     |
| 5  | phenanthrene         | phe     | 178.2 | 4.489E-10                   | 0.000    | 0.571 | 0.000  | 0.000 | 0.000 | 0.000 | 0      | 4.146E-10            | -7.6    |
| 6  | 2-aminoanthracene    | ant     | 193.2 | 3.497E-10                   | 0.101    | 0.600 | 0.000  | 0.078 | 0.000 | 0.000 | 0      | 3.496E-10            | 0.0     |
| 7  | Caffeine             | caf     | 194.2 | 3.822E-10                   | 0.363    | 0.500 | 0.000  | 0.000 | 0.000 | 0.000 | 2      | 3.692E-10            | -3.4    |
| 8  | Pyrene               | pyr     | 202.3 | 4.155E-10                   | 0.000    | 0.500 | 0.000  | 0.000 | 0.000 | 0.000 | 0      | 3.863E-10            | -7.0    |
| 9  | ibuprofen            | ibu     | 206.3 | 2.924E-10                   | 0.151    | 0.667 | 0.082  | 0.000 | 0.000 | 0.000 | 1      | 2.984E-10            | 2.1     |
| 10 | 7-hydroxydictamnine  | hyd     | 215.2 | 2.959E-10                   | 0.302    | 0.500 | 0.079  | 0.000 | 0.000 | 0.000 | 2      | 2.985E-10            | 0.9     |
| 11 | Farnesol             | far     | 222.4 | 3.130E-10                   | 0.062    | 0.813 | 0.000  | 0.000 | 0.000 | 0.076 | 0      | 3.147E-10            | 0.5     |
| 12 | bisphenol A          | bisA    | 228.3 | 2.460E-10                   | 0.145    | 0.647 | 0.149  | 0.000 | 0.000 | 0.000 | 0      | 2.412E-10            | -2.0    |
| 13 | naproxen             | nap     | 230.3 | 2.742E-10                   | 0.202    | 0.647 | 0.074  | 0.000 | 0.000 | 0.000 | 2      | 2.818E-10            | 2.8     |
| 14 | Kavain               | kav     | 230.3 | 3.177E-10                   | 0.176    | 0.647 | 0.000  | 0.000 | 0.000 | 0.000 | 3      | 3.333E-10            | 4.9     |
| 15 | nalidixic acid       | nal     | 232.2 | 3.349E-10                   | 0.309    | 0.529 | 0.000  | 0.000 | 0.000 | 0.000 | 3      | 3.307E-10            | -1.2    |
| 16 | lignocaine           | lig     | 234.3 | 3.239E-10                   | 0.138    | 0.588 | 0.000  | 0.064 | 0.000 | 0.000 | 1      | 3.096E-10            | -4.4    |
| 17 | fragrolide           | fra     | 248.3 | 3.253E-10                   | 0.200    | 0.444 | 0.000  | 0.000 | 0.000 | 0.000 | 3      | 3.340E-10            | 2.7     |
| 18 | Parthenolide         | par     | 248.3 | 3.256E-10                   | 0.210    | 0.444 | 0.000  | 0.000 | 0.000 | 0.000 | 3      | 3.330E-10            | 2.3     |
| 19 | gemfibrozil          | gem     | 250.3 | 2.712E-10                   | 0.174    | 0.611 | 0.068  | 0.000 | 0.000 | 0.000 | 2      | 2.733E-10            | 0.8     |
| 20 | hexazinone           | hex     | 252.3 | 3.002E-10                   | 0.228    | 0.556 | 0.000  | 0.000 | 0.000 | 0.000 | 2      | 3.110E-10            | 3.6     |
| 21 | bis-indole-methanone | bis-ind | 260.3 | 2.607E-10                   | 0.206    | 0.550 | 0.000  | 0.115 | 0.000 | 0.000 | 1      | 2.711E-10            | 4.0     |
| 22 | woodsianone B        | W00     | 266.3 | 2.971E-10                   | 0.283    | 0.474 | 0.000  | 0.000 | 0.000 | 0.000 | 4      | 3.115E-10            | 4.8     |
| 23 | Atenolol             | ate     | 266.3 | 2.364E-10                   | 0.288    | 0.737 | 0.000  | 0.113 | 0.000 | 0.064 | 2      | 2.461E-10            | 4.1     |
| 24 | imazapic             | ima     | 275.3 | 2.357E-10                   | 0.354    | 0.500 | 0.062  | 0.054 | 0.000 | 0.000 | 2      | 2.409E-10            | 2.2     |
| 25 | Artemisinin          | art     | 282.3 | 3.256E-10                   | 0.276    | 0.400 | 0.000  | 0.000 | 0.000 | 0.000 | 5      | 3.110E-10            | -4.5    |
| 26 | acrophylline [TFA]   | acr*    | 397.3 | 2.673E-10                   | 0.181    | 0.476 | 0.000  | 0.000 | 0.000 | 0.000 | 5      | 2.424E-10            | -9.3    |

| 27 | arborinine              | arb       | 285.3  | 3.092E-10 | 0.236 | 0.476 | 0.000 | 0.000 | 0.000 | 0.000 | 4  | 2.999E-10 | -3.0 |
|----|-------------------------|-----------|--------|-----------|-------|-------|-------|-------|-------|-------|----|-----------|------|
| 28 | Trimethoprim            | tri2      | 290.3  | 2.299E-10 | 0.362 | 0.571 | 0.000 | 0.103 | 0.000 | 0.000 | 3  | 2.475E-10 | 7.7  |
| 29 | Lamourouic acid [TFA]   | Lam*      | 308.2  | 2.219E-10 | 0.356 | 0.643 | 0.055 | 0.049 | 0.000 | 0.000 | 4  | 2.224E-10 | 0.2  |
| 30 | toddalolactone          | todd      | 308.3  | 2.520E-10 | 0.298 | 0.500 | 0.000 | 0.000 | 0.000 | 0.110 | 4  | 2.694E-10 | 6.9  |
| 31 | Quinine                 | qui       | 324.4  | 2.520E-10 | 0.152 | 0.542 | 0.000 | 0.000 | 0.000 | 0.052 | 1  | 2.581E-10 | 2.4  |
| 32 | Boldine                 | bol       | 327.4  | 2.153E-10 | 0.208 | 0.417 | 0.104 | 0.000 | 0.000 | 0.000 | 2  | 2.201E-10 | 2.2  |
| 33 | Aaptamine [TFA]         | aap*      | 328.2  | 2.255E-10 | 0.232 | 0.500 | 0.052 | 0.046 | 0.000 | 0.000 | 3  | 2.290E-10 | 1.6  |
| 34 | Sanguinarine            | san       | 349.3  | 2.585E-10 | 0.188 | 0.480 | 0.000 | 0.000 | 0.000 | 0.000 | 4  | 2.615E-10 | 1.2  |
| 35 | Penicillin G            | pen       | 334.4  | 2.121E-10 | 0.366 | 0.565 | 0.051 | 0.045 | 0.000 | 0.000 | 3  | 2.132E-10 | 0.5  |
| 36 | Colchicine              | col       | 399.4  | 2.058E-10 | 0.251 | 0.414 | 0.000 | 0.038 | 0.000 | 0.000 | 5  | 2.330E-10 | 13.2 |
| 37 | α-tocopherol            | toc       | 430.7  | 2.126E-10 | 0.062 | 0.645 | 0.039 | 0.000 | 0.000 | 0.000 | 1  | 1.946E-10 | -8.5 |
| 38 | quinine [TFA]           | qui*      | 438.4  | 2.147E-10 | 0.197 | 0.542 | 0.000 | 0.000 | 0.000 | 0.039 | 3  | 2.109E-10 | -1.8 |
| 39 | Folic acid              | fol       | 441.4  | 1.523E-10 | 0.504 | 0.625 | 0.077 | 0.136 | 0.000 | 0.000 | 4  | 1.451E-10 | -4.7 |
| 40 | boldine [TFA]           | bol*      | 441.4  | 1.855E-10 | 0.252 | 0.417 | 0.077 | 0.000 | 0.000 | 0.000 | 4  | 1.894E-10 | 2.1  |
| 41 | Sanguinarine [TFA]      | san*      | 445.3  | 2.279E-10 | 0.188 | 0.480 | 0.000 | 0.000 | 0.000 | 0.000 | 6  | 2.255E-10 | -1.1 |
| 42 | Tobramycin              | tob       | 467.5  | 1.693E-10 | 0.573 | 0.469 | 0.000 | 0.160 | 0.000 | 0.182 | 4  | 1.565E-10 | -7.6 |
| 43 | rigidin                 | rig       | 363.3  | 1.686E-10 | 0.397 | 0.481 | 0.093 | 0.124 | 0.000 | 0.000 | 3  | 1.746E-10 | 3.6  |
| 44 | Emetine                 | eme       | 480.6  | 2.019E-10 | 0.146 | 0.486 | 0.000 | 0.031 | 0.000 | 0.000 | 4  | 2.027E-10 | 0.4  |
| 45 | Doxycycline             | doxy      | 480.9  | 1.707E-10 | 0.449 | 0.375 | 0.035 | 0.031 | 0.000 | 0.071 | 5  | 1.793E-10 | 5.0  |
| 46 | Fusidic acid            | fus       | 516.7  | 1.672E-10 | 0.195 | 0.432 | 0.033 | 0.000 | 0.000 | 0.066 | 3  | 1.804E-10 | 7.9  |
| 47 | Prunolide C             | prunC     | 574.5  | 1.499E-10 | 0.274 | 0.349 | 0.118 | 0.000 | 0.000 | 0.000 | 5  | 1.483E-10 | -1.1 |
| 48 | Rutin                   | rut       | 610.5  | 1.420E-10 | 0.488 | 0.419 | 0.084 | 0.000 | 0.000 | 0.167 | 7  | 1.387E-10 | -2.4 |
| 49 | Oleandomycin            | ole       | 687.9  | 1.676E-10 | 0.285 | 0.313 | 0.000 | 0.000 | 0.000 | 0.074 | 9  | 1.730E-10 | 3.2  |
| 50 | erythromycin            | ery       | 733.9  | 1.606E-10 | 0.285 | 0.294 | 0.000 | 0.000 | 0.000 | 0.116 | 8  | 1.617E-10 | 0.7  |
| 51 | clarithromycin          | clar      | 748.0  | 1.707E-10 | 0.272 | 0.288 | 0.000 | 0.000 | 0.000 | 0.091 | 9  | 1.639E-10 | -4.0 |
| 52 | Oleandomycin triacetate | e ole-tri | 814.0  | 1.660E-10 | 0.286 | 0.316 | 0.000 | 0.000 | 0.000 | 0.000 | 15 | 1.705E-10 | 2.7  |
| 53 | Rifampicin              | rifa      | 823.0  | 1.456E-10 | 0.284 | 0.373 | 0.021 | 0.018 | 0.000 | 0.041 | 9  | 1.414E-10 | -2.9 |
| 54 | Digitonin               | dig       | 1229.3 | 1.078E-10 | 0.427 | 0.388 | 0.000 | 0.000 | 0.000 | 0.235 | 12 | 1.067E-10 | -1.0 |
| 55 | Vancomycin [HCI]        | vanco     | 1485.7 | 8.942E-11 | 0.410 | 0.248 | 0.046 | 0.081 | 0.000 | 0.069 | 14 | 8.854E-11 | -1.0 |
| 56 | botrylamide             | botC      | 404.3  | 2.048E-10 | 0.203 | 0.680 | 0.042 | 0.037 | 0.197 | 0.000 | 3  | 2.160E-10 | 5.5  |

| 57 | 5-bromo-indole-<br>oxoacetate    | 5-BIO          | 282.1  | 3 250F-10 | 0.288 | 0.563 | 0.000 | 0.053 | 0.284 | 0.000 | 3 | 3.214E-10 | -1.1 |
|----|----------------------------------|----------------|--------|-----------|-------|-------|-------|-------|-------|-------|---|-----------|------|
| 58 | 6-bromo-indole-<br>oxoacetate    | 6-BIO          | 282.1  | 3.344E-10 | 0.288 | 0.625 | 0.000 | 0.053 | 0.284 | 0.000 | 3 | 3.150E-10 | -5.8 |
| 59 | Prunolide B                      | prunB          | 1047.9 | 1.410E-10 | 0.214 | 0.306 | 0.065 | 0.000 | 0.458 | 0.000 | 5 | 1.430E-10 | 1.5  |
| 60 | Prunolide A                      | prunA          | 1205.7 | 1.402E-10 | 0.199 | 0.294 | 0.056 | 0.000 | 0.531 | 0.000 | 5 | 1.380E-10 | -1.6 |
| 61 | Procerolide B                    | procB          | 563.0  | 2.087E-10 | 0.185 | 0.500 | 0.031 | 0.000 | 0.426 | 0.000 | 4 | 2.216E-10 | 6.2  |
| 62 | ehinosulfone A                   | echA           | 498.1  | 2.338E-10 | 0.282 | 0.500 | 0.000 | 0.029 | 0.308 | 0.000 | 4 | 2.273E-10 | -2.8 |
| 63 | bis(6-bromoindole)-<br>methanone | Br-bis-<br>ind | 418.1  | 2.449E-10 | 0.174 | 0.591 | 0.000 | 0.072 | 0.383 | 0.000 | 1 | 2.487E-10 | 1.5  |
| 64 | Aerophobin-2 [TFA]               | AERAO          | 619.2  | 1.699E-10 | 0.368 | 0.630 | 0.000 | 0.048 | 0.258 | 0.000 | 4 | 1.726E-10 | 1.5  |
| 65 | 19-bromoisoeudistomin            | PL010          | 478.3  | 2.021E-10 | 0.167 | 0.522 | 0.000 | 0.063 | 0.167 | 0.000 | 2 | 2.078E-10 | 2.8  |
| 66 | aplysamine 2 [TFA]               | APL 2          | 764.2  | 1.661E-10 | 0.183 | 0.667 | 0.022 | 0.020 | 0.314 | 0.000 | 5 | 1.592E-10 | -4.1 |
| 67 | Aerothionin                      | AERNO          | 818.1  | 1.520E-10 | 0.315 | 0.600 | 0.000 | 0.037 | 0.391 | 0.007 | 6 | 1.624E-10 | 6.8  |
| 68 | spathulenol                      | spa            | 220.4  | 3.397E-10 | 0.080 | 0.438 | 0.000 | 0.000 | 0.000 | 0.077 | 0 | 3.553E-10 | 4.6  |
| 69 | cyclocolorenone                  | сус            | 218.3  | 3.720E-10 | 0.079 | 0.438 | 0.000 | 0.000 | 0.000 | 0.000 | 1 | 3.696E-10 | -0.6 |
| 70 | convolutamine K                  | CONK           | 408.2  | 2.646E-10 | 0.066 | 0.650 | 0.000 | 0.000 | 0.392 | 0.000 | 1 | 2.755E-10 | 4.1  |
| 71 | Convolutamine K [TFA]            | CONK*          | 636.2  | 1.959E-10 | 0.066 | 0.650 | 0.000 | 0.000 | 0.251 | 0.000 | 5 | 1.944E-10 | -0.8 |
| 72 | Convolutamine L                  | CONL           | 323.0  | 3.264E-10 | 0.117 | 0.643 | 0.000 | 0.000 | 0.495 | 0.000 | 1 | 3.440E-10 | 5.4  |
| 73 | Convolutamine L [TFA]            | CONL*          | 437.0  | 2.508E-10 | 0.117 | 0.643 | 0.000 | 0.000 | 0.366 | 0.000 | 3 | 2.629E-10 | 4.8  |
| 74 | volutamine K                     | volK           | 828.3  | 1.773E-10 | 0.093 | 0.585 | 0.000 | 0.000 | 0.386 | 0.000 | 3 | 1.700E-10 | -4.1 |



Figure S7. Residual plot of predicted diffusion coefficient (D<sub>pre</sub>) error % from experimental D, with dashed lines showing the average error range.

**Table S7.** Model 4 (*n*=63, R<sup>2</sup>=0.986, adjusted R<sup>2</sup>=0.984)

| Coefficients | Estimate | SE     | tStat     | pValue   |
|--------------|----------|--------|-----------|----------|
| Intercept    | -7.6365  | 0.0745 | -102.5460 | 1.45E-63 |
| logMW        | -0.7403  | 0.0265 | -27.9582  | 8.46E-34 |
| Shape        | -0.1390  | 0.0343 | -4.0528   | 1.63E-04 |
| НеаvyO       | 0.00685  | 0.0018 | 3.7613    | 4.18E-04 |
| %phenol/acid | -0.8506  | 0.0696 | -12.2143  | 3.63E-17 |
| %Br          | 0.25862  | 0.0257 | 10.0676   | 5.38E-14 |
| %NHBD        | -0.4016  | 0.0806 | -4.9855   | 6.75E-06 |
| %AHBD        | -0.0947  | 0.0647 | -1.4638   | 1.49E-01 |
| Polarity     | -0.1282  | 0.0357 | -3.5966   | 6.99E-04 |

**Table S8.** Substructures used to detect intramolecular H-bonding with DataWarrior, then used to calculate ratio of free phenols and carboxylic acids

|                     |          | Phen    | ol IMHB |         | Carboxylic acid IMHB | peptide      |
|---------------------|----------|---------|---------|---------|----------------------|--------------|
|                     | IMHB_pA  | IMHB_pB | IMHB_pC | IMHB_pD | IMHB_c               | Cyclic amide |
|                     | h-0<br>O |         |         |         |                      |              |
| Salicylic acid      | 1        |         |         |         |                      |              |
| Nalidixic acid      |          |         |         |         | 1                    |              |
| Arborinine          | 1        |         |         |         |                      |              |
| Doxycycline hyclate |          | 1       |         |         |                      |              |
| Rutin               | 1        |         |         |         |                      |              |
| Rifampicin          |          |         | 1       | 1       |                      |              |



Fig. S8 The baseline shape of RP HPLC fraction 47 at increased intensity.



**Fig. S9** <sup>1</sup>H NMR of F10 from NP separation of *Tasmannia xerophila* extract (a) and projections at  $D = 3.72014E^{-10}$  (b) and  $3.39743E^{-10}$  (c) from <sup>1</sup>H DOSY spectrum of F10 in DMSO- $d_6$  at 298 K.



**Fig. S10** <sup>1</sup>H DOSY spectrum of F10, MW prediction by model 1 (black) and 2 (blue) with  $^{\text{eff}}\delta_{\text{H}} = 3.95$  for the slower diffusing compound (spathulenol (**68**) dark blue) and  $^{\text{eff}}\delta_{\text{H}} = 0.00$  for the faster diffusing compound (cyclocorolenone (**69**) light blue). True MWs values are represented by green lines.



**Fig. S11** <sup>1</sup>H DOSY spectrum of F10, MW prediction by model 3 with a MeOH% variable of 70% Black resonances (model 1) red resonances (model 3). True MWs values are represented by green lines.

#### Scheme for DOSY-based dereplication:

\* Models 2-4 are can only be used with DOSY data acquired in DMSO- $d_6$  at 298 °K

- 1. Acquire DOSY data with an internal standard.
- 2. Determine average *D* for compound.
- 3. Reference the DOSY data (for TTMS: *D*<sub>stand</sub>=3.157e-10, for DMSO: *D*<sub>stand</sub>=6.670e-10):

$$D = \frac{D_{\text{stand}}}{D_{\text{ref}}} \cdot D_{\text{comp}}$$

4. Using the DEREP-NP database in DataWarrior, add structural filters based on NMR data by selecting a structural feature and adding it as a slider or category filter, and a predicted *D* (*D*<sub>pre</sub>) filter (with an error range) based on the average experimental *D* of the compound:

| <u>F</u> ile <u>E</u> o | dit <u>D</u> ata <u>C</u> hemistry Da | <u>b</u> ase <u>L</u> ist                  | <u>M</u> acro <u>H</u> elp                                                             |       |                                |       |                |
|-------------------------|---------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------|-------|--------------------------------|-------|----------------|
| Table<br>(              | All) CH3 singlet (All)<br>3           | Set Colu<br>Set Colu<br>Set Colu<br>Show M | umn Alias<br>umn Description<br>umn Data Type To<br>Aultiple Values As                 | blet) | CH3-Cq (singlet) 3 Dpre        | 0     | 3              |
| 2                       | 3                                     | Show Ro<br>Wrap Te<br>Set Text             | Rounded Values ext t Color                                                             |       | 3.211e-10<br>CH sp2 (non arom) | 3.549 | le-10          |
| с                       | 3                                     | Duplicat<br>Delete 'O<br>Hide 'O           | :kground Color<br>ate 'CH3 singlet (All)'<br>'CH3 singlet (All)'<br>:H3 singlet (All)' | -     | 0<br>CH sp3<br>3               | 0     | 0<br>) 💌<br>65 |
| 4                       | 3                                     | New Sliv<br>New Ca                         | ider Filter<br>ategory Filter                                                          |       | CH2 (sp2)                      | 0     | 1              |

On the right are the structural and  $D_{pre}$  filters added for the slower diffusing compound in our NP HPLC fraction.